Lecture 17: Likelihood ratio and asymptotic tests

Likelihood ratio

When both H_0 and H_1 are simple (i.e., $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$), Theorem 6.1 applies and a UMP test rejects H_0 when

$$rac{f_{ heta_1}(X)}{f_{ heta_0}(X)} > c_0$$

for some $c_0 > 0$.

The following definition is a natural extension of this idea.

Definition 6.2

Let $\ell(\theta) = f_{\theta}(X)$ be the likelihood function. For testing $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_1$, a *likelihood ratio* (LR) test is any test that rejects H_0 if and only if $\lambda(X) < c$, where $c \in [0, 1]$ and $\lambda(X)$ is the likelihood ratio defined by

$$\lambda(X) = \sup_{\theta \in \Theta_0} \ell(\theta) / \sup_{\theta \in \Theta} \ell(\theta).$$

Discussions

If $\lambda(X)$ is well defined, then $\lambda(X) \leq 1$.

The rationale behind LR tests is that when H_0 is true, $\lambda(X)$ tends to be close to 1, whereas when H_1 is true, $\lambda(X)$ tends to be away from 1. If there is a sufficient statistic, then $\lambda(X)$ depends only on the sufficient statistic.

LR tests are as widely applicable as MLE's in §4.4 and, in fact, they are closely related to MLE's.

If $\hat{\theta}$ is an MLE of θ and $\hat{\theta}_0$ is an MLE of θ subject to $\theta \in \Theta_0$ (i.e., Θ_0 is treated as the parameter space), then

 $\lambda(X) = \ell(\widehat{\theta}_0) / \ell(\widehat{\theta}).$

For a given $\alpha \in (0, 1)$, if there exists a $c_{\alpha} \in [0, 1]$ such that

 $\sup_{\theta\in\Theta_0} P_\theta(\lambda(X) < c_\alpha) = \alpha,$

then an LR test of size α can be obtained.

Even when the c.d.f. of $\lambda(X)$ is continuous or randomized LR tests are introduced, it is still possible that such a c_{α} does not exist.

Optimality

When a UMP or UMPU test exists, an LR test is often the same as this optimal test.

Proposition 6.5

Suppose that *X* has a p.d.f. in a one-parameter exponential family:

$$f_{\theta}(x) = \exp\{\eta(\theta) Y(x) - \xi(\theta)\}h(x)$$

w.r.t. a σ -finite measure v, where η is a strictly increasing and differentiable function of θ .

(i) For testing $H_0: \theta \le \theta_0$ versus $H_1: \theta > \theta_0$, there is an LR test whose rejection region is the same as that of the UMP test T_* given in Theorem 6.2.

(ii) For testing $H_0: \theta \le \theta_1$ or $\theta \ge \theta_2$ versus $H_1: \theta_1 < \theta < \theta_2$, there is an LR test whose rejection region is the same as that of the UMP test T_* given in Theorem 6.3.

(iii) For testing the other two-sided hypotheses, there is an LR test whose rejection region is equivalent to $Y(X) < c_1$ or $Y(X) > c_2$ for some constants c_1 and c_2 .

Proof

We prove (i) only.

Let $\hat{\theta}$ be the MLE of θ .

Note that $\ell(\theta)$ is increasing when $\theta \leq \hat{\theta}$ and decreasing when $\theta > \hat{\theta}$. Thus,

$$\lambda(X) = \left\{egin{array}{cc} 1 & \widehat{ heta} \leq heta_0 \ rac{\ell(heta_0)}{\ell(\widehat{ heta})} & \widehat{ heta} > heta_0. \end{array}
ight.$$

