Lecture 12: L-estimators and M-estimators

L-functional and L-estimator

For a function J(t) on [0,1], define the L-functional as

$$T(G) = \int x J(G(x)) dG(x), \quad G \in \mathscr{F}.$$

If $X_1, ..., X_n$ are i.i.d. from *F* and T(F) is the parameter of interest, $T(F_n)$ is called an L-estimator of T(F). $T(F_n)$ is a linear function of order statistics:

$$T(F_n) = \int x J(F_n(x)) dF_n(x) = \frac{1}{n} \sum_{i=1}^n J\left(\frac{i}{n}\right) X_{(i)},$$

since $F_n(X_{(i)}) = i/n, i = 1, ..., n$.

Examples

- When $J(t) \equiv 1$, $T(F_n) = \overline{X}$, the sample mean.
- When $J(t) = (1 2\alpha)^{-1} I_{(\alpha, 1 \alpha)}(t)$, $T(F_n) = \bar{X}_{\alpha}$ is the α -trimmed sample mean.

Although the sample median is also a linear function of order statistics, it is not of the form $T(F_n)$ with an L-functional T

Asymptotic normality of L-estimators

To establish the asymptotic normality for L-estimators $T(F_n)$, we follow the following steps.

Step 1. For $x \in \mathcal{R}$, calculate

$$\phi_{\mathsf{F}}(x) = \lim_{t \to 0} \frac{T(F + t(\delta_x - F)) - T(F)}{t}$$

(if it exists), where δ_x is the point mass at *x*.

The function ϕ_F is called the influence function of *T* at *F*.

The influence function is an important tool in the study of robuestness of estimators

Also, verify that

$$E[\phi_F(X_1)] = \int \phi_F(x) dF(x) = 0$$

Step 2. Verify that $E[\phi_F(X_1)]^2 < \infty$ and obtain $\sigma_F^2 = E[\phi_F(X_1)]^2 = \int [\phi_F(x)]^2 dF(x).$

Step 3. Verify that

$$T(F_n) - T(F) = \frac{1}{n} \sum_{i=1}^n \phi_F(X_i) + o_p\left(\frac{1}{\sqrt{n}}\right).$$

This holds when *T* is differentiable in some sense (§5.2.1). Then $\sqrt{n}[T(F_n) - T(F)] \rightarrow_d N(0, \sigma_F^2).$

Step 3 is the most difficult part.

This approach can also be applied to other functionals (§5.2).

We now apply this approach to show the asymptotic normality of the trimmed sample mean.

$$T(G) = \int x J(G(x)) dG(x), \quad G \in \mathscr{F}$$

For F and G in \mathcal{F} ,

$$T(G) - T(F) = \int x J(G(x)) dG(x) - \int x J(F(x)) dF(x)$$

= $\int_0^1 [G^{-1}(t) - F^{-1}(t)] J(t) dt$
= $\int_0^1 \int_{F^{-1}(t)}^{G^{-1}(t)} dx J(t) dt$
= $\int_{-\infty}^{\infty} \int_{G(x)}^{F(x)} J(t) dt dx$
= $\int_{-\infty}^{\infty} [F(x) - G(x)] J(F(x)) dx$
 $- \int_{-\infty}^{\infty} U_G(x) [G(x) - F(x)] J(F(x)) dx,$

イロト イヨト イヨト イヨト

where

$$U_G(x) = \begin{cases} \frac{\int_{F(x)}^{G(x)} J(t)dt}{[G(x) - F(x)]J(F(x))} - 1 & G(x) \neq F(x), J(F(x)) \neq 0\\ 0 & \text{otherwise} \end{cases}$$

and the fourth equality follows from Fubini's theorem and the fact that the region in \mathscr{R}^2 between curves F(x) and G(x) is the same as the region in \mathscr{R}^2 between curves $G^{-1}(t)$ and $F^{-1}(t)$. Let $G = F + t(\delta_x - F)$, where δ_x is the degenerated distribution at x. Since $\lim_{t\to 0} U_{F+t(\delta_x - F)}(y) = 0$, by the dominated convergence

theorem,

$$\lim_{t\to 0}\int_{-\infty}^{\infty}U_{F+t(\delta_X-F)}(y)[\delta_X(y)-F(y)]J(F(y))dy=0.$$

Hence

$$\lim_{t\to 0}\frac{T(F+t(\delta_x-F))-T(F)}{t}=-\int_{-\infty}^{\infty}[\delta_x(y)-F(y)]J(F(y))dy,$$

which is $\phi_F(x)$, the influence function of *T*.

