Lecture 13: Profile likelihoods, GEE, and GMM

Profile likelihoods

Let $\ell(\theta,\xi)$ be a likelihood (or empirical likelihood), where θ and ξ are not necessarily vector-valued.

It may be difficult to maximize the likelihood $\ell(\theta,\xi)$ simultaneously over θ and ξ .

For each fixed θ , let $\xi(\theta)$ satisfy

$$
\ell(\theta,\xi(\theta))=\sup_{\xi}\ell(\theta,\xi).
$$

The function

$$
\ell_{P}(\theta) = \ell(\theta, \xi(\theta))
$$

is called a *profile likelihood* function for θ.

Suppose that θ_P maximizes $\ell_P(\theta)$.

Then θ_P is called a maximum profile likelihood estimator of θ. θ_P may be different from an MLE of θ.

useful in semi-parametric models, especially when θ is a parametric $\qquad \qquad \vert$ Although this idea can be applied to parametric models, it is more component and ξ is a nonparametric compon[en](#page-0-0)t[.](#page-1-0)

UW-Madison (Statistics) [Stat 710, Lecture 13](#page-15-0) Jan 2019 1/16

Example

Consider the empirical likelihood

$$
\ell(G) = \prod_{i=1}^n P_G(\{x_i\}), \qquad G \in \mathscr{F}
$$

subject to the constraints

$$
p_i > 0
$$
, $i = 1, ..., n$, $\sum_{i=1}^n p_i = 1$, and $\sum_{i=1}^n p_i \psi(x_i, \theta) = 0$,

where $\theta \in \mathscr{R}^k$ is an unknown parameter vector ψ is a known function from $\mathscr{R}^d \times \mathscr{R}^k$ to \mathscr{R}^s , and $k \leq s$.

Maximizing this empirical likelihood is equivalent to maximizing

$$
H(p_1,...,p_n,\omega,\lambda,\theta)=\log\left(\prod_{i=1}^n p_i\right)+\omega\left(1-\sum_{i=1}^n p_i\right)-n\sum_{i=1}^n p_i\lambda^{\tau}\psi(x_i,\theta),
$$

where ω and λ are Lagrange multipliers.

$$
\frac{\partial H}{\partial p_i} = \frac{1}{p_i} - \omega - n\lambda^{\tau} \psi(x_i, \theta) \quad i = 1, ..., n
$$

UW-Madison (Statistics) [Stat 710, Lecture 13](#page-0-0) Jan 2019 2/16

Example (continued)

Setting ∂*H*/∂*pⁱ* = 0 and multiplying it by *pⁱ* leads to

$$
1 = \omega p_i + n\lambda^{\tau} \psi(x_i, \theta) \quad i = 1, ..., n
$$

Taking the sum over *i* on both sides of this expression gives $\omega = n$, since $\sum_{i=1}^{n} p_i = 1$ and $\sum_{i=1}^{n} p_i \psi(x_i, \theta) = 0$. Then the solution is

$$
p_i(\theta) = n^{-1} \{1 + [\lambda_n(\theta)]^\tau \psi(x_i, \theta)\}^{-1}, \quad i = 1, ..., n,
$$

with a $\lambda_n(\theta)$ satisfying

$$
\frac{1}{n}\sum_{i=1}^n \frac{\psi(x_i, \theta)}{1 + [\lambda_n(\theta)]^\tau \psi(x_i, \theta)} = 0
$$

Substituting $p_i(\theta)$ into $\ell(G)$ leads to the following profile empirical likelihood for θ:

$$
\ell_P(\theta) = \prod_{i=1}^n \frac{1}{n\{1 + [\lambda_n(\theta)]^\tau \psi(x_i, \theta)\}}.
$$

UW-Madison (Statistics) [Stat 710, Lecture 13](#page-0-0) Jan 2019 3/16

Example (continued)

If $\hat{\theta}$ is a maximum of $\ell_P(\theta)$, then $\hat{\theta}$ is a maximum profile empirical likelihood estimator of θ and the corresponding estimator of p_i is $p_i(\theta)$. A result similar to Theorem 5.4 and a result on asymptotic normality of $\hat{\theta}$ are established in Qin and Lawless (1994), under some conditions on Ψ .

