Lecture 13: Profile likelihoods, GEE, and GMM

Profile likelihoods

Let $\ell(\theta, \xi)$ be a likelihood (or empirical likelihood), where θ and ξ are not necessarily vector-valued.

It may be difficult to maximize the likelihood $\ell(\theta, \xi)$ simultaneously over θ and ξ .

For each fixed θ , let $\xi(\theta)$ satisfy

$$\ell(heta,\xi(heta)) = \sup_{\xi} \ell(heta,\xi).$$

The function

$$\ell_P(\theta) = \ell(\theta, \xi(\theta))$$

is called a *profile likelihood* function for θ .

Suppose that $\hat{\theta}_P$ maximizes $\ell_P(\theta)$.

Then $\hat{\theta}_P$ is called a maximum profile likelihood estimator of θ . $\hat{\theta}_P$ may be different from an MLE of θ .

Although this idea can be applied to parametric models, it is more useful in semi-parametric models, especially when θ is a parametric component and ξ is a nonparametric component.

Example

Consider the empirical likelihood

$$\ell(G) = \prod_{i=1}^{n} P_G(\{x_i\}), \qquad G \in \mathscr{F}$$

subject to the constraints

$$p_i > 0, \quad i = 1, ..., n, \quad \sum_{i=1}^n p_i = 1, \text{ and } \sum_{i=1}^n p_i \psi(x_i, \theta) = 0,$$

where $\theta \in \mathscr{R}^k$ is an unknown parameter vector ψ is a known function from $\mathscr{R}^d \times \mathscr{R}^k$ to \mathscr{R}^s , and $k \leq s$.

Maximizing this empirical likelihood is equivalent to maximizing

$$H(p_1,...,p_n,\omega,\lambda,\theta) = \log\left(\prod_{i=1}^n p_i\right) + \omega\left(1-\sum_{i=1}^n p_i\right) - n\sum_{i=1}^n p_i\lambda^{\tau}\psi(x_i,\theta),$$

where ω and λ are Lagrange multipliers.

$$\frac{\partial H}{\partial p_i} = \frac{1}{p_i} - \omega - n\lambda^{\tau} \psi(x_i, \theta) \quad i = 1, ..., n$$

Example (continued)

Setting $\partial H / \partial p_i = 0$ and multiplying it by p_i leads to

$$1 = \omega p_i + n\lambda^{\tau} \psi(x_i, \theta)$$
 $i = 1, ..., n$

Taking the sum over *i* on both sides of this expression gives $\omega = n$, since $\sum_{i=1}^{n} p_i = 1$ and $\sum_{i=1}^{n} p_i \psi(x_i, \theta) = 0$. Then the solution is

$$p_i(\theta) = n^{-1} \{ 1 + [\lambda_n(\theta)]^{\tau} \psi(x_i, \theta) \}^{-1}, \quad i = 1, ..., n,$$

with a $\lambda_n(\theta)$ satisfying

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\psi(x_{i},\theta)}{1+[\lambda_{n}(\theta)]^{\tau}\psi(x_{i},\theta)}=0$$

Substituting $p_i(\theta)$ into $\ell(G)$ leads to the following profile empirical likelihood for θ :

$$\ell_P(\theta) = \prod_{i=1}^n \frac{1}{n\{1 + [\lambda_n(\theta)]^\tau \psi(x_i, \theta)\}}.$$

Example (continued)

If $\hat{\theta}$ is a maximum of $\ell_P(\theta)$, then $\hat{\theta}$ is a maximum profile empirical likelihood estimator of θ and the corresponding estimator of p_i is $p_i(\hat{\theta})$. A result similar to Theorem 5.4 and a result on asymptotic normality of $\hat{\theta}$ are established in Qin and Lawless (1994), under some conditions on ψ .

Missing data

Assume that $X_1, ..., X_n$ are i.i.d. random variables from an unknown c.d.f. *F* and some X_i 's are missing.

