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Lecture 10: Density estimation and nonparametric
regression
Density estimation
Suppose that X1, ...,Xn are i.i.d. random variables from F and that F is
unknown but has a Lebesgue p.d.f. f .
Estimation of F can be done by estimating f .
Note that estimators of F derived in §5.1.1 and §5.1.2 do not have
Lebesgue p.d.f.’s.
Having a density estimator f̂ , F can be estimated by F̂ (x) =

∫ x
−∞

f (t)dt ,
which may be better than Fn
f̂ itself may be of interest

Difference quotient
Since f (t) = F ′(t), a simple estimator of f (t) is the difference quotient

fn(t) =
Fn(t +λn)−Fn(t−λn)

2λn
, t ∈R,

where Fn is the empirical c.d.f. and {λn} is a sequence of positive
constants.
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Properties of difference quotient
Since 2nλnfn(t) has the binomial distribution
Bi(F (t +λn)−F (t−λn),n),

E [fn(t)]→ f (t) if λn→ 0 as n→ ∞

and
Var
(
fn(t)

)
→ 0 if λn→ 0 and nλn→ ∞.

Thus, we should choose λn converging to 0 slower than n−1.
If we assume that λn→ 0, nλn→ ∞, and f is continuously differentiable
at t , then it can be shown (exercise) that

msefn(t)(F ) =
f (t)

2nλn
+o

(
1

nλn

)
+O(λ 2

n )

and, under the additional condition that nλ 3
n → 0,√

nλn[fn(t)− f (t)]→d N
(
0, 1

2 f (t)
)
.
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Kernel density estimators
A useful class of estimators is the class of kernel density estimators:

f̂ (t) =
1

nλn

n

∑
i=1

w
(

t−Xi
λn

)
,

where w is a known Lebesgue p.d.f. on R and is called the kernel.
If we choose w(t) = 1

2 I[−1,1](t), then f̂ (t) is essentially the same as the
so-called histogram.

Properties of kernel density estimator

f̂ is a Lebesgue density on R, since∫
∞

−∞

f̂ (t)dt =
1

nλn

n

∑
i=1

∫
∞

−∞

w
(

t−x
λn

)
dt =

∫
∞

−∞

w(y)dy = 1.

The bias of f̂ (t) as an estimator of f (t) is

E [̂f (t)]− f (t) =
1
λn

∫
w
(

t−z
λn

)
f (z)dz− f (t)

=
∫

w(y)[f (t−λny)− f (t)]dy
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If f is bounded and continuous at t , then, by the dominated
convergence theorem, the bias of f̂ (t) converges to 0 as λn→ 0.
If f ′ is bounded and continuous at t and

∫
|t |w(t)dt < ∞, then the bias

of f̂ (t) is O(λn).
If f ′′ is bounded and continuous at t ,

∫
tw(t)dt = 0, and

0 <
∫

t2w(t)dt < ∞ (2nd order kernel), then the bias of f̂ (t) is O(λ 2
n ).

If f is bounded and continuous at t and w0 =
∫
[w(t)]2dt < ∞, then

Var
(̂
f (t)
)

=
1

nλ 2
n

Var
(

w
(

t−X1
λn

))
=

1
nλ 2

n

∫ [
w
(

t−z
λn

)]2
f (z)dz

− 1
n

[
1
λn

∫
w
(

t−z
λn

)
f (z)dz

]2

=
1

nλn

∫
[w(y)]2f (t−λny)dy +O

(
1
n

)
=

w0f (t)
nλn

+o
(

1
nλn

)
UW-Madison (Statistics) Stat 710, Lecture 10 Jan 2019 4 / 16



beamer-tu-logo

Hence, if w0 < ∞, f ′ is bounded and continuous at t , then

msef̂ (t)(F ) =
w0f (t)

nλn
+O(λ 2

n )

and the best rate n−2/3 is achieved when λn has order n−1/3.
If w0 < ∞, f ′′ is bounded and continuous at t and

∫
tw(t)dt = 0, then

msef̂ (t)(F ) =
w0f (t)

nλn
+O(λ 4

n )

and the best rate n−4/5 is achieved when λn has order n−1/5.
If λn→ 0, nλn→ ∞, f is bounded and continuous at t and w0 < ∞, then√

nλn{f̂ (t)−E [̂f (t)]}→d N
(
0,w0f (t)

)
.

This can be shown as follows.
Let Yin = w

(
t−Xi

λn

)
.

