Lecture 12: L-estimators and M-estimators

L-functional and L-estimator

For a function $J(t)$ on [0,1], define the L-functional as

$$
T(G)=\int xJ(G(x))dG(x), G\in\mathscr{F}.
$$

If $X_1, ..., X_n$ are i.i.d. from F and $T(F)$ is the parameter of interest, $T(F_n)$ is called an L-estimator of $T(F)$. $T(F_n)$ is a linear function of order statistics:

$$
T(F_n)=\int xJ(F_n(x))dF_n(x)=\frac{1}{n}\sum_{i=1}^n J(\frac{i}{n})X_{(i)},
$$

since *Fn*(*X*(*i*)) = *i*/*n*, *i* = 1,...,*n*.

Examples

- When $J(t) \equiv 1$, $T(F_n) = \overline{X}$, the sample mean.
- beamer-tu-logo When $J(t) = (1-2α)^{-1} I_{(α,1-α)}(t)$, $\mathcal{T}(F_n) = \bar{X}_α$ is the α-trimmed sample mean.

Although the sample median is also a linear function of order statistics, it is not of the form *T*(*Fn*) with an L-functional *T*

Asymptotic normality of L-estimators

To establish the asymptotic normality for L-estimators $T(F_n)$, we follow the following steps.

Step 1. For $x \in \mathcal{R}$, calculate

$$
\phi_F(x) = \lim_{t \to 0} \frac{T(F + t(\delta_x - F)) - T(F)}{t}
$$

(if it exists), where δ_x is the point mass at x.

The function ϕ_F is called the influence function of T at F.

The influence function is an important tool in the study of robuestness of estimators

Also, verify that

$$
E[\phi_F(X_1)]=\int \phi_F(x)dF(x)=0
$$

UW-Madison (Statistics) [Stat 710, Lecture 12](#page-0-0) Jan 2019 2/16

Step 2. Verify that $E[\phi_F(X_1)]^2 < \infty$ and obtain $\sigma_F^2 = E[\phi_F(X_1)]^2 = \int [\phi_F(x)]^2 dF(x).$

Step 3. Verify that

$$
T(F_n)-T(F)=\frac{1}{n}\sum_{i=1}^n\phi_F(X_i)+o_p\left(\frac{1}{\sqrt{n}}\right).
$$

This holds when *T* is differentiable in some sense (§5.2.1). Then $\overline{n}[T(F_n) - T(F)] \rightarrow_d N(0, \sigma_F^2)$.

Step 3 is the most difficult part.

This approach can also be applied to other functionals (§5.2).

We now apply this approach to show the asymptotic normality of the trimmed sample mean.

beamer-tu-logo

 Ω

Step 1: Derivation of the influence function $φ$ _F

$$
\mathcal{T}(G) = \int xJ(G(x))dG(x), G \in \mathscr{F}
$$

For F and G in \mathscr{F} ,

$$
T(G) - T(F) = \int xJ(G(x))dG(x) - \int xJ(F(x))dF(x)
$$

\n
$$
= \int_0^1 [G^{-1}(t) - F^{-1}(t)]J(t)dt
$$

\n
$$
= \int_0^1 \int_{F^{-1}(t)}^{G^{-1}(t)} dxJ(t)dt
$$

\n
$$
= \int_{-\infty}^{\infty} \int_{G(x)}^{F(x)} J(t)dt dx
$$

\n
$$
= \int_{-\infty}^{\infty} [F(x) - G(x)]J(F(x))dx
$$

\n
$$
- \int_{-\infty}^{\infty} U_G(x)[G(x) - F(x)]J(F(x))dx,
$$

 \mathbf{p}

←ロト ←部 ト ←語 ト ←語

 $\overline{}$

 299

where

$$
U_G(x) = \begin{cases} \frac{\int_{F(x)}^{G(x)} J(t) dt}{[G(x) - F(x)] J(F(x))} - 1 & G(x) \neq F(x), J(F(x)) \neq 0\\ 0 & \text{otherwise} \end{cases}
$$

and the fourth equality follows from Fubini's theorem and the fact that the region in \mathcal{R}^2 between curves $F(x)$ and $G(x)$ is the same as the region in \mathscr{R}^2 between curves $G^{-1}(t)$ and $F^{-1}(t).$

