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Lecture 13: Profile likelihoods, GEE, and GMM
Profile likelihoods
Let `(θ ,ξ ) be a likelihood (or empirical likelihood), where θ and ξ are
not necessarily vector-valued.
It may be difficult to maximize the likelihood `(θ ,ξ ) simultaneously over
θ and ξ .
For each fixed θ , let ξ (θ) satisfy

`(θ ,ξ (θ)) = sup
ξ

`(θ ,ξ ).

The function
`P(θ) = `(θ ,ξ (θ))

is called a profile likelihood function for θ .
Suppose that θ̂P maximizes `P(θ).
Then θ̂P is called a maximum profile likelihood estimator of θ .
θ̂P may be different from an MLE of θ .
Although this idea can be applied to parametric models, it is more
useful in semi-parametric models, especially when θ is a parametric
component and ξ is a nonparametric component.
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Example
Consider the empirical likelihood

`(G) =
n

∏
i=1

PG({xi}), G ∈F

subject to the constraints

pi > 0, i = 1, ...,n,
n

∑
i=1

pi = 1, and
n

∑
i=1

piψ(xi ,θ) = 0,

where θ ∈Rk is an unknown parameter vector ψ is a known function
from Rd ×Rk to Rs, and k ≤ s.
Maximizing this empirical likelihood is equivalent to maximizing

H(p1, ...,pn,ω,λ ,θ) = log

(
n

∏
i=1

pi

)
+ ω

(
1−

n

∑
i=1

pi

)
−n

n

∑
i=1

piλ
τ
ψ(xi ,θ),

where ω and λ are Lagrange multipliers.
∂H
∂pi

=
1
pi
−ω−nλ

τ
ψ(xi ,θ) i = 1, ...,n
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Example (continued)
Setting ∂H/∂pi = 0 and multiplying it by pi leads to

1 = ωpi + nλ
τ
ψ(xi ,θ) i = 1, ...,n

Taking the sum over i on both sides of this expression gives ω = n,
since ∑

n
i=1 pi = 1 and ∑

n
i=1 piψ(xi ,θ) = 0.

Then the solution is

pi(θ) = n−1{1 + [λn(θ)]τ
ψ(xi ,θ)}−1, i = 1, ...,n,

with a λn(θ) satisfying

1
n

n

∑
i=1

ψ(xi ,θ)

1 + [λn(θ)]τψ(xi ,θ)
= 0

Substituting pi(θ) into `(G) leads to the following profile empirical
likelihood for θ :

`P(θ) =
n

∏
i=1

1
n{1 + [λn(θ)]τψ(xi ,θ)}

.
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Example (continued)

If θ̂ is a maximum of `P(θ), then θ̂ is a maximum profile empirical
likelihood estimator of θ and the corresponding estimator of pi is pi(θ̂).
A result similar to Theorem 5.4 and a result on asymptotic normality of
θ̂ are established in Qin and Lawless (1994), under some conditions
on ψ.

Missing data
Assume that X1, ...,Xn are i.i.d. random variables from an unknown
c.d.f. F and some Xi ’s are missing.
Let δi = 1 if Xi is observed and δi = 0 if Xi is missing.
Suppose that (Xi ,δi) are i.i.d. and let

π(x) = P(δi = 1|Xi = x).

If Xi and δi are independent, i.e., π(x)≡ π does not depend on x , then
the empirical c.d.f. based on observed data, i.e., the c.d.f. putting mass
r−1 to each observed Xi , where r is the number of observed Xi ’s, is an
unbiased and consistent estimator of F , provided that π > 0.
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Missing data
On the other hand, if π(x) depends on x (called nonignorable
missingness), then the empirical c.d.f. based on observed data is a
biased and inconsistent estimator of F .
In fact, the empirical c.d.f. based on observed data is an unbiased
estimator of P(Xi ≤ x |δi = 1), which is generally different from the
unconditional probability F (x) = P(Xi ≤ x).
If both π and F are in parametric models, then we can apply the
method of maximum likelihood.
For example, if π(x) = πθ (x) and F (x) = Fϑ (x) has a p.d.f. fϑ , where θ

and ϑ are vectors of unknown parameters, then a parametric likelihood
of (θ ,ϑ) is

`(θ ,ϑ) =
n

∏
i=1

[πθ (xi)fϑ (xi)]δi (1−π)1−δi ,

where π =
∫

πθ (x)fϑ (x)dx .
Computationally, it may be difficult to maximizing this likelihood, since
π is an integral.
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Missing data
Suppose now that π(x) = πθ (x) is the parametric component and F is
the nonparametric component.
Then an empirical likelihood can be defined as

`(θ ,G) =
n

∏
i=1

[πθ (xi)pi ]
δi (1−π)1−δi pi = PG({xi})

subject to pi ≥ 0, ∑
n
i=1 δipi = 1, ∑

n
i=1 δipi [πθ (xi)−π] = 0, i = 1, ...,n.