Missing data

Assume that $X_1,...,X_n$ are i.i.d. random variables from an unknown c.d.f. F and some X_i 's are missing.

Let $\delta_i = 1$ if X_i is observed and $\delta_i = 0$ if X_i is missing. Suppose that (X_i, δ_i) are i.i.d. and let

$$
\pi(x) = P(\delta_i = 1 | X_i = x).
$$

 r^{-1} to each observed X_i , where *r* is the number of observed X_i 's, is an If X_i and δ_i are independent, i.e., $\pi(x) \equiv \pi$ does not depend on x, then the empirical c.d.f. based on observed data, i.e., the c.d.f. putting mass unbiased and consistent estim[at](#page-3-0)or of *F*, provi[ded](#page-2-0) [t](#page-4-0)[h](#page-2-0)at $\pi > 0$ $\pi > 0$ $\pi > 0$ $\pi > 0$ [.](#page-0-0)

Missing data

On the other hand, if $\pi(x)$ depends on x (called nonignorable missingness), then the empirical c.d.f. based on observed data is a biased and inconsistent estimator of *F*.

In fact, the empirical c.d.f. based on observed data is an unbiased estimator of $P(X_i \le x | \delta_i = 1)$, which is generally different from the unconditional probability $F(x) = P(X_i \leq x)$.

If both π and F are in parametric models, then we can apply the method of maximum likelihood.

For example, if $\pi(x) = \pi_{\theta}(x)$ and $F(x) = F_{\theta}(x)$ has a p.d.f. f_{θ} , where θ and ϑ are vectors of unknown parameters, then a parametric likelihood of (θ, ϑ) is *n*

$$
\ell(\theta,\vartheta)=\prod_{i=1}^n[\pi_{\theta}(x_i)f_{\vartheta}(x_i)]^{\delta_i}(1-\pi)^{1-\delta_i},
$$

where $\pi = \int \pi_{\theta}(x) f_{\vartheta}(x) dx$.

beamer-tu-logo Computationally, it may be difficult to maximizing this likelihood, since π is an integral.

 290

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Missing data

Suppose now that $\pi(x) = \pi_{\theta}(x)$ is the parametric component and *F* is the nonparametric component.

Then an empirical likelihood can be defined as

$$
\ell(\theta, G) = \prod_{i=1}^n [\pi_{\theta}(x_i) p_i]^{\delta_i} (1-\pi)^{1-\delta_i} \qquad p_i = P_G(\{x_i\})
$$

 \sup ject to $p_i \geq 0$, $\sum_{i=1}^n \delta_i p_i = 1$, $\sum_{i=1}^n \delta_i p_i [\pi_\theta(x_i) - \pi] = 0$, $i = 1, ..., n$. It can be shown (exercise) that the logarithm of the profile empirical likelihood for (θ, π) (with a Lagrange multiplier) is

$$
\sum_{i=1}^n \left\{ \delta_i \log \big(\pi_\theta(x_i) \big) + (1-\delta_i) \log (1-\pi) - \delta_i \log \big(1 + \lambda \left[\pi_\theta(x_i) - \pi \right] \big) \right\}.
$$

beamer-tu-logo Under some conditions, it can be shown that the estimators $\hat{\theta}$, $\hat{\pi}$, and λ obtained by maximizing this likelihood are consistent and asymptotically normal and that the empirical c.d.f. putting mass $\widehat{\rho}_i = r^{-1}\{1+\widehat{\lambda}[\pi_{\widehat{\theta}}(X_i)-\widehat{\pi}]\}^{-1}$ to each observed X_i is consistent for *F*.
The result can be extended when there is an ebecaused extended The result can be extended when there is an [obs](#page-4-0)[er](#page-6-0)[v](#page-4-0)[ed](#page-5-0) [co](#page-0-0)[va](#page-15-0)[ri](#page-0-0)[ate](#page-15-0)[.](#page-0-0)

Generalized estimating equation (GEE)

The method of GEE is a powerful and general method of deriving point estimators, which includes many previously described methods as special cases, such as the method of moments, the least squares, the maximum likelihood, *M*-estimators, quasi-likelihoods,etc.

Assume that X_1, \ldots, X_n are independent (not necessarily identically distributed) random vectors, where the dimension of X_i is d_i , $i=1,...,n$ $(\sup_i d_i < \infty)$, and that we are interested in estimating θ , a *k*-vector of unknown parameters related to the unknown population.