Let $G = F + t(\delta_X - F)$, where δ_X is the degenerated distribution at *x*. $\operatorname{\sf Since\ } \operatorname{\sf lim}_{t\to 0} U_{\digamma+t(\delta_{\mathsf x}-\digamma)}(\mathsf y)=0,$ by the dominated convergence theorem,

$$
\lim_{t\to 0}\int_{-\infty}^{\infty}U_{F+t(\delta_x-F)}(y)[\delta_x(y)-F(y)]J(F(y))dy=0.
$$

Hence

$$
\lim_{t\to 0}\frac{T(F+t(\delta_x-F))-T(F)}{t}=-\int_{-\infty}^{\infty}[\delta_x(y)-F(y)]J(F(y))dy,
$$

which is $\phi_F(x)$, the influence function of T.

UW-Madison (Statistics) [Stat 710, Lecture 12](#page-0-0) Jan 2019 5/16

By Fubini's theorem and the fact that $\int \delta_x(y)dF(x) = F(y)$, $\int \phi_F(x) dF(x) = -\int_0^\infty$ −∞ $\left[\int (\delta_x - F)(y) dF(x)\right] J(F(y)) dy = 0,$

Consider now $J(t) = (\beta - \alpha)^{-1} I_{(\alpha,\beta)}(t)$,

$$
\phi_F(x)=-\frac{1}{\beta-\alpha}\int_{F^{-1}(\alpha)}^{F^{-1}(\beta)}[\delta_x(y)-F(y)]dy.
$$

Assume that F is continuous at $F^{-1}(\alpha)$ and $F^{-1}(\beta).$ $F(F^{-1}(\alpha)) = \alpha$ and $F(F^{-1}(\beta)) = \beta$. When $x < F^{-1}(\alpha)$,

$$
\begin{array}{rcl}\n\phi_F(x) &=& -\frac{1}{\beta-\alpha}\int_{F^{-1}(\alpha)}^{F^{-1}(\beta)}[1-F(y)]dy \\
&=& -\frac{y[1-F(y)]}{\beta-\alpha}\Big|_{F^{-1}(\alpha)}^{F^{-1}(\beta)} - \frac{1}{\beta-\alpha}\int_{F^{-1}(\alpha)}^{F^{-1}(\beta)}y dF(y) \\
&=& \frac{F^{-1}(\alpha)(1-\alpha)-F^{-1}(\beta)(1-\beta)}{\beta-\alpha}-\mathcal{T}(F) \\
&\text{UW-Madison (Statistics)}\n\end{array}
$$
\nUW-Madison (Statistics)

Similarly, when $x > F^{-1}(\beta)$,

$$
\begin{array}{rcl}\n\phi_F(x) & = & \displaystyle\frac{1}{\beta-\alpha}\int_{F^{-1}(\alpha)}^{F^{-1}(\beta)}F(y)\,dy \\
& = & \displaystyle\frac{F^{-1}(\beta)\beta-F^{-1}(\alpha)\alpha}{\beta-\alpha}-T(F).\n\end{array}
$$

Finally, when $F^{-1}(\alpha) \leq x \leq F^{-1}(\beta)$,

$$
\begin{array}{lcl}\n\phi_F(x) &=& \frac{1}{\beta - \alpha} \int_{F^{-1}(\alpha)}^{x} F(y) \, dy - \frac{1}{\beta - \alpha} \int_{x}^{F^{-1}(\beta)} [1 - F(y)] \, dy \\
&=& \frac{yF(y)}{\beta - \alpha} \Big|_{F^{-1}(\alpha)}^{x} - \frac{1}{\beta - \alpha} \int_{F^{-1}(\alpha)}^{x} y \, dF(y) \\
&+ \frac{y[1 - F(y)]}{\beta - \alpha} \Big|_{x}^{F^{-1}(\beta)} - \frac{1}{\beta - \alpha} \int_{x}^{F^{-1}(\beta)} y \, dF(y) \\
&=& \frac{x - F^{-1}(\alpha)\alpha - F^{-1}(\beta)(1 - \beta)}{\beta - \alpha} - T(F).\n\end{array}
$$