It can be shown (exercise) that the logarithm of the profile empirical
likelihood for (θ ,π) (with a Lagrange multiplier) is

n

∑
i=1

{
δi log

(
πθ (xi)

)
+(1−δi) log(1−π)−δi log

(
1+λ [πθ (xi)−π]

)}
.

Under some conditions, it can be shown that the estimators θ̂ , π̂, and
λ̂ obtained by maximizing this likelihood are consistent and
asymptotically normal and that the empirical c.d.f. putting mass
p̂i = r−1{1 + λ̂ [π

θ̂
(Xi)− π̂]}−1 to each observed Xi is consistent for F .

The result can be extended when there is an observed covariate.
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Generalized estimating equation (GEE)
The method of GEE is a powerful and general method of deriving point
estimators, which includes many previously described methods as
special cases, such as the method of moments, the least squares, the
maximum likelihood, M-estimators, quasi-likelihoods,etc.

Assume that X1, ...,Xn are independent (not necessarily identically
distributed) random vectors, where the dimension of Xi is di , i = 1, ...,n
(supi di < ∞), and that we are interested in estimating θ , a k -vector of
unknown parameters related to the unknown population.

Let Θ⊂Rk be the range of θ , ψi be a Borel function from Rdi ×Θ to
Rk , i = 1, ...,n, and

sn(γ) =
n

∑
i=1

ψi(Xi ,γ), γ ∈Θ.

If θ is estimated by θ̂ ∈Θ satisfying sn(θ̂) = 0, then θ̂ is called a GEE
estimator.

The equation sn(γ) = 0 is called a GEE.
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Motivation
Usually GEE’s are chosen so that

E [sn(θ)] =
n

∑
i=1

E [ψi(Xi ,θ)] = 0,

where the expectation E may be replaced by an asymptotic
expectation defined in §2.5.2 if the exact expectation does not exist.

If this is true, then θ̂ is motivated by the fact that sn(θ̂) = 0 is a sample
analogue of E [sn(θ)] = 0.

Example
The LSE: under model Xi = β τZi + εi , the LSE of β is a solution of
the equation

n

∑
i=1

ψ(Xi ,γ) =
n

∑
i=1

(Xi − γ
τZi)Zi = 0

The MLE: ψ(x ,θ) = ∂ log fθ (x)/∂θ
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Proposition 5.2. (Consistency of GEE estimators)
Suppose that X1, ...,Xn are i.i.d. from F and ψi ≡ ψ, a bounded and
continuous function from Rd ×Θ to Rk . Let g(t) =

∫
ψ(x , t)dF (x).

Suppose that g(θ) = 0 and ∂g(t)/∂ t exists and is of full rank at t = θ .
Then θ̂n→p θ .

Other results can be found in the textbook.

Asymptotic normality of GEE estimators

If a GEE estimator θ̂ is consistent, then its asymptotic normality can be
established using Taylor’s expansion

sn(θ̂)−sn(θ) =−sn(θ)≈ ∇sn(θ)(θ̂ −θ)

Then √
n(θ̂ −θ)≈−[∇sn(θ)]−1√nsn(θ)

Since sn is a sum of independent random vectors, an application of the
CLT leads to √

nV−1/2
n (θ̂ −θ)→d N(0, Ik )

where Vn = [∇sn(θ)]−1Var(sn(θ))[∇sn(θ)]−1
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Generalized method of moments (GMM)
In some cases, the number of equations is larger than k , the
dimension of θ .
That is, we have more than necessary equations.
For example, in a parametric problem where a k -dimenisonal θ and
finite E(X m

1 ), m > k , how do we apply the method of moments?
Suppose that we have a set of m ≥ k functions

ψj(x ,θ), j = 1, ...,m

such that Eθ [ψj(Xi ,θ)] = 0 for all j and ψj ’s are not linearly dependent,
i.e., the m×m matrix whose (j , j ′)th element is Eθ [ψj(Xi ,θ)ψj ′(Xi ,θ)] is
positive definite, which can usually be achieved by eliminating some
redundant functions when ψj ’s are linearly dependent.
Let

Gn(θ) =

(
1
n

n

∑
i=1

ψ1(xi ,θ), ...,
1
n

n

∑
i=1

ψm(xi ,θ)

)τ

, θ ∈Θ

If m = k , a solution to Gn(θ) = 0 is a GEE estimator.
If m > k , a solution to Gn(θ) = 0 may not exist.
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If a solution to Gn(θ) = 0 does not exist because m > k , should we
delete m−k equations? If so, which ones should be removed?