UW-Madison (Statistics)

Stat 710, Lecture 12

By Fubini's theorem and the fact that $\int \delta_x(y) dF(x) = F(y)$,

$$\int \phi_F(x) dF(x) = -\int_{-\infty}^{\infty} \left[\int (\delta_x - F)(y) dF(x) \right] J(F(y)) dy = 0,$$

Consider now $J(t) = (\beta - \alpha)^{-1} I_{(\alpha,\beta)}(t)$,

$$\phi_{\mathsf{F}}(x) = -\frac{1}{\beta - \alpha} \int_{\mathbb{F}^{-1}(\alpha)}^{\mathbb{F}^{-1}(\beta)} [\delta_x(y) - \mathbb{F}(y)] dy.$$

Assume that *F* is continuous at $F^{-1}(\alpha)$ and $F^{-1}(\beta)$. $F(F^{-1}(\alpha)) = \alpha$ and $F(F^{-1}(\beta)) = \beta$. When $x < F^{-1}(\alpha)$,

$$\phi_{F}(x) = -\frac{1}{\beta - \alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(\beta)} [1 - F(y)] dy$$

= $-\frac{y[1 - F(y)]}{\beta - \alpha} \Big|_{F^{-1}(\alpha)}^{F^{-1}(\beta)} - \frac{1}{\beta - \alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(\beta)} y dF(y)$
= $\frac{F^{-1}(\alpha)(1 - \alpha) - F^{-1}(\beta)(1 - \beta)}{\beta - \alpha} - T(F)$

Similarly, when $x > F^{-1}(\beta)$,

$$\phi_F(x) = \frac{1}{\beta - \alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(\beta)} F(y) dy$$

= $\frac{F^{-1}(\beta)\beta - F^{-1}(\alpha)\alpha}{\beta - \alpha} - T(F).$

Finally, when $F^{-1}(\alpha) \leq x \leq F^{-1}(\beta)$,

$$\begin{split} \phi_F(x) &= \frac{1}{\beta - \alpha} \int_{F^{-1}(\alpha)}^{x} F(y) dy - \frac{1}{\beta - \alpha} \int_{x}^{F^{-1}(\beta)} [1 - F(y)] dy \\ &= \frac{yF(y)}{\beta - \alpha} \Big|_{F^{-1}(\alpha)}^{x} - \frac{1}{\beta - \alpha} \int_{F^{-1}(\alpha)}^{x} y dF(y) \\ &\quad + \frac{y[1 - F(y)]}{\beta - \alpha} \Big|_{x}^{F^{-1}(\beta)} - \frac{1}{\beta - \alpha} \int_{x}^{F^{-1}(\beta)} y dF(y) \\ &= \frac{x - F^{-1}(\alpha)\alpha - F^{-1}(\beta)(1 - \beta)}{\beta - \alpha} - T(F). \end{split}$$

Hence,

$$\phi_{F}(x) = \begin{cases} \frac{F^{-1}(\alpha)(1-\alpha)-F^{-1}(\beta)(1-\beta)}{\beta-\alpha} - T(F) & x < F^{-1}(\alpha) \\ \frac{x-F^{-1}(\alpha)\alpha-F^{-1}(\beta)(1-\beta)}{\beta-\alpha} - T(F) & F^{-1}(\alpha) \le x \le F^{-1}(\beta) \\ \frac{F^{-1}(\beta)\beta-F^{-1}(\alpha)\alpha}{\beta-\alpha} - T(F) & x > F^{-1}(\beta). \end{cases}$$

If *F* is symmetric about θ , *J* is symmetric about $\frac{1}{2}$ (J(t) = J(1-t)), and $\int_0^1 J(t)dt = 1$, then $F(x) = F_0(x-\theta)$, where F_0 is a c.d.f. that is symmetric about 0, i.e., $F_0(x) = 1 - F_0(-x)$, and

$$\int x J(F_0(x)) dF_0(x) = \int x J(1 - F_0(-x)) dF_0(x)$$

= $\int x J(F_0(-x)) dF_0(x)$
= $-\int y J(F_0(y)) dF_0(y),$

i.e.,
$$\int x J(F_0(x)) dF_0(x) = 0$$
.

Hence,

$$T(F) = \int x J(F(x)) dF(x)$$

= $\theta \int J(F(x)) dF(x) + \int (x-\theta) J(F_0(x-\theta)) dF_0(x-\theta)$
= $\theta \int_0^1 J(t) dt + \int y J(F_0(y)) dF_0(y)$
= θ .