UW-Madison (Statistics) [Stat 710, Lecture 12](#page-0-0) Jan 2019 7/16

Hence,

$$
\phi_F(x) = \begin{cases}\n\frac{F^{-1}(\alpha)(1-\alpha) - F^{-1}(\beta)(1-\beta)}{\beta - \alpha} - T(F) & x < F^{-1}(\alpha) \\
\frac{x - F^{-1}(\alpha)\alpha - F^{-1}(\beta)(1-\beta)}{\beta - \alpha} - T(F) & F^{-1}(\alpha) \le x \le F^{-1}(\beta) \\
\frac{F^{-1}(\beta)\beta - F^{-1}(\alpha)\alpha}{\beta - \alpha} - T(F) & x > F^{-1}(\beta).\n\end{cases}
$$

If *F* is symmetric about θ , *J* is symmetric about $\frac{1}{2}$ (*J*(*t*) = *J*(1 − *t*)), and $\int_0^1 J(t) dt = 1$, then $F(x) = F_0(x - \theta)$, where F_0 is a c.d.f. that is symmetric about 0, i.e., $F_0(x) = 1 - F_0(-x)$, and

$$
\int xJ(F_0(x))dF_0(x) = \int xJ(1-F_0(-x))dF_0(x)
$$

=
$$
\int xJ(F_0(-x))dF_0(x)
$$

=
$$
-\int yJ(F_0(y))dF_0(y),
$$

i.e.,
$$
\int x J(F_0(x)) dF_0(x) = 0
$$
.

Hence,

$$
T(F) = \int xJ(F(x))dF(x)
$$

= $\theta \int J(F(x))dF(x) + \int (x - \theta)J(F_0(x - \theta))dF_0(x - \theta)$
= $\theta \int_0^1 J(t)dt + \int yJ(F_0(y))dF_0(y)$
= θ .

Assume that \digamma is continuous at $\digamma^{-1}(\alpha)$ and $\digamma^{-1}(1-\alpha).$ When $\beta=1-\alpha$, J is symmetric about $\frac{1}{2}$ and

$$
\phi_F(x) = \begin{cases}\n\frac{F_0^{-1}(\alpha)}{1-2\alpha} & x < F^{-1}(\alpha) \\
\frac{x-\theta}{1-2\alpha} & F^{-1}(\alpha) \le x \le F^{-1}(1-\alpha) \\
\frac{F_0^{-1}(1-\alpha)}{1-2\alpha} & x > F^{-1}(1-\alpha),\n\end{cases}
$$

where $F^{-1}(\alpha)+F^{-1}(1-\alpha)=2\theta, \, F_0^{-1}$ $\zeta_0^{-1}(\alpha) = F^{-1}(\alpha) - \theta$ and F_{0}^{-1} $\zeta_0^{-1}(1-\alpha) = F^{-1}(1-\alpha) - \theta.$

UW-Madison (Statistics) [Stat 710, Lecture 12](#page-0-0) Jan 2019 9/16

Step 2: Calculation of $\sigma_F^2 = E[\phi_F(X_1)]^2$

Because
$$
F_0^{-1}(\alpha) = -F_0^{-1}(1-\alpha)
$$
, we obtain that

$$
\int [\phi_F(x)]^2 dF(x) = \frac{[F_0^{-1}(\alpha)]^2}{(1-2\alpha)^2} \alpha + \frac{[F_0^{-1}(1-\alpha)]^2}{(1-2\alpha)^2} \alpha \n+ \int_{F^{-1}(\alpha)}^{F^{-1}(1-\alpha)} \frac{(x-\theta)^2}{(1-2\alpha)^2} dF(x) \n= \frac{2\alpha [F_0^{-1}(1-\alpha)]^2}{(1-2\alpha)^2} + \int_{F_0^{-1}(\alpha)}^{F_0^{-1}(1-\alpha)} \frac{x^2}{(1-2\alpha)^2} dF_0(x) \n= \sigma_\alpha^2.
$$

Step 3: Asymptotic normality of the trimmed sample mean

It can be shown that the L-functional $T(G)$ is differentiable in some sense (see the textbook).

