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Lecture 5: Likelihood and maximum likelihood
estimator (MLE)

The maximum likelihood method is the most popular method for
deriving estimators in statistical inference that does not use any loss
function.

Example 4.28
Let X be a single observation taking values from {0,1,2} according to
Pθ , where θ = θ0 or θ1 and the values of Pθj ({i}) are given by the
following table:

x = 0 x = 1 x = 2
θ = θ0 0.8 0.1 0.1
θ = θ1 0.2 0.3 0.5

If X = 0 is observed, it is more plausible that it came from Pθ0 , since
Pθ0({0}) is much larger than Pθ1({0}).
We then estimate θ by θ0.
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Example 4.28 (continued)
On the other hand, if X = 1 or 2, it is more plausible that it came from
Pθ1 , although in this case the difference between the probabilities is
not as large as that in the case of X = 0.
This suggests the following estimator of θ :

T (X ) =

{
θ0 X = 0
θ1 X 6= 0.

The idea in Example 4.28 can be easily extended to the case where
Pθ is a discrete distribution and θ ∈Θ⊂Rk .
If X = x is observed, θ1 is more plausible than θ2 if and only if
Pθ1({x}) > Pθ2({x}).
We then estimate θ by a θ̂ that maximizes Pθ ({x}) over θ ∈Θ, if such
a θ̂ exists.
Under the Bayesian approach with a prior that is the discrete uniform
distribution on {θ1, ...,θm}, Pθ ({x}) is proportional to the posterior
probability and we can say that θ1 is more probable than θ2 if
Pθ1({x}) > Pθ2({x}).
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Note that Pθ ({x}) is the p.d.f. w.r.t. the counting measure.
Hence, it is natural to extend the idea to the case of continuous (or
arbitrary) X by using the p.d.f. of X w.r.t. some σ -finite measure on the
range X of X .

Definition 4.3
Let X ∈X be a sample with a p.d.f. fθ w.r.t. a σ -finite measure ν ,
where θ ∈Θ⊂Rk .

(i) For each x ∈X , fθ (x) considered as a function of θ is called the
likelihood function and denoted by `(θ).

(ii) Let Θ̄ be the closure of Θ. A θ̂ ∈ Θ̄ satisfying `(θ̂) = max
θ∈Θ̄ `(θ)

is called a maximum likelihood estimate (MLE) of θ . If θ̂ is a Borel
function of X a.e. ν , then θ̂ is called a maximum likelihood
estimator (MLE) of θ .

(iii) Let g be a Borel function from Θ to Rp, p ≤ k . If θ̂ is an MLE of θ ,
then ϑ̂ = g(θ̂) is defined to be an MLE of ϑ = g(θ).
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Remarks
Note that Θ̄ instead of Θ is used in the definition of an MLE.
This is because a maximum of `(θ) may not exist when Θ is an
open set.
In some textbooks, Θ is used, instead of Θ̄

Part (iii) of Definition 4.3 is motivated by a fact given in Exercise
95 of §4.6.
An MLE may not exist, or there are many MLE’s.
An MLE may not have an explicit form.
In terms of their mse’s, MLE’s are not necessarily better than
UMVUE’s or Bayes estimators.
MLE’s are frequently inadmissible.
This is not surprising, since MLE’s are not derived under any
given loss function.
The main theoretical justification for MLE’s is provided in the
theory of asymptotic efficiency considered in §4.5.
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Finding an MLE

If Θ contains finitely many points, then Θ̄ = Θ and an MLE exists and
can always be obtained by comparing finitely many values `(θ), θ ∈Θ.
Since logx is a strictly increasing function, θ̂ is an MLE if and only if it
maximizes the log-likelihood function log`(θ).
It is often more convenient to work with log`(θ).
If `(θ) is differentiable on Θ◦, the interior of Θ, then possible
candidates for MLE’s are the values of θ ∈Θ◦ satisfying

∂ log`(θ)

∂θ
= 0,

which is called the likelihood equation or log-likelihood equation.
A root of the likelihood equation may be local or global minima, local or
global maxima, or simply stationary points.
Also, extrema may occur at the boundary of Θ or when ‖θ‖→ ∞.
Furthermore, if `(θ) is not always differentiable, then extrema may
occur at nondifferentiable or discontinuity points of `(θ).
Hence, it is important to analyze the entire likelihood function to find its
maxima.
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Example 4.29
Let X1, ...,Xn be i.i.d. binary random variables with
P(X1 = 1) = p ∈Θ = (0,1).
When (X1, ...,Xn) = (x1, ...,xn) is observed, the likelihood function is

`(p) =
n

∏
i=1

pxi (1−p)1−xi = pnx̄ (1−p)n(1−x̄),

where x̄ = n−1
∑

n
i=1 xi .