Assume that *F* is continuous at $F^{-1}(\alpha)$ and $F^{-1}(1-\alpha)$. When $\beta = 1 - \alpha$, *J* is symmetric about $\frac{1}{2}$ and

$$\phi_{F}(x) = \begin{cases} \frac{F_{0}^{-1}(\alpha)}{1-2\alpha} & x < F^{-1}(\alpha) \\ \frac{x-\theta}{1-2\alpha} & F^{-1}(\alpha) \le x \le F^{-1}(1-\alpha) \\ \frac{F_{0}^{-1}(1-\alpha)}{1-2\alpha} & x > F^{-1}(1-\alpha), \end{cases}$$

where $F^{-1}(\alpha) + F^{-1}(1-\alpha) = 2\theta$, $F_0^{-1}(\alpha) = F^{-1}(\alpha) - \theta$ and $F_0^{-1}(1-\alpha) = F^{-1}(1-\alpha) - \theta$.

Step 2: Calculation of $\sigma_F^2 = \overline{E[\phi_F(X_1)]^2}$

Because
$$F_0^{-1}(\alpha) = -F_0^{-1}(1-\alpha)$$
, we obtain that

$$\begin{split} \int [\phi_F(x)]^2 dF(x) &= \frac{[F_0^{-1}(\alpha)]^2}{(1-2\alpha)^2} \alpha + \frac{[F_0^{-1}(1-\alpha)]^2}{(1-2\alpha)^2} \alpha \\ &+ \int_{F^{-1}(\alpha)}^{F^{-1}(1-\alpha)} \frac{(x-\theta)^2}{(1-2\alpha)^2} dF(x) \\ &= \frac{2\alpha [F_0^{-1}(1-\alpha)]^2}{(1-2\alpha)^2} + \int_{F_0^{-1}(\alpha)}^{F_0^{-1}(1-\alpha)} \frac{x^2}{(1-2\alpha)^2} dF_0(x) \\ &= \sigma_\alpha^2. \end{split}$$

Step 3: Asymptotic normality of the trimmed sample mean

It can be shown that the L-functional T(G) is differentiable in some sense (see the textbook).

Hence, for the α -trimmed sample mean \bar{X}_{α} ,

$$\sqrt{n}(\bar{X}_{\alpha}- heta)
ightarrow_d N(0,\sigma_{\alpha}^2).$$

M-estimators

Note that the sample mean \bar{X} satisfies

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}=\min_{t\in\Theta}\frac{1}{n}\sum_{i=1}^{n}(X_{i}-t)^{2}=\min_{t\in\Theta}\int(x-t)^{2}dF_{n}$$

This idea can be generalized to get a class of estimators obtained by minimizing some functions.

Let $\rho(x,t)$ be a Borel function on $\mathscr{R}^d \times \mathscr{R}$ and $\Theta \subset \mathscr{R}$ be an open set. An *M*-functional is defined to be a solution of

$$\int \rho(x, T(G)) dG(x) = \min_{t \in \Theta} \int \rho(x, t) dG(x), \qquad G \in \mathscr{F}$$

For $X_1, ..., X_n$ i.i.d. from $F \in \mathscr{F}$, $T(F_n)$ is called an *M*-estimator of T(F).

$$\int \rho(x, T(F_n)) dF_n(x) = \min_{t \in \Theta} \int \rho(x, t) dF_n(x)$$

i.e.,

$$\frac{1}{n}\sum_{i=1}^{n}\rho(X_i,T(F_n))=\min_{t\in\Theta}\frac{1}{n}\sum_{i=1}^{n}\rho(X_i,t)$$

Assume that $\psi(x,t) = \partial \rho(x,t) / \partial t$ exists a.e. and

$$\lambda_G(t) = \int \psi(x,t) dG(x) = \frac{\partial}{\partial t} \int \rho(x,t) dG(x).$$

Then $\lambda_G(T(G)) = 0$ and $T(F_n)$ is a solution of

$$\sum_{i=1}^n \psi(X_i,t) = 0.$$

Example 5.7

The following are some examples of M-estimators. (i) If $\rho(x,t) = (x-t)^2/2$, then $T(F_n) = \bar{X}$ is the sample mean. (ii) If $\rho(x,t) = |x-t|^p/p$, where $p \in [1,2)$, then

$$\psi(x,t) = \begin{cases} |x-t|^{p-1} & x \le t \\ -|x-t|^{p-1} & x > t. \end{cases}$$

When p = 1, $T(F_n)$ is the sample median. When $1 , <math>T(F_n)$ is called the *p*th least absolute deviations estimator or the minimum L_p distance estimator.