Let $\delta_i = 1$ if X_i is observed and $\delta_i = 0$ if X_i is missing. Suppose that (X_i, δ_i) are i.i.d. and let

$$\pi(x) = P(\delta_i = 1 | X_i = x).$$

If X_i and δ_i are independent, i.e., $\pi(x) \equiv \pi$ does not depend on x, then the empirical c.d.f. based on observed data, i.e., the c.d.f. putting mass r^{-1} to each observed X_i , where r is the number of observed X_i 's, is an unbiased and consistent estimator of F, provided that $\pi > 0$.

Missing data

On the other hand, if $\pi(x)$ depends on x (called nonignorable missingness), then the empirical c.d.f. based on observed data is a biased and inconsistent estimator of F.

In fact, the empirical c.d.f. based on observed data is an unbiased estimator of $P(X_i \le x | \delta_i = 1)$, which is generally different from the unconditional probability $F(x) = P(X_i \le x)$.

If both π and F are in parametric models, then we can apply the method of maximum likelihood.

For example, if $\pi(x) = \pi_{\theta}(x)$ and $F(x) = F_{\vartheta}(x)$ has a p.d.f. f_{ϑ} , where θ and ϑ are vectors of unknown parameters, then a parametric likelihood of (θ, ϑ) is

$$\ell(\theta,\vartheta) = \prod_{i=1}^{n} [\pi_{\theta}(x_i)f_{\vartheta}(x_i)]^{\delta_i}(1-\pi)^{1-\delta_i},$$

where $\pi = \int \pi_{\theta}(x) f_{\vartheta}(x) dx$.

Computationally, it may be difficult to maximizing this likelihood, since π is an integral.

< ロ > < 同 > < 回 > < 回 >

Missing data

Suppose now that $\pi(x) = \pi_{\theta}(x)$ is the parametric component and *F* is the nonparametric component.

Then an empirical likelihood can be defined as

$$\ell(\theta,G) = \prod_{i=1}^{n} [\pi_{\theta}(x_i)p_i]^{\delta_i}(1-\pi)^{1-\delta_i} \qquad p_i = P_G(\{x_i\})$$

subject to $p_i \ge 0$, $\sum_{i=1}^n \delta_i p_i = 1$, $\sum_{i=1}^n \delta_i p_i [\pi_{\theta}(x_i) - \pi] = 0$, i = 1, ..., n. It can be shown (exercise) that the logarithm of the profile empirical likelihood for (θ, π) (with a Lagrange multiplier) is

$$\sum_{i=1}^n \left\{ \delta_i \log \left(\pi_\theta(x_i) \right) + (1 - \delta_i) \log (1 - \pi) - \delta_i \log \left(1 + \lambda [\pi_\theta(x_i) - \pi] \right) \right\}.$$

Under some conditions, it can be shown that the estimators $\hat{\theta}$, $\hat{\pi}$, and $\hat{\lambda}$ obtained by maximizing this likelihood are consistent and asymptotically normal and that the empirical c.d.f. putting mass $\hat{p}_i = r^{-1} \{1 + \hat{\lambda} [\pi_{\hat{\theta}}(X_i) - \hat{\pi}]\}^{-1}$ to each observed X_i is consistent for *F*. The result can be extended when there is an observed covariate.

Generalized estimating equation (GEE)

The method of GEE is a powerful and general method of deriving point estimators, which includes many previously described methods as special cases, such as the method of moments, the least squares, the maximum likelihood, *M*-estimators, quasi-likelihoods, etc.

Assume that $X_1, ..., X_n$ are independent (not necessarily identically distributed) random vectors, where the dimension of X_i is d_i , i = 1, ..., n (sup_i $d_i < \infty$), and that we are interested in estimating θ , a *k*-vector of unknown parameters related to the unknown population.