Note that Θ̄ = [0,1] and Θ◦ = Θ.
The likelihood equation is

nx̄
p
− n(1− x̄)

1−p
= 0.

If 0 < x̄ < 1, then this equation has a unique solution x̄ .
The second-order derivative of log`(p) is

−nx̄
p2 −

n(1− x̄)

(1−p)2 ,

which is always negative.
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Example 4.29 (continued)
Also, when p tends to 0 or 1 (the boundary of Θ), `(p)→ 0.
Thus, x̄ is the unique MLE of p.
When x̄ = 0, `(p) = (1−p)n is a strictly decreasing function of p and,
therefore, its unique maximum is 0.
Similarly, the MLE is 1 when x̄ = 1.
Combining these results, we conclude that the MLE of p is x̄ .
When x̄ = 0 or 1, a maximum of `(p) does not exist on Θ = (0,1),
although supp∈(0,1) `(p) = 1; the MLE takes a value outside of Θ and,
hence, is not a reasonable estimator.
However, if p ∈ (0,1), the probability that x̄ = 0 or 1 tends to 0 quickly
as n→ ∞.

Discussion
Example 4.29 indicates that, for small n, a maximum of `(θ) may not
exist on Θ and an MLE may be an unreasonable estimator; however,
this is unlikely to occur when n is large.
A rigorous result of this sort is given in §4.5.2, where we study
asymptotic properties of MLE’s.
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Example 4.30

Let X1, ...,Xn be i.i.d. from N(µ,σ2) with unknown θ = (µ,σ2), n ≥ 2.
Consider first the case where Θ = R× (0,∞).

log`(θ) =− 1
2σ2

n

∑
i=1

(xi −µ)2− n
2

logσ
2− n

2
log(2π).

The likelihood equation is
1

σ2

n

∑
i=1

(xi −µ) = 0 and
1

σ4

n

∑
i=1

(xi −µ)2− n
σ2 = 0.

Solving the first equation for µ, we obtain a unique solution
x̄ = n−1

∑
n
i=1 xi , and substituting x̄ for µ in the second equation, we

obtain a unique solution σ̂2 = n−1
∑

n
i=1(xi − x̄)2.

To show that θ̂ = (x̄ , σ̂2) is an MLE, first note that Θ is an open set and
`(θ) is differentiable everywhere; as θ tends to the boundary of Θ or
‖θ‖→ ∞, `(θ) tends to 0; and

∂ 2 log`(θ)

∂θ∂θ τ
=−

( n
σ2

1
σ4 ∑

n
i=1(xi −µ)

1
σ4 ∑

n
i=1(xi −µ) 1

σ6 ∑
n
i=1(xi −µ)2− n

2σ4

)
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This matrix is negative definite when µ = x̄ and σ2 = σ̂2.
Hence θ̂ is the unique MLE.
We may avoid the calculation of the second-order derivatives.
For instance, in this example we know that `(θ) is bounded and
`(θ)→ 0 as ‖θ‖→ ∞ or θ tends to the boundary of Θ; hence the
unique solution to the likelihood equation must be the MLE.
Consider next Θ = (0,∞)× (0,∞), i.e., µ is known to be positive.
`(θ) is differentiable on Θ◦ = Θ and Θ̄ = [0,∞)× [0,∞).
If x̄ > 0, then the same argument for the previous case can be used to
show that (x̄ , σ̂2) is the MLE.
If x̄ ≤ 0, then the first equation in the likelihood equation does not have
a solution in Θ.
However, the function log`(θ) = log`(µ,σ2) is strictly decreasing in µ

for any fixed σ2.
Hence, a maximum of log`(µ,σ2) is µ = 0, not depending on σ2.
Then, the MLE is (0, σ̃2), where σ̃2 is the value maximizing log`(0,σ2)
over σ2 ≥ 0.
Maximizing log`(0,σ2) leads to σ̃2 = n−1

∑
n
i=1 x2

i .
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Thus, the MLE is

θ̂ =

{
(x̄ , σ̂2) x̄ > 0
(0, σ̃2) x̄ ≤ 0.

