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Chapter 6. Hypothesis Tests
Lecture 14: Neyman-Pearson lemma and monotone
likelihood ratio
Theory of testing hypotheses
X : a sample from a population P in P, a family of populations.
Based on the observed X , we test a given hypothesis

H0 : P ∈P0 vs H1 : P ∈P1

where P0 and P1 are two disjoint subsets of P and P0∪P1 = P.
A test for a hypothesis is a statistic T (X ) taking values in [0,1].
When X = x is observed, we reject H0 with probability T (x).
If T (X ) = 1 or 0 a.s. P, then T (X ) is a nonrandomized test; otherwise
T (X ) is randomized.
For a given test T (X ), the power function of T (X ) is defined to be

βT (P) = E [T (X )], P ∈P,

which is the type I error probability of T (X ) when P ∈P0 and one
minus the type II error probability of T (X ) when P ∈P1.
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Significance tests
With a sample of a fixed size, we are not able to minimize two error
probabilities simultaneously.
Our approach involves maximizing the power βT (P) over all P ∈P1
(i.e., minimizing the type II error probability) and over all tests T
satisfying

sup
P∈P0

βT (P)≤ α,

where α ∈ [0,1] is a given level of significance.
The left-hand side of the last expression is defined to be the size of T .

Definition 6.1
A test T∗ of size α is a uniformly most powerful (UMP) test if and only if
βT∗(P)≥ βT (P) for all P ∈P1 and T of level α.

Using sufficient statistics
If U(X ) is a sufficient statistic for P ∈P, then for any test T (X ),
E(T |U) has the same power function as T and, therefore, to find a
UMP test we may consider tests that are functions of U only.
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Theorem 6.1 (Neyman-Pearson lemma)
Suppose that P0 = {P0} and P1 = {P1}.
Let fj be the p.d.f. of Pj w.r.t. a σ -finite measure ν (e.g., ν = P0 + P1),
j = 0,1.
(i) Existence of a UMP test.
For every α, there exists a UMP test of size α, which is

T∗(X ) =


1 f1(X ) > cf0(X )
γ f1(X ) = cf0(X )
0 f1(X ) < cf0(X ),

where γ ∈ [0,1] and c ≥ 0 are some constants chosen so that
E [T∗(X )] = α when P = P0 (c = ∞ is allowed).
(ii) Uniqueness.
If T∗∗ is a UMP test of size α, then

T∗∗(X ) =

{
1 f1(X ) > cf0(X )
0 f1(X ) < cf0(X )

a.s. P.
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Remarks
Theorem 6.1 shows that when both H0 and H1 are simple (a
hypothesis is simple iff the corresponding set of populations
contains exactly one element), there exists a UMP test that can be
determined by Theorem 6.1 uniquely (a.s. P) except on the set
B = {x : f1(x) = cf0(x)}.
If ν(B) = 0, then we have a unique nonrandomized UMP test;
otherwise UMP tests are randomized on the set B and the
randomization is necessary for UMP tests to have the given size α

We can always choose a UMP test that is constant on B.

Proof of Theorem 6.1
The proof for the case of α = 0 or 1 is left as an exercise.
Assume now that 0 < α < 1.
(i) We first show that there exist γ and c such that E0[T∗(X )] = α,
where Ej is the expectation w.r.t. Pj .
Let γ(t) = P0(f1(X ) > tf0(X )).
Then γ(t) is nonincreasing, γ(0) = 1, and γ(∞) = 0 (why?).
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Thus, there exists a c ∈ (0,∞) such that γ(c)≤ α ≤ γ(c−).
Set

γ =


α−γ(c)

γ(c−)−γ(c) γ(c−) 6= γ(c)

0 γ(c−) = γ(c).

Note that γ(c−)− γ(c) = P(f1(X ) = cf0(X )).
Hence

E0[T∗(X )] = P0
(
f1(X ) > cf0(X )

)
+ γP0

(
f1(X ) = cf0(X )

)
= α.

Next, we show that T∗ is a UMP test.
Suppose that T (X ) is a test satisfying E0[T (X )]≤ α.
If T∗(x)−T (x) > 0, then T∗(x) > 0 and f1(x)≥ cf0(x).
If T∗(x)−T (x) < 0, then T∗(x) < 1 and f1(x)≤ cf0(x).
In any case,

[T∗(x)−T (x)][f1(x)−cf0(x)]≥ 0

and, therefore,
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∫
[T∗(x)−T (x)][f1(x)−cf0(x)]dν ≥ 0,

i.e., ∫
[T∗(x)−T (x)]f1(x)dν ≥ c

∫
[T∗(x)−T (x)]f0(x)dν .

The left-hand side is E1[T∗(X )]−E1[T (X )] and the right-hand side is

c{E0[T∗(X )]−E0[T (X )]}= c{α−E0[T (X )]} ≥ 0.