Then Y1n, ...,Ynn are independent and identically distributed with

E(Y1n) =
∫

∞

−∞

w
(

t−x
λn

)
f (x)dx
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= λn

∫
∞

−∞

w(y)f (t−λny)dy

= O (λn)

Var(Y1n) =
∫

∞

−∞

[
w
(

t−x
λn

)]2

f (x)dx

−
[∫

∞

−∞

w
(

t−x
λn

)
f (x)dx

]2

= λn

∫
∞

−∞

[w(y)]2f (t−λny)dy +O(λ 2
n )

= λnw0f (t)+o(λn),

since f is bounded and continuous at t and w0 =
∫

∞

−∞
[w(t)]2dt < ∞.

Then

Var
(̂
f (t)
)
=

1
n2λ 2

n

n

∑
i=1

Var(Yin) =
w0f (t)

nλn
+o

(
1

nλn

)
.

Note that f̂ (t)−Ef̂ (t) = ∑
n
i=1[Yin−E(Yin)]/(nλn).
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To apply Lindeberg’s central limit theorem to f̂ (t), we find, for ε > 0,
E(Y 2

1nI{|Y1n−E(Y1n)|>ε
√

nλn})

λn

=
∫
|w(y)−E(Y1n)|>ε

√
nλn

[w(y)]2f (t−λny)dy ,

Since E(Y1n) = O(λn), if λn→ 0 and nλn→ ∞, the set
{|w(y)−E(Y1n)|> ε

√
nλn} shrinks to empty as n→ ∞.

This proves that Lindeberg’s condition is satisfied and thus√
nλn{f̂ (t)−E [̂f (t)]}→d N

(
0,w0f (t)

)
.

Furthermore, if
E [̂f (t)]− f (t) = O(λn)

then √
nλn{E [̂f (t)]− f (t)}= O

(√
nλnλn

)
→ 0

if nλ 3
n → 0, which implies that√

nλn{f̂ (t)− f (t)]}→d N
(
0,w0f (t)

)
.
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If
E [̂f (t)]− f (t) = O(λ 2

n )

then √
nλn{E [̂f (t)]− f (t)}= O

(√
nλnλ

2
n

)
→ 0

if nλ 5
n → 0, which implies that√

nλn{f̂ (t)− f (t)]}→d N
(
0,w0f (t)

)
.

In any case, the best choice of λn for the mse does not satisfy nλ 3
n → 0

or nλ 5
n → 0.

Example 5.4
An i.i.d. sample of size n = 200 was generated from N(0,1).
Density curve estimates, difference quotient fn (short dashed curve)
and kernel estimate f̂ (long dashed curve), are plotted in Figure 5.1
with the curve of the true p.d.f. (solid curve)
For the kernel estimate, w(t) = 1

2e−|t | is used and λn = 0.4.
From Figure 5.1, it seems that the kernel estimate is much better than
the difference quotient.
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Figure 5.1. Density estimates in Example 5.4
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Nonparametric regression
In many applications we want to estimate the regression function

µ(t) = E(Yi |t) = E(Yi |Xi = t)

based on a random sample (Y1,X1), ...,(Yn,Xn) from a population with
a pdf f (x ,y).
In nonparametric regression, we do not specify any form of µ(t) except
that it is a smooth function of t .
A nonparametric estimator of µ(t) based on a kernel w(t) is

µ̂(t) =
n

∑
i=1

Yiw
(

t−Xi

λn

)/ n

∑
i=1

w
(

t−Xi

λn

)
, t ∈R

From the previous discussion on the kernel estimation of the pdf of Xi ,
f (t), the denominator divided by nλn converges in probability to f (t) if
λn→ 0 and nλn→ ∞.
Hence, for the consistency of µ̂(t) as an estimator of µ(t), it suffices to
show that, for any t ∈R,
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hn(t) =
1

nλn

n

∑
i=1

Yiw
(

t−Xi

λn

)
→p

∫
yf (t ,y)dy

Consider first the expectation:

E [hn(t)] =
1
λn

E
[
Yiw

(
t−Xi

λn

)]
=

1
λn

∫ ∫
yw
(

t−x
λn

)
f (x ,y)dxdy

=
∫ ∫

yw (z) f (t−λnz,y)dzdy

Suppose that f (x ,y) is continuous and f (x ,y)≤ c(y)g(y), where g(y)
is the pdf of Yi and c(y) is a function of y satisfies

E [|Yi |c(Yi)] =
∫
|y |c(y)g(y)dy < ∞

Then, if λn→ 0 as n→ ∞, by the dominated convergence theorem,

lim
n→∞

E [hn(t)] = lim
n→∞

∫ ∫
yw (z) f (t−λnz,y)dzdy

=
∫ ∫

yw (z) f (t ,y)dzdy
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=
∫

w (z)dz
∫

yf (t ,y)dy

=
∫

yf (t ,y)dy

Thus, it remains to show that the variance of hn(t) converges to 0
under some conditions.