Again, the MLE in this case is not in Θ if x̄ ≤ 0.
One can show that a maximum of `(θ) does not exist on Θ when x̄ ≤ 0.

Example 4.31
Let X1, ...,Xn be i.i.d. from the uniform distribution on an interval Iθ

with an unknown θ .
First, consider the case where Iθ = (0,θ) and θ > 0, Θ◦ = (0,∞).
The likelihood function is `(θ) = θ−nI(x(n),∞)(θ), x(n) = max(x1, ...,xn).
On (0,x(n)), `≡ 0 and on (x(n),∞), `′(θ) =−nθ n−1 < 0 for all θ .
`(θ) is not differentiable at x(n) and the method of using the likelihood
equation is not applicable.
Since `(θ) is strictly decreasing on (x(n),∞) and is 0 on (0,x(n)), a
unique maximum of `(θ) is x(n), which is a discontinuity point of `(θ).
This shows that the MLE of θ is the largest order statistic X(n).

Next, consider the case where Iθ = (θ − 1
2 ,θ + 1

2) with θ ∈R.
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The likelihood function is `(θ) = I(x(n)− 1
2 ,x(1)+ 1

2 )(θ), x(1) = min(x1, ...,xn)

Again, the method of using the likelihood equation is not applicable.
However, it follows from Definition 4.3 that any statistic T (X ) satisfying
x(n)− 1

2 ≤ T (x)≤ x(1) + 1
2 is an MLE of θ .

This example indicates that MLE’s may not be unique and can be
unreasonable.

Example 4.32
Let X be an observation from the hypergeometric distribution
HG(r ,n,θ −n) (Table 1.1, page 18) with known r , n, and an unknown
θ = n + 1,n + 2, ....
In this case, the likelihood function is defined on integers and the
method of using the likelihood equation is certainly not applicable.
Note that

`(θ)

`(θ −1)
=

(θ − r)(θ −n)

θ(θ −n− r + x)
,

which is larger than 1 iff θ < rn/x and is smaller than 1 iff θ > rn/x .
Thus, `(θ) has a maximum θ = the integer part of rn/x , which is the
MLE of θ .
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In applications, MLE’s typically do not have analytic forms and some
numerical methods have to be used to compute MLE’s.
But first, we may verify whether an MLE exists and whether it is unique

Example 4.33
Let X1, ...,Xn be i.i.d. from Γ(α,γ) with unknown α > 0 and γ > 0.
The log-likelihood function is

log`(θ) =−nα logγ−n logΓ(α) + (α−1)
n

∑
i=1

logxi −
1
γ

n

∑
i=1

xi

and the likelihood equation is

−n logγ− nΓ′(α)

Γ(α)
+

n

∑
i=1

logxi = 0

and
−nα

γ
+

1
γ2

n

∑
i=1

xi = 0.

The second equation yields γ = x̄/α.
Substituting γ = x̄/α into the first equation we obtain that

logα− Γ′(α)

Γ(α)
+

1
n

n

∑
i=1

logxi − log x̄ = 0.
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This equation does not have an explicit solution.
A numerical method has to be applied to compute the MLE for any
given observations x1, ...,xn.
We now show that a solution exists a.s. and it is the unique MLE.
Define

h(α) = logα− Γ′(α)

Γ(α)
+ Y − log X̄ ,

where Y = n−1
∑

n
i=1 logXi

We show that h(α) = 0 has a solution a.s. and it is the unique MLE.
Let C be the Euler constant defined as

C = lim
m→∞

(
m−1

∑
k=0

1
k + 1

− logm

)
.