This proves the result in (i).
(ii) Let T∗∗(X ) be a UMP test of size α.
Define

A = {x : T∗(x) 6= T∗∗(x), f1(x) 6= cf0(x)}.

Then [T∗(x)−T∗∗(x)][f1(x)−cf0(x)] > 0 when x ∈ A and = 0 when
x ∈ Ac , and ∫

[T∗(x)−T∗∗(x)][f1(x)−cf0(x)]dν = 0,

since both T∗ and T∗∗ are UMP tests of size α.
By Proposition 1.6(ii), ν(A) = 0.
This proves the result.
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Example 6.1
Suppose that X is a sample of size 1, P0 = {P0}, and P1 = {P1},
where P0 is N(0,1) and P1 is the double exponential distribution
DE(0,2) with the p.d.f. 4−1e−|x |/2.
Since P(f1(X ) = cf0(X )) = 0, there is a unique nonrandomized UMP
test.
By Theorem 6.1, the UMP test T∗(x) = 1 if and only if π

8 ex2−|x | > c2 for
some c > 0, which is equivalent to |x |> t or |x |< 1− t for some t > 1

2 .
Suppose that α < 1

3 . To determine t , we use

α = E0[T∗(X )] = P0(|X |> t) + P0(|X |< 1− t).

If t ≤ 1, then P0(|X |> t)≥ P0(|X |> 1) = 0.3374 > α.
Hence t should be larger than 1 and

α = P0(|X |> t) = Φ(−t) + 1−Φ(t).

Thus, t = Φ−1(1−α/2) and T∗(X ) = I(t ,∞)(|X |).
Note that it is not necessary to find out what c is.
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Intuitively, the reason why the UMP test in this example rejects H0
when |X | is large is that the probability of getting a large |X | is much
higher under H1 (i.e., P is the double exponential distribution DE(0,2)).
The power of T∗ when P ∈P1 is

E1[T∗(X )] = P1(|X |> t) = 1− 1
4

∫ t

−t
e−|x |/2dx = e−t/2.

Example 6.2
Let X1, ...,Xn be i.i.d. binary random variables with p = P(X1 = 1).
Suppose that H0 : p = p0 and H1 : p = p1, where 0 < p0 < p1 < 1.
By Theorem 6.1, a UMP test of size α is

T∗(Y ) =


1 λ (Y ) > c
γ λ (Y ) = c
0 λ (Y ) < c,

where Y = ∑
n
i=1 Xi and

λ (Y ) =

(
p1

p0

)Y (1−p1

1−p0

)n−Y

.
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Since λ (Y ) is increasing in Y , there is an integer m > 0 such that

T∗(Y ) =


1 Y > m
γ Y = m
0 Y < m,

where m and γ satisfy α = E0[T∗(Y )] = P0(Y > m) + γP0(Y = m).
Since Y has the binomial distribution Bi(p,n), we can determine m and
γ from

α =
n

∑
j=m+1

(
n
j

)
pj

0(1−p0)n−j + γ

(
n
m

)
pm

0 (1−p0)n−m.

Unless
α =

n

∑
j=m+1

(
n
j

)
pj

0(1−p0)n−j

for some integer m, in which case we can choose γ = 0, the UMP test
T∗ is a randomized test.
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Remark
An interesting phenomenon in Example 6.2 is that the UMP test T∗
does not depend on p1.
In such a case, T∗ is in fact a UMP test for testing H0 : p = p0 versus
H1 : p > p0.

Lemma 6.1
Suppose that there is a test T∗ of size α such that for every P1 ∈P1,
T∗ is UMP for testing H0 versus the hypothesis P = P1.
Then T∗ is UMP for testing H0 versus H1.

Proof
T∗ is a test since it does not depend on P1.
For any test T of level α, T is also of level α for testing H0 versus the
hypothesis P = P1 with any P1 ∈P1.
Hence βT∗(P1)≥ βT (P1).
Since P1 is arbitrary, this proves that T∗ is UMP for testing H0 versus
H1.
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Monotone likelihood ratio
A simple hypothesis involves only one population.
If a hypothesis is not simple, it is called composite.
UMP tests for a composite H1 exist in Example 6.2.
We now extend this result to a class of parametric problems in which
the likelihood functions have a special property.

Definition 6.2
Suppose that the distribution of X is in P = {Pθ : θ ∈Θ}, a parametric
family indexed by a real-valued θ , and that P is dominated by a
σ -finite measure ν .
Let fθ = dPθ/dν .
The family P is said to have monotone likelihood ratio in Y (X ) (a
real-valued statistic) if and only if, for any θ1 < θ2, fθ2(x)/fθ1(x) is a
nondecreasing function of Y (x) for values x at which at least one of
fθ1(x) and fθ2(x) is positive.
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Example 6.3
Let θ be real-valued and η(θ) be a nondecreasing function of θ .
Then the one-parameter exponential family with

fθ (x) = exp{η(θ)Y (x)−ξ (θ)}h(x)

has monotone likelihood ratio in Y (X ).