Let $\Theta \subset \mathscr{R}^k$ be the range of θ , ψ_i be a Borel function from $\mathscr{R}^{d_i} \times \Theta$ to \mathscr{R}^k , i = 1, ..., n, and

$$s_n(\gamma) = \sum_{i=1}^n \psi_i(X_i, \gamma), \qquad \gamma \in \Theta.$$

If θ is estimated by $\hat{\theta} \in \Theta$ satisfying $s_n(\hat{\theta}) = 0$, then $\hat{\theta}$ is called a GEE estimator.

The equation $s_n(\gamma) = 0$ is called a GEE.

Motivation

Usually GEE's are chosen so that

$$E[s_n(\theta)] = \sum_{i=1}^n E[\psi_i(X_i, \theta)] = 0,$$

where the expectation E may be replaced by an asymptotic expectation defined in §2.5.2 if the exact expectation does not exist.

If this is true, then $\hat{\theta}$ is motivated by the fact that $s_n(\hat{\theta}) = 0$ is a sample analogue of $E[s_n(\theta)] = 0$.

Example

 The LSE: under model X_i = β^τZ_i + ε_i, the LSE of β is a solution of the equation

$$\sum_{i=1}^n \psi(X_i, \gamma) = \sum_{i=1}^n (X_i - \gamma^{\tau} Z_i) Z_i = 0$$

• The MLE: $\psi(x, \theta) = \partial \log f_{\theta}(x) / \partial \theta$

・ロト ・ 同ト ・ ヨト ・ ヨ

Proposition 5.2. (Consistency of GEE estimators)

Suppose that $X_1, ..., X_n$ are i.i.d. from *F* and $\psi_i \equiv \psi$, a bounded and continuous function from $\mathscr{R}^d \times \Theta$ to \mathscr{R}^k . Let $g(t) = \int \psi(x,t) dF(x)$. Suppose that $g(\theta) = 0$ and $\partial g(t) / \partial t$ exists and is of full rank at $t = \theta$. Then $\hat{\theta}_n \to_p \theta$.

Other results can be found in the textbook.

Asymptotic normality of GEE estimators

If a GEE estimator $\hat{\theta}$ is consistent, then its asymptotic normality can be established using Taylor's expansion

$$m{s}_{n}(\widehat{ heta}) - m{s}_{n}(heta) = -m{s}_{n}(heta) pprox
abla m{s}_{n}(heta) (\widehat{ heta} - m{ heta})$$

Then

$$\sqrt{n}(\widehat{\theta}-\theta)\approx-[\nabla s_n(\theta)]^{-1}\sqrt{n}s_n(\theta)$$

Since s_n is a sum of independent random vectors, an application of the CLT leads to

$$\sqrt{n}V_n^{-1/2}(\widehat{\theta}-\theta) \rightarrow_d N(0,I_k)$$

where $V_n = [\nabla s_n(\theta)]^{-1} \operatorname{Var}(s_n(\theta)) [\nabla s_n(\theta)]^{-1}$

Generalized method of moments (GMM)

In some cases, the number of equations is larger than k, the dimension of θ .

That is, we have more than necessary equations.

For example, in a parametric problem where a *k*-dimenisonal θ and finite $E(X_1^m)$, m > k, how do we apply the method of moments? Suppose that we have a set of $m \ge k$ functions

$$\psi_j(x,\theta), \quad j=1,...,m$$

such that $E_{\theta}[\psi_j(X_i, \theta)] = 0$ for all *j* and ψ_j 's are not linearly dependent, i.e., the $m \times m$ matrix whose (j, j')th element is $E_{\theta}[\psi_j(X_i, \theta)\psi_{j'}(X_i, \theta)]$ is positive definite, which can usually be achieved by eliminating some redundant functions when ψ_j 's are linearly dependent. Let

$$G_n(\theta) = \left(\frac{1}{n}\sum_{i=1}^n \psi_1(x_i,\theta), ..., \frac{1}{n}\sum_{i=1}^n \psi_m(x_i,\theta)\right)^{\tau}, \quad \theta \in \Theta$$

If m = k, a solution to $G_n(\theta) = 0$ is a GEE estimator. If m > k, a solution to $G_n(\theta) = 0$ may not exist. If a solution to $G_n(\theta) = 0$ does not exist because m > k, should we delete m - k equations? If so, which ones should be removed?