From calculus,
Γ′(α)

Γ(α)
=−C +

∞

∑
k=0

(
1

k + 1
− 1

k + α

)
and d

dα

[
Γ′(α)

Γ(α)

]
=

∞

∑
k=0

1
(k + α)2
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Then

h′(α) =
1
α
−

∞

∑
k=0

1
(k + α)2

<
1
α
−

∞

∑
k=0

(
1

k + α
− 1

k + 1 + α

)
=

1
α

+
Γ′(α)

Γ(α)
− Γ′(α + 1)

Γ(α + 1)

=
1
α
− d

dα
log

Γ(α + 1)

Γ(α)

=
1
α
− d

dα
logα = 0.

Hence, h(α) is decreasing and h(α) = 0 has a unique solution a.s.
Also, it follows from the last two equalities of the previous expression
that, for m = 2,3, ...,

Γ′(m)

Γ(m)
=

1
m−1

+
1

m−2
+ · · ·+ 1 +

Γ′(1)

Γ(1)
=

m−2

∑
k=0

1
k + 1

−C.
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Therefore, by the definition of C,

lim
m→∞

[
logm− Γ′(m)

Γ(m)

]
= lim

m→∞

[
logm−

m−2

∑
k=0

1
k + 1

+ C

]
= 0

Hence, limα→∞ h(α) = Y − log X̄ , which is negative a.s. by Jensen’s
inequality when Xi ’s are not all the same.
Since

lim
α→0

[
logα− Γ′(α)

Γ(α)

]
= lim

α→0

[
logα + C−

∞

∑
k=0

(
1

k + 1
− 1

k + α

)]

= lim
α→0

[
logα + C +

1
α
−1 +

∞

∑
k=1

1−α

(k + 1)(k + α)

]

= lim
α→0

(
logα +

1
α

)
+ C−1 +

∞

∑
k=1

1
(k + 1)k

= ∞,

we have limα→0 h(α) = ∞.
Thus, the likelihood equations have a unique solution a.s., which is the
MLE of θ .
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The Newton-Raphson method
A commonly used numerical method is the Newton-Raphson iteration
method, which repeatedly computes

θ̂
(t+1) = θ̂

(t)−
[

∂ 2 log`(θ)

∂θ∂θ τ

∣∣∣∣
θ=θ̂ (t)

]−1
∂ log`(θ)

∂θ

∣∣∣∣
θ=θ̂ (t)

,

t = 0,1, ..., where θ̂ (0) is an initial value and ∂ 2 log`(θ)/∂θ∂θ τ is
assumed of full rank for every θ ∈Θ.
If, at each iteration, we replace[

∂ 2 log`(θ)

∂θ∂θ τ

∣∣∣∣
θ=θ̂ (t)

]−1

by [{
E
(

∂ 2 log`(θ)

∂θ∂θ τ

)}∣∣∣∣
θ=θ̂ (t)

]−1

,

where the expectation is taken under Pθ , then the method is known as
the Fisher-scoring method.
If the iteration converges, then θ̂ (∞) or θ̂ (t) with a sufficiently large t is a
numerical approximation to a solution of the likelihood equation.
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Example 4.33 (continued)
In Example 4.33, let

s(θ) =
∂ log`(θ)

∂θ
= n

(
− logγ− Γ′(α)

Γ(α)
+ Y ,−α

γ
+

X̄
γ2

)
,

R(θ) =
∂ 2 log`(θ)

∂θ∂θ τ
= n


[

Γ′(α)
Γ(α)

]2
− Γ′′(α)

Γ(α) −1
γ

−1
γ

α

γ2 − 2X̄
γ3

 ,

and

F (θ) = E [R(θ)] = n


[

Γ′(α)
Γ(α)

]2
− Γ′′(α)

Γ(α) −1
γ

−1
γ

− α

γ2

 .

Then the Newton-Raphson iteration equation is

θ̂
(k+1) = θ̂

(k)− [R(θ̂
(k))]−1s(θ̂

(k)), k = 0,1,2, ...

and the Fisher-scoring iteration equation is

θ̂
(k+1) = θ̂

(k)− [F (θ̂
(k))]−1s(θ̂

(k)), k = 0,1,2, ....
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