Let $\Theta \subset \mathcal{R}^k$ be the range of θ , ψ_i be a Borel function from $\mathcal{R}^{d_i} \times \Theta$ to \mathscr{R}^k , $i = 1, ..., n$, and

$$
s_n(\gamma)=\sum_{i=1}^n \psi_i(X_i,\gamma), \qquad \gamma\in\Theta.
$$

If θ is estimated by $\hat{\theta} \in \Theta$ satisfying $s_n(\hat{\theta}) = 0$, then $\hat{\theta}$ is called a GEE estimator.

The equation $s_n(\gamma) = 0$ is called a GEE.

Motivation

Usually GEE's are chosen so that

$$
E[s_n(\theta)] = \sum_{i=1}^n E[\psi_i(X_i,\theta)] = 0,
$$

where the expectation *E* may be replaced by an asymptotic expectation defined in §2.5.2 if the exact expectation does not exist.

If this is true, then $\hat{\theta}$ is motivated by the fact that $s_n(\hat{\theta}) = 0$ is a sample analogue of $E[s_n(\theta)] = 0$.

Example

The LSE: under model $X_i = \beta^\tau Z_i + \varepsilon_i,$ the LSE of β is a solution of the equation

$$
\sum_{i=1}^n \psi(X_i,\gamma)=\sum_{i=1}^n (X_i-\gamma^\tau Z_i)Z_i=0
$$

∢ □ ▶ ィ [□] ▶

.

 \bullet The MLE: $\psi(x, \theta) = \partial \log f_{\theta}(x)/\partial \theta$

beamer-tu-logo

 Ω

Proposition 5.2. (Consistency of GEE estimators)

Suppose that $X_1,...,X_n$ are i.i.d. from F and $\psi_i \equiv \psi$, a bounded and continuous function from $\mathscr{R}^d \times \Theta$ to \mathscr{R}^k . Let $g(t) = \int \psi(x,t) dF(x)$. Suppose that $g(\theta) = 0$ and $\partial g(t)/\partial t$ exists and is of full rank at $t = \theta$. Then $\theta_n \rightarrow_p \theta$.

Other results can be found in the textbook.

Asymptotic normality of GEE estimators

If a GEE estimator $\hat{\theta}$ is consistent, then its asymptotic normality can be established using Taylor's expansion

$$
\boldsymbol{s}_n(\widehat{\boldsymbol{\theta}})-\boldsymbol{s}_n(\boldsymbol{\theta})=-\boldsymbol{s}_n(\boldsymbol{\theta})\approx\nabla \boldsymbol{s}_n(\boldsymbol{\theta})(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})
$$

Then

$$
\sqrt{n}(\widehat{\theta}-\theta) \approx -[\nabla s_n(\theta)]^{-1} \sqrt{n} s_n(\theta)
$$

Since *sⁿ* is a sum of independent random vectors, an application of the CLT leads to √

$$
\sqrt{n}V_n^{-1/2}(\widehat{\theta}-\theta)\rightarrow_d N(0,I_k)
$$

where $V_n = [\nabla s_n(\theta)]^{-1} \text{Var}(s_n(\theta))[\nabla s_n(\theta)]^{-1}$

Generalized method of moments (GMM)

In some cases, the number of equations is larger than *k*, the dimension of θ .

That is, we have more than necessary equations.

For example, in a parametric problem where a *k*-dimenisonal θ and finite $E(X_1^m)$, $m > k$, how do we apply the method of moments? Suppose that we have a set of $m > k$ functions

$$
\psi_j(x,\theta), \quad j=1,...,m
$$

 ${\sf such\ that\ } E_\theta[\psi_j(X_i,\theta)]=0$ for all j and ψ_j 's are not linearly dependent, i.e., the $m \times m$ matrix whose (j,j') th element is $E_{\theta}[\psi_j(X_i,\theta)\psi_{j'}(X_i,\theta)]$ is positive definite, which can usually be achieved by eliminating some ϵ redundant functions when ψ_j 's are linearly dependent. Let

$$
G_n(\theta) = \left(\frac{1}{n}\sum_{i=1}^n \psi_1(x_i,\theta),...,\frac{1}{n}\sum_{i=1}^n \psi_m(x_i,\theta)\right)^{\tau}, \quad \theta \in \Theta
$$

If $m = k$, a solution to $G_n(\theta) = 0$ is a GEE estimator. If $m > k$, a solution to $G_n(\theta) = 0$ may not exist.