Then $\lambda(X) < c$ is the same as $\hat{\theta} > \theta_0$ and $\ell(\theta_0)/\ell(\hat{\theta}) < c$. From the property of exponential families, $\hat{\theta}$ is a solution of the likelihood equation

$$\frac{\partial \log \ell(\theta)}{\partial \theta} = \eta'(\theta) Y(X) - \xi'(\theta) = 0$$

and $\psi(\theta) = \xi'(\theta)/\eta'(\theta)$ has a positive derivative $\psi'(\theta)$. Since $\eta'(\widehat{\theta})Y - \xi'(\widehat{\theta}) = 0$, $\widehat{\theta}$ is an increasing function of Y and $\frac{d\widehat{\theta}}{dY} > 0$. Consequently, for any $\theta_0 \in \Theta$,

$$\frac{d}{dY} \left[\log \ell(\widehat{\theta}) - \log \ell(\theta_0) \right] = \frac{d}{dY} \left[\eta(\widehat{\theta}) Y - \xi(\widehat{\theta}) - \eta(\theta_0) Y + \xi(\theta_0) \right] \\
= \frac{d\widehat{\theta}}{dY} \eta'(\widehat{\theta}) Y + \eta(\widehat{\theta}) - \frac{d\widehat{\theta}}{dY} \xi'(\widehat{\theta}) - \eta(\theta_0) \\
= \frac{d\widehat{\theta}}{dY} [\eta'(\widehat{\theta}) Y - \xi'(\widehat{\theta})] + \eta(\widehat{\theta}) - \eta(\theta_0) \\
= \eta(\widehat{\theta}) - \eta(\theta_0),$$

which is positive (or negative) if $\hat{\theta} > \theta_0$ (or $\hat{\theta} < \theta_0$), i.e.,

 $\log \ell(\widehat{\theta}) - \log \ell(\theta_0)$ is strictly increasing in Y when $\widehat{\theta} > \theta_0$ and strictly decreasing in Y when $\widehat{\theta} < \theta_0$.

Hence, for any $d \in \mathscr{R}$, $\hat{\theta} > \theta_0$ and $\ell(\theta_0)/\ell(\hat{\theta}) < c$ is equivalent to Y > d for some $c \in (0, 1)$.

Example 6.20

Consider the testing problem $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ based on i.i.d. $X_1, ..., X_n$ from the uniform distribution $U(0, \theta)$. We now show that the UMP test with rejection region $X_{(n)} > \theta_0$ or $X_{(n)} \le \theta_0 \alpha^{1/n}$ given in Exercise 19(c) is an LR test.

Note that $\ell(\theta) = \theta^{-n} I_{(X_{(n)},\infty)}(\theta)$. Hence

$$\lambda(X) = \left\{ egin{array}{cc} (X_{(n)}/ heta_0)^n & X_{(n)} \leq heta_0 \ 0 & X_{(n)} > heta_0 \end{array}
ight.$$

and $\lambda(X) < c$ is equivalent to $X_{(n)} > \theta_0$ or $X_{(n)}/\theta_0 < c^{1/n}$. Taking $c = \alpha$ ensures that the LR test has size α .

Example 6.21

Consider normal linear model $X = N_n(Z\beta, \sigma^2 I_n)$ and the hypotheses

$$H_0: L\beta = 0$$
 versus $H_1: L\beta \neq 0$,

where *L* is an $s \times p$ matrix of rank $s \le r$ and all rows of *L* are in $\Re(Z)$. The likelihood function in this problem is

$$\ell(\theta) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2} \|X - Z\beta\|^2\right\}, \quad \theta = (\beta, \sigma^2).$$

Since $\|X - Z\beta\|^2 \ge \|X - Z\widehat{\beta}\|^2$ for any β and the LSE $\widehat{\beta}$,

$$\ell(\theta) \leq \left(rac{1}{2\pi\sigma^2}
ight)^{n/2} \exp\left\{-rac{1}{2\sigma^2} \|X-Z\widehat{eta}\|^2
ight\}.$$

Treating the right-hand side of this expression as a function of σ^2 , it is easy to show that it has a maximum at $\sigma^2 = \hat{\sigma}^2 = \|X - Z\hat{\beta}\|^2/n$ and

$$\sup_{\theta\in\Theta}\ell(\theta)=(2\pi\widehat{\sigma}^2)^{-n/2}e^{-n/2}.$$

Similarly, let $\hat{\beta}_{H_0}$ be the LSE under H_0 and $\hat{\sigma}_{H_0}^2 = \|X - Z\hat{\beta}_{H_0}\|^2/n$:

$$\sup_{ heta\in\Theta_0}\ell(heta)=(2\pi\widehat{\sigma}_{\mathcal{H}_0}^2)^{-n/2}e^{-n/2}.$$