Example

Consider the following estimation problem. Let $\hat{\phi}_j$ be a consistent estimator of ϕ_j , j = 1, ..., m. Suppose that we have an additional condition that

$$\phi_j = \alpha + \beta t_j, \quad j = 1, ..., m,$$

where α and β are unknown parameters and t_i 's are known distinct constants.

If we obtain estimators $\hat{\alpha}$ and $\hat{\beta}$, then we can estimate ϕ_j by $\hat{\alpha} + \hat{\beta} t_j$, which may be better than $\hat{\phi}_j$, j = 1, ..., m. How do we estimate α and β ?

If we choose two j_1 and j_2 , then consistent estimators of α and β are

$$\widehat{eta} = rac{\widehat{\phi}_{j_1} - \widehat{\phi}_{j_2}}{t_{j_1} - t_{j_2}}, \quad \widehat{lpha} = \widehat{\phi}_{j_1} + \widehat{eta} t_{j_1}$$

But which j_1 and j_2 should we take?

Intuitively, we can use the least squares method: we treat $\hat{\phi}_j$, j = 1, ..., m, as "data" and fit a regression with t_j 's as "covariate values". This is equivalent to minimizing

$$\frac{1}{m}\sum_{j=1}^{m}[\widehat{\phi}_{j}-(\alpha+\beta t_{j})]^{2}=G_{n}^{\tau}(\theta)G_{n}(\theta)$$

with

$$G_n(\theta) = \begin{pmatrix} \widehat{\phi}_1 \\ \vdots \\ \widehat{\phi}_m \end{pmatrix} - \begin{pmatrix} \alpha + \beta t_1 \\ \vdots \\ \alpha + \beta t_m \end{pmatrix}$$

Idea: if we cannot find α and β such that $\alpha + \beta t_j = \widehat{\phi}_j$ for all *j*, then we try to find α and β such that the least squares $G(\theta)^{\tau}G(\theta)$ is as small as possible.

In this example, the least squares estimators have explicit forms:

$$\widehat{\beta} = \frac{\sum_j (t_j - \overline{t}) \widehat{\phi}_j}{\sum_j (t_j - \overline{t})^2}, \quad \widehat{\alpha} = \frac{1}{m} \sum_j \widehat{\phi}_j - \widehat{\beta} \overline{t}, \quad \overline{t} = \frac{1}{m} \sum_j t_j$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The generalized method of moments (GMM)

If $G_n(\widehat{\theta}) = 0$, then $G_n^{\tau}(\widehat{\theta})G(\widehat{\theta}) = 0$ and is minimized; hence $G_n(\widehat{\theta}) = 0$ and $G_n^{\tau}(\widehat{\theta})G(\widehat{\theta}) = \min_{\theta} G_n^{\tau}(\theta)G(\theta)$ are equivalent.

If $G_n(\theta) = 0$ has no solution, we can still minimize $G_n^{\tau}(\theta)G_n(\theta)$, using a data driven procedure, not trying to determine which equations should be included.

GMM algorithm

A GMM estimate of θ can be obtained using the following two-step algorithm (the second step is to gain efficiency).

- Obtain $\hat{\theta}^{(1)}$ by minimizing $G_n^{\tau}(\theta)G_n(\theta)/2$ over $\theta \in \Theta$.
- 2 Let \widehat{W} be the inverse matrix of the $m \times m$ matrix whose (j, j') element is equal to

$$\frac{1}{n}\sum_{i=1}^{n}\psi_{j}(x_{i},\widehat{\theta}^{(1)})\psi_{j'}(x_{i},\widehat{\theta}^{(1)})$$

The GMM estimate $\hat{\theta}$ is obtained by minimizing

$$G^{ au}_{\it n}(heta) \widehat{W} G_{\it n}(heta)/2 \quad ext{ over } heta \in \Theta$$

Asymptotic properties of GMM estimators

Using a similar argument to the one for GEE, we can show that there exists a sequence $\hat{\theta}_n$ of GMM solutions that is consistent for θ .