If a solution to $G_n(\theta) = 0$ does not exist because $m > k$, should we delete *m* −*k* equations? If so, which ones should be removed?

Example

Consider the following estimation problem. Let ϕ_j be a consistent estimator of ϕ_j , $j = 1, ..., m$. Suppose that we have an addtional condition that

$$
\phi_j=\alpha+\beta t_j, \quad j=1,...,m,
$$

where α and β are unknown parameters and t_i 's are known distinct constants.

If we obtain estimators $\widehat{\alpha}$ and β , then we can estimate ϕ_j by $\widehat{\alpha} + \beta t_j$, which may be better than ϕ_j , $j = 1, ..., m$. How do we estimate α and β ?

If we choose two j_1 and j_2 , then consistent estimators of α and β are

$$
\widehat{\beta} = \frac{\widehat{\phi}_{j_1} - \widehat{\phi}_{j_2}}{t_{j_1} - t_{j_2}}, \quad \widehat{\alpha} = \widehat{\phi}_{j_1} + \widehat{\beta} t_{j_1}
$$

But which j_1 and j_2 should we take?

Intuitively, we can use the least squares method: we treat ϕ_j , $j=1,...,m,$ as "data" and fit a regression with t_j 's as "covariate values". This is equivalent to minimizing

$$
\frac{1}{m}\sum_{j=1}^m[\widehat{\phi}_j-(\alpha+\beta t_j)]^2=G_n^{\tau}(\theta)G_n(\theta)
$$

with

$$
G_n(\theta) = \begin{pmatrix} \widehat{\phi}_1 \\ \vdots \\ \widehat{\phi}_m \end{pmatrix} - \begin{pmatrix} \alpha + \beta t_1 \\ \vdots \\ \alpha + \beta t_m \end{pmatrix}
$$

Idea: if we cannot find α and β such that $\alpha + \beta t_j = \phi_j$ for all *j*, then we try to find α and β such that the least squares $G(\theta)^{\tau}G(\theta)$ is as small as possible.

In this example, the least squares estimators have explicit forms:

$$
\widehat{\beta} = \frac{\sum_j (\vec{t}_j - \overline{\vec{t}})\widehat{\phi}_j}{\sum_j (\vec{t}_j - \overline{\vec{t}})^2}, \quad \widehat{\alpha} = \frac{1}{m} \sum_j \widehat{\phi}_j - \widehat{\beta}\overline{\vec{t}}, \quad \overline{t} = \frac{1}{m} \sum_j t_j
$$

イロト イ押ト イラト イラ

beamer-tu-logo

 QQ

The generalized method of moments (GMM)

If $G_n(\theta) = 0$, then $G_n^{\tau}(\theta)G(\theta) = 0$ and is minimized; hence $G_n(\theta) = 0$ and $G_n^{\tau}(\theta)G(\theta) = \min_{\theta} G_n^{\tau}(\theta)G(\theta)$ are equivalent.

If $G_n(\theta) = 0$ has no solution, we can still minimize $G_n^{\tau}(\theta) G_n(\theta)$, using a data driven procedure, not trying to determine which equations should be included.

GMM algorithm

A GMM estimate of θ can be obtained using the following two-step algorithm (the second step is to gain efficiency).

- **1** Obtain $\hat{\theta}^{(1)}$ by minimizing $G_n^{\tau}(\theta)G_n(\theta)/2$ over $\theta \in \Theta$.
- 2 Let \hat{W} be the inverse matrix of the $m \times m$ matrix whose (j, j') element is equal to

$$
\frac{1}{n}\sum_{i=1}^n \psi_j(x_i,\widehat{\theta}^{(1)})\psi_{j'}(x_i,\widehat{\theta}^{(1)})
$$

The GMM estimate $\hat{\theta}$ is obtained by minimizing

$$
G_n^{\tau}(\theta)\widehat{W}G_n(\theta)/2 \quad \text{ over } \theta \in \Theta
$$

Asymptotic properties of GMM estimators

Using a similar argument to the one for GEE, we can show that there exists a sequence $\hat{\theta}_n$ of GMM solutions that is consistent for θ .