Thus,

$$\lambda(X) = (\widehat{\sigma}^2 / \widehat{\sigma}_{H_0}^2)^{n/2} = \left(\frac{\|X - Z\widehat{\beta}\|^2}{\|X - Z\widehat{\beta}_{H_0}\|^2}\right)^{n/2}$$

For a two-sample problem, we let $n = n_1 + n_2$, $\beta = (\mu_1, \mu_2)$, and

$$Z = \left(\begin{array}{cc} J_{n_1} & 0 \\ 0 & J_{n_2} \end{array}\right).$$

Testing $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$ is the same as testing $H_0: L\beta = 0$ versus $H_1: L\beta \neq 0$ with L = (1 - 1). The LR test is the same as the two-sample two-sided t-tests in §6.2.3.

Example: Exercise 6.84

Let *F* and *G* be two known cumulative distribution functions on \mathscr{R} and *X* be a single observation from the cumulative distribution function $\theta F(x) + (1 - \theta)G(x)$, where $\theta \in [0, 1]$ is unknown. We first derive the likelihood ratio $\lambda(X)$ for testing

 $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$

where $\theta_0 \in [0, 1)$ is a known constant.

Let *f* and *g* be the probability densities of *F* and *G*, respectively, with respect to the measure corresponding to F + G. Then, the likelihood function is

 $\ell(\theta) = \theta[f(X) - g(X)] + g(X)$

and

$$\sup_{0 \leq heta \leq 1} \ell(heta) = \left\{ egin{array}{ll} f(X) & f(X) \geq g(X) \ g(X) & f(X) < g(X). \end{array}
ight.$$

For $\theta_0 \in [0, 1)$,

$$\sup_{0 \le \theta \le \theta_0} \ell(\theta) = \begin{cases} \theta_0[f(X) - g(X)] + g(X) & f(X) \ge g(X) \\ g(X) & f(X) < g(X). \end{cases}$$

Hence,

where

$$\lambda(X) = \begin{cases} \frac{\theta_0[f(X) - g(X)] + g(X)}{f(X)} \\ 1 \end{cases}$$

$$f(X) \ge g(X)$$

 $f(X) < g(X).$

Choose a constant *c* with $\theta_0 \leq c < 1$. Then $\lambda(X) \leq c$ is the same as

$$\frac{g(X)}{f(X)} \le \frac{c-\theta_0}{1-\theta_0}$$

We may find a *c* with $P(\lambda(X) \le c) = \alpha$ when $\theta = \theta_0$. Consider next

$$H_0: \theta_1 \le \theta \le \theta_2 \quad \text{versus} \quad H_1: \theta < \theta_1 \quad \text{or} \quad \theta > \theta_2$$

where $0 \le \theta_1 < \theta_2 \le 1$ are known constants.
For $0 \le \theta_1 \le \theta_2 \le 1$,
$$\sup_{\substack{0 \le \theta_1 \le \theta \le \theta_2 \le 1}} \ell(\theta) = \begin{cases} \theta_2[f(X) - g(X)] + g(X) & f(X) \ge g(X) \\ \theta_1[f(X) - g(X)] + g(X) & f(X) < g(X) \end{cases}$$
Hence,
$$\lambda(X) = \begin{cases} \frac{\theta_2[f(X) - g(X)] + g(X)}{f(X)} & f(X) \ge g(X) \\ \frac{\theta_1[f(X) - g(X)] + g(X)}{g(X)} & f(X) < g(X). \end{cases}$$

UW-Madison (Statistics)

Stat 710. Lecture 17

Choose a constant *c* with max $\{1 - \theta_1, \theta_2\} \le c < 1$. Then $\lambda(X) \le c$ is the same as

$$\frac{g(X)}{f(X)} \leq \frac{c-\theta_0}{1-\theta_0} \quad \text{or} \quad \frac{g(X)}{f(X)} \geq \frac{\theta_1}{c-(1-\theta_1)}.$$