・ロト ・ 四ト ・ ヨト ・ ヨト

(iii) Let $\mathscr{F}_0 = \{f_\theta : \theta \in \Theta\}$ be a parametric family of p.d.f.'s with $\Theta \subset \mathscr{R}$ and $\rho(x,t) = -\log f_t(x)$. Then $T(F_n)$ is an MLE. Thus, M-estimators are extensions of MLE's in parametric models. (iv) Let C > 0 be a constant. Huber (1964) considers

$$\rho(x,t) = \begin{cases} \frac{1}{2}(x-t)^2 & |x-t| \le C \\ \frac{1}{2}C^2 & |x-t| > C \end{cases}$$

with

$$\psi(x,t) = \begin{cases} t-x & |x-t| \leq C \\ 0 & |x-t| > C. \end{cases}$$

The corresponding $T(F_n)$ is a type of trimmed sample mean. (v) Let C > 0 be a constant. Huber (1964) considers

$$\rho(x,t) = \begin{cases} \frac{1}{2}(x-t)^2 & |x-t| \le C \\ C|x-t| - \frac{1}{2}C^2 & |x-t| > C \end{cases}$$

ヘロト ヘ通 ト ヘヨト ヘヨト

with

$$\psi(x,t) = \begin{cases} C & t-x > C \\ t-x & |x-t| \le C \\ -C & t-x < -C. \end{cases}$$

The corresponding $T(F_n)$ is a type of Winsorized sample mean. (vi) Hampel (1974) considers $\psi(x,t) = \psi_0(t-x)$ with $\psi_0(s) = -\psi_0(-s)$ and

$$\psi_0(s) = \left\{egin{array}{ccc} s & 0 \leq s \leq a \ a & a < s \leq b \ rac{a(c-s)}{c-b} & b < s \leq c \ 0 & s > c, \end{array}
ight.$$

where 0 < a < b < c are constants. A smoothed version of ψ_0 is

$$\psi_1(s) = \left\{ egin{array}{ll} \sin(as) & 0 \leq s < \pi/a \ 0 & s > \pi/a. \end{array}
ight.$$

Theorem 5.7

Let $X_1, ..., X_n$ be i.i.d. from F and T be an M-functional. Assume that ψ is a bounded and continuous function on $\mathscr{R}^d \times \mathscr{R}$ and that $\lambda_F(t)$ is continuously differentiable at T(F) and $\lambda'_F(T(F)) \neq 0$. Then $\sqrt{n}[T(F_n) - T(F)] \rightarrow_d N(0, \sigma_F^2)$

$$\sigma_F^2 = \frac{\int [\psi(x, T(F))]^2 dF(x)}{[\lambda'_F(T(F))]^2}.$$

Example 5.13

Consider Huber's ψ given in Example 5.7(v). Assume that *F* is continuous at $\theta - C$ and $\theta + C$. Then

$$\sigma_F^2 = \frac{\int_{\theta-C}^{\theta+C} (\theta-x)^2 dF(x) + C^2 F(\theta-C) + C^2 [1 - F(\theta+C)]}{[F(\theta+C) - F(\theta-C)]^2}$$

Asymptotic relative efficiency between Huber's M-estimator and the sample mean can be obtained.

A sketched proof of Theorem 5.7:

Let $\theta = T(F)$ and $\widehat{\theta} = T(F_n)$. By the definition of M-estimator $\widehat{\theta}$,

$$\int \psi(x,\widehat{\theta}) dF_n(x) = 0$$

Hence

$$-\int \psi(x,\theta) dF_n(x) = \frac{\partial}{\partial \theta} \left[\int \psi(x,\theta) dF_n(x) \right] (\widehat{\theta} - \theta) + o_p(n^{-1/2})$$
$$= \frac{\partial}{\partial \theta} \left[\int \psi(x,\theta) dF(x) \right] (\widehat{\theta} - \theta) + o_p(n^{-1/2})$$
$$= \lambda'_F(\theta) (\widehat{\theta} - \theta) + o_p(n^{-1/2})$$

Then

$$-\frac{1}{n}\sum_{i=1}^{n}\psi(X_{i},\theta)/\lambda_{F}^{\prime}(\theta)=(\widehat{\theta}-\theta)+o_{\rho}(n^{-1/2})$$

The result follows from the CLT since $E[\psi(X_i, \theta)] = 0$ and

$$\operatorname{Var}(\psi(X_i)) = \int [\psi(x,\theta)]^2 dF(x)$$

UW-Madison (Statistics)

Stat 710, Lecture 12