Example
Consider the following estimation problem.
Let φ̂j be a consistent estimator of φj , j = 1, ...,m.
Suppose that we have an addtional condition that

φj = α + β tj , j = 1, ...,m,

where α and β are unknown parameters and ti ’s are known distinct
constants.
If we obtain estimators α̂ and β̂ , then we can estimate φj by α̂ + β̂ tj ,
which may be better than φ̂j , j = 1, ...,m.
How do we estimate α and β?
If we choose two j1 and j2, then consistent estimators of α and β are

β̂ =
φ̂j1− φ̂j2
tj1− tj2

, α̂ = φ̂j1 + β̂ tj1

But which j1 and j2 should we take?
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Intuitively, we can use the least squares method: we treat φ̂j ,
j = 1, ...,m, as “data” and fit a regression with tj ’s as “covariate values”.
This is equivalent to minimizing

1
m

m

∑
j=1

[φ̂j − (α + β tj)]2 = Gτ
n(θ)Gn(θ)

with

Gn(θ) =

 φ̂1
...

φ̂m

−
 α + β t1

...
α + β tm


Idea: if we cannot find α and β such that α + β tj = φ̂j for all j , then we
try to find α and β such that the least squares G(θ)τG(θ) is as small
as possible.
In this example, the least squares estimators have explicit forms:

β̂ =
∑j(tj − t̄)φ̂j

∑j(tj − t̄)2 , α̂ =
1
m ∑

j
φ̂j − β̂ t̄ , t̄ =

1
m ∑

j
tj
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The generalized method of moments (GMM)

If Gn(θ̂) = 0, then Gτ
n(θ̂)G(θ̂) = 0 and is minimized; hence Gn(θ̂) = 0

and Gτ
n(θ̂)G(θ̂) = minθ Gτ

n(θ)G(θ) are equivalent.
If Gn(θ) = 0 has no solution, we can still minimize Gτ

n(θ)Gn(θ), using a
data driven procedure, not trying to determine which equations should
be included.

GMM algorithm
A GMM estimate of θ can be obtained using the following two-step
algorithm (the second step is to gain efficiency).

1 Obtain θ̂ (1) by minimizing Gτ
n(θ)Gn(θ)/2 over θ ∈Θ.

2 Let Ŵ be the inverse matrix of the m×m matrix whose (j , j ′)
element is equal to

1
n

n

∑
i=1

ψj(xi , θ̂
(1))ψj ′(xi , θ̂

(1))

The GMM estimate θ̂ is obtained by minimizing

Gτ
n(θ)ŴGn(θ)/2 over θ ∈Θ
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Asymptotic properties of GMM estimators
Using a similar argument to the one for GEE, we can show that there
exists a sequence θ̂n of GMM solutions that is consistent for θ .
Let Qn(θ) = Gτ

n(θ)WGn(θ)/2 and assume first that W is a fixed matrix.
Then

−Q′n(θ)≈Q′′n(θ)(θ̂n−θ)

where
Q′n(θ) = ∂Qn(θ)/∂θ = G

′τ
n (θ)WGn(θ),

G′n(θ) = ∂Gn(θ)/∂θ and

Q′′n(θ) = ∂Q′n(θ)/∂θ = G′′n(θ)WGn(θ) + G
′τ
n (θ)WG′n(θ)

G′′n(θ) = ∂ 2Gn(θ)/∂θ∂θ τ .
By the LLN and the fact that Gn(θ)→p 0,

G′n(θ)→p B and Q′′n(θ)→p BτWB

By the CLT,
√

nGn(θ)→d N(0,Σ) Σ = Var(g(X1,θ)).

Consequently,
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√
n(θ̂n−θ)→d N(0,(BτWB)−1BτW ΣWB(BτWB)−1)

Note that
(BτWB)−1BτW ΣWB(BτWB)−1 ≥ (Bτ Σ−1B)−1

and the equality holds if and only if W = Σ−1.
This implies that we should use W = Σ−1.
But Σ is unknown.
Since θ̂n is consistent with any W , we can first obtain an estimator θ̂

(1)
n

with W = I and then estimate Σ by

Σ̂ =
1
n

n

∑
i=1

g(Xi , θ̂
(1)
n )g(Xi , θ̂

(1)
n )τ

Then Σ̂ is a consistent estimator of Σ and we can use W = Σ̂−1 in the
2nd step of GMM.
The resulting GMM estimator θ̂n satisfies

√
n(θ̂n−θ)→d N(0,(Bτ Σ−1B)−1)

and is asymptotically the most efficient estimator among all GMM
estimators with different choices of W .
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Example

Let X1, ...,Xn be i.i.d. with θ = E(X1), θ 2 = Var(X1), and E(X 4
1 ) < ∞.

Consider moment estimators of θ .
If we use the first order moment, then the moment estimator of θ is the
sample mean X̄ .
If we use the second order moment, then the moment estimator of θ is
the solution of 2θ 2 = M2 = n−1

∑
n
i=1 X 2

i .
Which estimator is more efficient (asymptotically)?
Note that the two equations

X̄ −θ = 0, M2−2θ
2 = 0

cannot be solved simultaneously.
If we apply GMM, then we solve

min
θ

(X̄ −θ ,M2−2θ
2)W

(
X̄ −θ

M2−2θ 2

)
= 0

According to the GMM theory, this estimator is at least asymptotically
as efficient as and is likely asymptotically more efficient than either X̄
or (M2/2)1/2.
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