How to find a *c* with $\sup_{\theta_1 \le \theta \le \theta_2} P(\lambda(X) \le c) = \alpha$? Finally, consider

 $H_0: \theta \le \theta_1$ or $\theta \ge \theta_2$ versus $\theta_1 < \theta < \theta_2$

where $0 \le \theta_1 \le \theta_2 \le 1$ are known constants. Note that

$$\sup_{0 \le \theta \le \theta_1, \theta_2 \le \theta \le 1} \ell(\theta) = \sup_{0 \le \theta \le 1} \ell(\theta).$$

Hence,

$$\lambda(X) = 1$$

This means that, unless we consider randomizing, we cannot find a *c* such that $\sup_{\theta \le \theta_1 \text{ or } \theta \ge \theta_2} P(\lambda(X) \le c) = \alpha$.

It is often difficult to construct a test with exactly size α or level α . Tests whose rejection regions are constructed using asymptotic theory (so that these tests have asymptotic level α) are called asymptotic tests, which are useful when a test of exact size α is difficult to find.

Definition 2.13 (asymptotic tests)

Let $X = (X_1, ..., X_n)$ be a sample from $P \in \mathscr{P}$ and $T_n(X)$ be a test for $H_0 : P \in \mathscr{P}_0$ versus $H_1 : P \in \mathscr{P}_1$.

- (i) If $\limsup_n \alpha_{T_n}(P) \leq \alpha$ for any $P \in \mathscr{P}_0$, then α is an *asymptotic* significance level of T_n .
- (ii) If $\lim_{n\to\infty} \sup_{P\in\mathscr{P}_0} \alpha_{T_n}(P)$ exists, it is called the *limiting size* of T_n .
- (iii) T_n is *consistent* iff the type II error probability converges to 0.
 - If 𝒫₀ is not a parametric family, the limiting size of 𝒯ₙ may be 1. This is the reason why we consider the weaker requirement in (i).
 - If α ∈ (0,1) is a pre-assigned level of significance for the problem, then a consistent test *T_n* having asymptotic significance level α is called *asymptotically correct*, and a consistent test having limiting size α is called *strongly* asymptotically correct.

UW-Madison (Statistics)

Stat 710, Lecture 17

In the i.i.d. case we can obtain the asymptotic distribution (under H_0) of the likelihood ratio $\lambda(X)$ so that an LR test having asymptotic significance level α can be obtained.

Theorem 6.5 (asymptotic distribution of likelihood ratio)

Assume the conditions in Theorem 4.16.

Suppose that $H_0: \theta = g(\vartheta)$, where ϑ is a (k-r)-vector of unknown parameters and g is a continuously differentiable function from \mathscr{R}^{k-r} to \mathscr{R}^k with a full rank $\partial g(\vartheta)/\partial \vartheta$.

Under H₀,

$$-2\log\lambda_n \rightarrow_d \chi_r^2$$
,

where $\lambda_n = \lambda(X)$ and χ_r^2 is a random variable having the chi-square distribution χ_r^2 .

Consequently, the LR test with rejection region $\lambda_n < e^{-\chi_{r,\alpha}^2/2}$ has asymptotic significance level α , where $\chi_{r,\alpha}^2$ is the $(1 - \alpha)$ th quantile of the chi-square distribution χ_r^2 .

Proof

Without loss of generality, we assume that there exist an MLE $\hat{\theta}$ and an MLE $\hat{\vartheta}$ under H_0 such that

$$\lambda_n = \sup_{ heta \in \Theta_0} \ell(heta) / \sup_{ heta \in \Theta} \ell(heta) = \ell(g(\widehat{artheta})) / \ell(\widehat{ heta}).$$

Let $s_n(\theta) = \partial \log \ell(\theta) / \partial \theta$ and $l_1(\theta)$ be the Fisher information about θ contained in X_1 .