Hence, for the α -trimmed sample mean $\bar{X}_\alpha,$

$$
\sqrt{n}(\bar{X}_{\alpha}-\theta)\rightarrow_{d} N(0,\sigma_{\alpha}^{2}).
$$

M-estimators

Note that the sample mean \bar{X} satisfies

$$
\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2=\min_{t\in\Theta}\frac{1}{n}\sum_{i=1}^{n}(X_i-t)^2=\min_{t\in\Theta}\int_{(X-t)^2}dF_n
$$

This idea can be generalized to get a class of estimators obtained by minimizing some functions.

Let $\rho(x,t)$ be a Borel function on $\mathcal{R}^d \times \mathcal{R}$ and $\Theta \subset \mathcal{R}$ be an open set. An *M-functional* is defined to be a solution of

$$
\int \rho(x, T(G)) dG(x) = \min_{t \in \Theta} \int \rho(x, t) dG(x), \qquad G \in \mathscr{F}
$$

For $X_1, ..., X_n$ i.i.d. from $F \in \mathcal{F}$, $T(F_n)$ is called an *M-estimator* of $T(F)$.

$$
\int \rho(x, T(F_n))dF_n(x) = \min_{t \in \Theta} \int \rho(x, t) dF_n(x)
$$

i.e., ¹

$$
\frac{1}{n}\sum_{i=1}^n \rho(X_i, T(F_n)) = \min_{t\in\Theta} \frac{1}{n}\sum_{i=1}^n \rho(X_i, t)
$$

UW-Madison (Statistics) [Stat 710, Lecture 12](#page-0-0) Jan 2019 11/16

Assume that $\psi(x,t) = \partial \rho(x,t)/\partial t$ exists a.e. and

$$
\lambda_G(t) = \int \psi(x, t) dG(x) = \frac{\partial}{\partial t} \int \rho(x, t) dG(x).
$$

Then $\lambda_G(T(G)) = 0$ and $T(F_n)$ is a solution of

$$
\sum_{i=1}^n \psi(X_i,t)=0.
$$

Example 5.7

The following are some examples of M-estimators. (i) If $\rho(x,t) = (x-t)^2/2$, then $\overline{T}(F_n) = \overline{X}$ is the sample mean. (ii) If $\rho(x,t) = |x-t|^p/p$, where $p \in [1,2)$, then

$$
\psi(x,t) = \begin{cases} |x-t|^{p-1} & x \leq t \\ -|x-t|^{p-1} & x > t. \end{cases}
$$

beamer-tu-logo When $p = 1$, $T(F_n)$ is the sample median. When $1 < p < 2$, $T(F_n)$ is called the *p*th least absolute deviations estimator or the minimum *L^p* distance estimator.

 Ω

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

(iii) Let $\mathscr{F}_0 = \{f_\theta : \theta \in \Theta\}$ be a parametric family of p.d.f.'s with $\Theta \subset \mathscr{R}$ and $\rho(x,t) = -\log f_t(x)$. Then $T(F_n)$ is an MLE. Thus, M-estimators are extensions of MLE's in parametric models. (iv) Let $C > 0$ be a constant. Huber (1964) considers

$$
\rho(x,t) = \begin{cases} \frac{1}{2}(x-t)^2 & |x-t| \le C \\ \frac{1}{2}C^2 & |x-t| > C \end{cases}
$$

with

$$
\psi(x,t)=\left\{\begin{array}{ll}t-x&|x-t|\leq C\\0&|x-t|>C.\end{array}\right.
$$