Example 6.4
Let X1, ...,Xn be i.i.d. from the uniform distribution on (0,θ), where
θ > 0.
The Lebesgue p.d.f. of X = (X1, ...,Xn) is fθ (x) = θ−nI(0,θ)(x(n)), where
x(n) is the value of the largest order statistic X(n).
For θ1 < θ2,

fθ2(x)

fθ1(x)
=

θ n
1

θ n
2

I(0,θ2)(x(n))
I(0,θ1)(x(n))

,

which is a nondecreasing function of x(n) for x ’s at which at least one
of fθ1(x) and fθ2(x) is positive, i.e., x(n) < θ2.
Hence the family of distributions of X has monotone likelihood ratio in
X(n).
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Example 6.5
The following families have monotone likelihood ratio:

the double exponential distribution family {DE(θ ,c)} with a known
c;
the exponential distribution family {E(θ ,c)} with a known c;
the logistic distribution family {LG(θ ,c)} with a known c;
the uniform distribution family {U(θ ,θ + 1)};
the hypergeometric distribution family {HG(r ,θ ,N−θ)} with
known r and N (Table 1.1, page 18).

An example of a family that does not have monotone likelihood ratio is
the Cauchy distribution family {C(θ ,c)} with a known c.

Testing one sided hypotheses
Hypotheses of the form H0 : θ ≤ θ0 (or H0 : θ ≥ θ0) versus H1 : θ > θ0
(or H1 : θ < θ0) are called one-sided hypotheses for any fixed constant
θ0.
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Theorem 6.2
Suppose that X has a distribution in P = {Pθ : θ ∈Θ} (Θ⊂R) that
has monotone likelihood ratio in Y (X ).
Consider the problem of testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where
θ0 is a given constant.
(i) There exists a UMP test of size α, which is given by

T∗(X ) =


1 Y (X ) > c
γ Y (X ) = c
0 Y (X ) < c,

where c and γ are determined by βT∗(θ0) = α, and βT (θ) = E [T (X )] is
the power function of a test T .
(ii) βT∗(θ) is strictly increasing for all θ ’s for which 0 < βT∗(θ) < 1.
(iii) For any θ < θ0, T∗ minimizes βT (θ) (the type I error probability of
T ) among all tests T satisfying βT (θ0) = α.
(iv) Assume that Pθ (fθ (X ) = cfθ0(X )) = 0 for any θ > θ0 and c ≥ 0,
where fθ is the p.d.f. of Pθ .
If T is a test with βT (θ0) = βT∗(θ0), then for any θ > θ0, either
βT (θ) < βT∗(θ) or T = T∗ a.s. Pθ .
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Theorem 6.2 (continued)
(v) For any fixed θ1, T∗ is UMP for testing H0 : θ ≤ θ1 versus
H1 : θ > θ1, with size βT∗(θ1).

Remark
By reversing inequalities throughout, we can obtain UMP tests for
testing H0 : θ ≥ θ0 versus H1 : θ < θ0.

Proof of Theorem 6.2
(i) Consider the hypotheses θ = θ0 versus θ = θ1 with any θ1 > θ0.
A UMP test is given in Theorem 6.1 with fj = the p.d.f. of Pθj , j = 0,1.
Since P has monotone likelihood ratio in Y (X ), this UMP test can be
chosen to be the same as T∗ with possibly different c and γ satisfying
βT∗(θ0) = α.
Since T∗ does not depend on θ1, it follows from Lemma 6.1 that T∗ is
UMP for testing the hypothesis θ = θ0 versus H1.
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Note that if T∗ is UMP for testing θ = θ0 versus H1, then it is UMP for
testing H0 versus H1, provided that βT∗(θ)≤ α for all θ ≤ θ0, i.e., the
size of T∗ is α.
But this follows from Lemma 6.3 (stated and proved in the next
lecture), i.e., βT∗(θ) is nondecreasing in θ .
(ii) See Exercise 2 in §6.6.
(iii) The result can be proved using Theorem 6.1 with all inequalities
reversed.
(iv) The proof for (iv) is left as an exercise.
(v) The proof for (v) is similar to that of (i).

Corollary 6.1 (one-parameter exponential families
Suppose that X has a p.d.f. in a one-parameter exponential family with
η being a strictly monotone function of θ .
If η is increasing, then T∗ given by Theorem 6.2 is UMP for testing
H0 : θ ≤ θ0 versus H1 : θ > θ0, where γ and c are determined by
βT∗(θ0) = α.
If η is decreasing or H0 : θ ≥ θ0 (H1 : θ < θ0), the result is still valid by
reversing inequalities in the definition of T∗.
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