Let $Q_n(\theta) = G_n^t(\theta) W G_n(\theta)/2$ and assume first that *W* is a fixed matrix. Then

$$-Q'_n(\theta) \approx Q''_n(\theta)(\widehat{\theta}_n - \theta)$$

where

$$Q_n'(heta) = \partial \, Q_n(heta) / \partial \, heta = G_n^{' au}(heta) \, WG_n(heta),$$

 $G_n'(heta) = \partial G_n(heta) / \partial heta$ and

 $Q_n''(\theta) = \partial Q_n'(\theta) / \partial \theta = G_n''(\theta) W G_n(\theta) + G_n^{\prime \tau}(\theta) W G_n'(\theta)$

 $G_n''(\theta) = \partial^2 G_n(\theta) / \partial \theta \partial \theta^{\tau}.$ By the LLN and the fact that $G_n(\theta) \rightarrow_{\rho} 0$,

$$G'_n(\theta) o_p B$$
 and $Q''_n(\theta) o_p B^{\tau} WB$

By the CLT,

$$\sqrt{n}G_n(\theta) \rightarrow_d N(0,\Sigma) \quad \Sigma = \operatorname{Var}(g(X_1,\theta)).$$

Consequently,

$$\sqrt{n}(\widehat{\theta}_n - \theta) \rightarrow_d N(0, (B^{\tau}WB)^{-1}B^{\tau}W\Sigma WB(B^{\tau}WB)^{-1})$$

Note that

$$(B^{\tau}WB)^{-1}B^{\tau}W\Sigma WB(B^{\tau}WB)^{-1} \geq (B^{\tau}\Sigma^{-1}B)^{-1}$$

and the equality holds if and only if $W = \Sigma^{-1}$.

This implies that we should use $W = \Sigma^{-1}$.

But Σ is unknown.

Since $\hat{\theta}_n$ is consistent with any W, we can first obtain an estimator $\hat{\theta}_n^{(1)}$ with W = I and then estimate Σ by

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} g(X_i, \widehat{\theta}_n^{(1)}) g(X_i, \widehat{\theta}_n^{(1)})^{\tau}$$

Then $\widehat{\Sigma}$ is a consistent estimator of Σ and we can use $W = \widehat{\Sigma}^{-1}$ in the 2nd step of GMM.

The resulting GMM estimator $\hat{\theta}_n$ satisfies

$$\sqrt{n}(\widehat{\theta}_n - \theta) \to_d N(0, (B^{\tau} \Sigma^{-1} B)^{-1})$$

and is asymptotically the most efficient estimator among all GMM estimators with different choices of W.

Example

Let $X_1, ..., X_n$ be i.i.d. with $\theta = E(X_1)$, $\theta^2 = Var(X_1)$, and $E(X_1^4) < \infty$. Consider moment estimators of θ .

If we use the first order moment, then the moment estimator of θ is the sample mean \bar{X} .

If we use the second order moment, then the moment estimator of θ is the solution of $2\theta^2 = M_2 = n^{-1} \sum_{i=1}^n X_i^2$.

Which estimator is more efficient (asymptotically)?

Note that the two equations

$$\bar{X}- heta=0, \qquad M_2-2 heta^2=0$$

cannot be solved simultaneously. If we apply GMM, then we solve

$$\min_{\theta} (\bar{X} - \theta, M_2 - 2\theta^2) W \left(\begin{array}{c} \bar{X} - \theta \\ M_2 - 2\theta^2 \end{array}\right) = 0$$

According to the GMM theory, this estimator is at least asymptotically as efficient as and is likely asymptotically more efficient than either \bar{X} or $(M_2/2)^{1/2}$.