Let $Q_n(\theta) = G^{\tau}_0(\theta)$ *WG_n*(θ)/2 and assume first that W is a fixed matrix. Then

$$
-Q'_{n}(\theta) \approx Q''_{n}(\theta)(\widehat{\theta}_{n} - \theta)
$$

where

$$
Q'_n(\theta)=\partial\mathit{Q}_n(\theta)/\partial\theta=G'^{\,\tau}_n(\theta)W\!G_n(\theta),
$$

 $G'_{n}(\theta) = \partial G_{n}(\theta) / \partial \theta$ and

 $Q_n''(\theta) = \partial Q_n'(\theta)/\partial \theta = G_n''(\theta)W G_n(\theta) + G_n^{(\tau)}(\theta)W G_n'(\theta)$

 $G''_n(\theta) = \partial^2 G_n(\theta)/\partial \theta \partial \theta^{\tau}.$ By the LLN and the fact that $G_n(\theta) \rightarrow_p 0$,

$$
G'_{n}(\theta) \to_{\rho} B \quad \text{and} \quad Q''_{n}(\theta) \to_{\rho} B^{\tau}WB
$$

By the CLT,

$$
\sqrt{n}G_n(\theta) \to_d N(0,\Sigma) \quad \Sigma = \text{Var}(g(X_1,\theta)).
$$

Consequently,

UW-Madison (Statistics) [Stat 710, Lecture 13](#page-0-0) Jan 2019 14/16

$$
\sqrt{n}(\widehat{\theta}_n - \theta) \rightarrow_d N(0, (B^{\tau}WB)^{-1}B^{\tau}W\Sigma WB (B^{\tau}WB)^{-1})
$$

Note that

$$
(B^{\tau}WB)^{-1}B^{\tau}W\Sigma\text{WB}(B^{\tau}WB)^{-1}\geq (B^{\tau}\Sigma^{-1}B)^{-1}
$$

and the equality holds if and only if $W = \Sigma^{-1}.$

This implies that we should use $W=\Sigma^{-1}.$

But Σ is unknown.

Since $\widehat{\theta}_n$ is consistent with any *W*, we can first obtain an estimator $\widehat{\theta}_n^{(1)}$ with $W = I$ and then estimate Σ by

$$
\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^n g(X_i, \widehat{\theta}_n^{(1)}) g(X_i, \widehat{\theta}_n^{(1)})^{\tau}
$$

Then $\widehat{\Sigma}$ is a consistent estimator of Σ and we can use $W = \widehat{\Sigma}^{-1}$ in the 2nd step of GMM.

The resulting GMM estimator $\widehat{\theta}_n$ satisfies

$$
\sqrt{n}(\widehat{\theta}_n - \theta) \rightarrow_d N(0, (B^{\tau} \Sigma^{-1} B)^{-1})
$$

beamer-tu-logo and is asymptotically the most efficient estimator among all GMM estimators with different choices of *W*.

UW-Madison (Statistics) [Stat 710, Lecture 13](#page-0-0) Jan 2019 15/16

Example

Let $X_1, ..., X_n$ be i.i.d. with $\theta = E(X_1), \theta^2 = \text{Var}(X_1)$, and $E(X_1^4) < \infty$. Consider moment estimators of θ.

If we use the first order moment, then the moment estimator of θ is the sample mean X.

If we use the second order moment, then the moment estimator of θ is the solution of $2\theta^2 = M_2 = n^{-1} \sum_{i=1}^n X_i^2$.

Which estimator is more efficient (asymptotically)?

Note that the two equations

$$
\bar X-\theta=0,\qquad M_2-2\theta^2=0
$$

cannot be solved simultaneously. If we apply GMM, then we solve

$$
\min_{\theta}(\bar X-\theta,M_2-2\theta^2)W\left(\begin{array}{c}\bar X-\theta\\ M_2-2\theta^2\end{array}\right)=0
$$

beamer-tu-logo According to the GMM theory, this estimator is at least asymptotically as efficient as and is likely asymptotically more efficient than either \bar{X} or $(M_2/2)^{1/2}$.