Var(hn(t)) =
1

nλ 2
n

Var
(

Yiw
(

t−Xi
λn

))
≤ 1

nλ 2
n

E
[
Yiw

(
t−Xi

λn

)]2

=
1

nλ 2
n

∫ ∫
y2
[
w
(

t−x
λn

)]2
f (x ,y)dxdy

=
1

nλn

∫ ∫
y2 [w (z)]2 f (t−λnz,y)dzdy

Suppose that f (x ,y) is continuous and f (x ,y)≤ c(y)g(y), where g(y)
is the pdf of Yi and c(y) is a function of y satisfies
E [Y 2

i c(Yi)] =
∫

y2c(y)g(y)dy < ∞
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Also, assume w0 =
∫
[w(z)]2dz < ∞ and E(Y 2

i )< ∞.
Then

lim
n→∞

∫ ∫
y2 [w (z)]2 f (t−λnz,y)dzdy =

∫ ∫
y2 [w (z)]2 f (t ,y)dzdy

=
∫

[w (z)]2 dz
∫

y2f (t ,y)dy

< ∞

Hence,

Var(hn(t)) = O
(

1
nλn

)
which converges to 0 if nλn→ ∞.
Under some more conditions, similar to the estimation of f (t), for any
t ∈R, we can show that for some function σ2(t),√

nλn[µ̂(t)−µ(t)] converges in distribution to N(0,σ2(t))

Note that µ̂(t) is a ratio estimator hn(t)/f̂ (t).
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Averaging kernel estimators
Kernel estimators of µ(t) = E(Yi |Xi = t) have convergence rates
slower than n−1/2.
However, the convergence rate is n−1/2 if we average kernel
estimators.
For example, we can estimate µ = E(Yi) = E [E(Yi |Xi)] = E [µ(Xi)] by

µ̂ =
n

∑
j=1

n

∑
i=1

Yiw
(

Xj −Xi

λn

)/ n

∑
j=1

n

∑
i=1

w
(

Xj −Xi

λn

)
a ratio of V-statistics (but the kernel of V-statistics depending on λn).
Under some conditions, it can be shown that

√
n(µ̂−µ) converges in distribution to N(0,σ2)

for some σ2.
Conditions on λn: for some constant C > 0,

λn = Cn−s,
1
2
< s < 1 or

1
4
< s < 1 if

∫
tw(t)dt = 0

This is not the best choice (s = 1/3 or 1/5) for estimating µ(t) with a
fixed t .
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k -nearest neighbor (k -NN) estimators
The kernel estimator

µ̂(t) =
n

∑
i=1

Yiw
(

t−Xi

λn

)/ n

∑
i=1

w
(

t−Xi

λn

)
, t ∈R

is a weighted average of Yi ’s in a fixed neighorhood around t ,
determined in shape by the kernel w and the bandwidth λn.
The k -NN estimator is a weighted average in a varying neighborhood
defined through those Xi ’s which are among the k -nearest neighbors
of t in Euclidean distance:

µ̃(t) =
n

∑
i=1

YiWki(t)

where

Wki =

{
1/k i ∈ Xi is one of the k nearest observations to t
0 otherwise

Example
(Xi ,Yi)’s = (1,5), (7,12), (3,1), (2,0),(5,4)
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n = 5, k = 3, t = 4.
The 3 nearest neighbors to t = 4 are 3 (i = 3), 2 (i = 4), 5 (i = 5)
Wk1(4) = 0, Wk2(4) = 0, Wk3(4) = 1/3, Wk4(4) = 1/3, Wk5(4) = 1/3
Thus, µ̃ = (1+0+4)/3 = 5/3.

Asymptotic theory
To reduce noise we need let k tend to infinity as a function of n.
To keep the approximation error (bias) low we need the
neighborhood around t shrinks asymptotically to 0.
k/n ≈ λn, the bandwidth in kernel estimation; i.e., we need k → ∞

and k/n→ 0.

Theorem
If (X1,Y1), ...,(Xn,Yn) are i.i.d. with E(Y 2

1 )< ∞, X1sim Lebesgue p.d.f.
f , and µ(t) = E(Y1|X1 = t), then, for some σ2(t),

E µ̃(t)−µ(t) =
(µ ′′f +2µ ′f ′)(t)

24f (t)3

(
k
n

)
+o

(
k
n

)
Var(µ̃(t)) =

σ2(t)
k

+o
(

1
k

)
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