The corresponding $T(F_n)$ is a type of trimmed sample mean. (v) Let $C > 0$ be a constant. Huber (1964) considers

$$
\rho(x,t) = \begin{cases} \frac{1}{2}(x-t)^2 & |x-t| \le C \\ C|x-t| - \frac{1}{2}C^2 & |x-t| > C \end{cases}
$$

イロト イ押ト イヨト イヨ

beamer-tu-logo

 QQ

with

$$
\psi(x,t) = \left\{\begin{array}{ll} C & t-x > C \\ t-x & |x-t| \leq C \\ -C & t-x < -C. \end{array}\right.
$$

The corresponding *T*(*Fn*) is a type of Winsorized sample mean. (vi) Hampel (1974) considers $\psi(x,t) = \psi_0(t-x)$ with $\psi_0(s) = -\psi_0(-s)$ and

$$
\psi_0(s) = \left\{ \begin{array}{ll} s & 0 \leq s \leq a \\ a & a < s \leq b \\ \frac{a(c-s)}{c-b} & b < s \leq c \\ 0 & s > c, \end{array} \right.
$$

where $0 < a < b < c$ are constants. A smoothed version of ψ_0 is

$$
\psi_1(\boldsymbol{s}) = \left\{ \begin{array}{ll} \sin(a\boldsymbol{s}) & 0 \leq \boldsymbol{s} < \pi/a \\ 0 & \boldsymbol{s} > \pi/a. \end{array} \right.
$$

beamer-tu-logo

 Ω

Theorem 5.7

Let X_1, \ldots, X_n be i.i.d. from F and T be an M-functional. Assume that ψ is a bounded and continuous function on $\mathcal{R}^d \times \mathcal{R}$ and that $\lambda_F(t)$ is continuously differentiable at $T(F)$ and $\lambda'_F(T(F)) \neq 0$. Then

$$
\sqrt{n}[T(F_n)-T(F)]\rightarrow_d N(0,\sigma_F^2)
$$

with

$$
\sigma_F^2 = \frac{\int [\psi(x, T(F))]^2 dF(x)}{[\lambda_F'(T(F))]^2}.
$$

Example 5.13

Consider Huber's ψ given in Example 5.7(v). Assume that *F* is continuous at $\theta - C$ and $\theta + C$. Then

$$
\sigma_F^2 = \frac{\int_{\theta-C}^{\theta+C} (\theta-x)^2 dF(x) + C^2 F(\theta-C) + C^2 [1 - F(\theta+C)]}{[F(\theta+C) - F(\theta-C)]^2}
$$

beamer-tu-logo Asymptotic relative efficiency between Huber's M-estimator and the sample mean can be obtained.

UW-Madison (Statistics) [Stat 710, Lecture 12](#page-0-0) Jan 2019 15/16

A sketched proof of Theorem 5.7:

Let $\theta = T(F)$ and $\widehat{\theta} = T(F_n)$. By the definition of M-estimator $\hat{\theta}$,

$$
\int \psi(x,\widehat{\theta})dF_n(x)=0
$$

Hence

$$
-\int \psi(x,\theta)dF_n(x) = \frac{\partial}{\partial \theta} \left[\int \psi(x,\theta)dF_n(x) \right] (\widehat{\theta} - \theta) + o_p(n^{-1/2})
$$

$$
= \frac{\partial}{\partial \theta} \left[\int \psi(x,\theta)dF(x) \right] (\widehat{\theta} - \theta) + o_p(n^{-1/2})
$$

$$
= \lambda'_F(\theta)(\widehat{\theta} - \theta) + o_p(n^{-1/2})
$$

Then

$$
-\frac{1}{n}\sum_{i=1}^n \psi(X_i,\theta)/\lambda_{\mathcal{F}}'(\theta) = (\widehat{\theta}-\theta) + o_p(n^{-1/2})
$$

The result follows from the CLT since $E[\psi(X_{\mathit{i}},\theta)]=0$ and

$$
\text{Var}(\psi(X_i)) = \int [\psi(x,\theta)]^2 dF(x)
$$

UW-Madison (Statistics) [Stat 710, Lecture 12](#page-0-0) Jan 2019 16 / 16