Following the proof of Theorem 4.17 in §4.5.2, we can obtain that

$$\sqrt{n}I_1(\theta)(\widehat{\theta}-\theta)=n^{-1/2}s_n(\theta)+o_p(1),$$

and

$$2[\log \ell(\widehat{\theta}) - \log \ell(\theta)] = n(\widehat{\theta} - \theta)^{\tau} I_1(\theta)(\widehat{\theta} - \theta) + o_{\rho}(1).$$

Then

$$2[\log \ell(\widehat{\theta}) - \log \ell(\theta)] = n^{-1} [s_n(\theta)]^{\tau} [I_1(\theta)]^{-1} s_n(\theta) + o_p(1).$$

Similarly, under H_0 ,

$$2[\log \ell(g(\widehat{\vartheta})) - \log \ell(g(\vartheta))] = n^{-1} [\widetilde{s}_n(\vartheta)]^{\tau} [\widetilde{l}_1(\vartheta)]^{-1} \widetilde{s}_n(\vartheta) + o_p(1),$$

where $\tilde{s}_n(\vartheta) = \partial \log \ell(g(\vartheta)) / \partial \vartheta = D(\vartheta) s_n(g(\vartheta)), D(\vartheta) = \partial g(\vartheta) / \partial \vartheta$, and $\tilde{l}_1(\vartheta)$ is the Fisher information about ϑ (under H_0) contained in X_1 . Combining these results, we obtain that, under H_0 ,

$$\begin{aligned} -2\log\lambda_n &= 2[\log\ell(\widehat{\theta}) - \log\ell(g(\widehat{\vartheta}))] \\ &= n^{-1}[s_n(g(\vartheta))]^{\tau}B(\vartheta)s_n(g(\vartheta)) + o_p(1) \end{aligned}$$

where $B(\vartheta) = [I_1(g(\vartheta))]^{-1} - [D(\vartheta)]^{\tau} [\tilde{I}_1(\vartheta)]^{-1} D(\vartheta)$. By the CLT, $n^{-1/2} [I_1(\theta)]^{-1/2} s_n(\theta) \rightarrow_d Z$, where $Z = N_k(0, I_k)$. Then, it follows from Theorem 1.10(iii) that, under H_0 ,

$$-2\log\lambda_n \to_d Z^{\tau}[I_1(g(\vartheta))]^{1/2}B(\vartheta)[I_1(g(\vartheta))]^{1/2}Z.$$

Let $D = D(\vartheta)$, $B = B(\vartheta)$, $A = I_1(g(\vartheta))$, and $C = \tilde{I}_1(\vartheta)$. Then

$$(A^{1/2}BA^{1/2})^2 = A^{1/2}BABA^{1/2}$$

= $A^{1/2}(A^{-1} - D^{\tau}C^{-1}D)A(A^{-1} - D^{\tau}C^{-1}D)A^{1/2}$
= $(I_k - A^{1/2}D^{\tau}C^{-1}DA^{1/2})(I_k - A^{1/2}D^{\tau}C^{-1}DA^{1/2})$

$$= I_k - 2A^{1/2}D^{\tau}C^{-1}DA^{1/2} + A^{1/2}D^{\tau}C^{-1}DAD^{\tau}C^{-1}DA^{1/2}$$

= $I_k - A^{1/2}D^{\tau}C^{-1}DA^{1/2}$
= $A^{1/2}BA^{1/2}$,

where the fourth equality follows from the fact that $C = DAD^{\tau}$. This shows that $A^{1/2}BA^{1/2}$ is a projection matrix. The rank of $A^{1/2}BA^{1/2}$ is

$$\operatorname{tr}(A^{1/2}BA^{1/2}) = \operatorname{tr}(I_k - D^{\tau}C^{-1}DA)$$

= $k - \operatorname{tr}(C^{-1}DAD^{\tau})$
= $k - \operatorname{tr}(C^{-1}C)$
= $k - (k - r)$
= r .

Thus, by Exercise 51 in §1.6,

$$Z^{\tau}[I_1(g(\vartheta))]^{1/2}B(\vartheta)[I_1(g(\vartheta))]^{1/2}Z = \chi_r^2$$

Asymptotic tests based on likelihoods

There are two popular asymptotic tests based on likelihoods that are asymptotically equivalent to LR tests.

The hypothesis $H_0: \theta = g(\vartheta)$ is equivalent to a set of $r \le k$ equations:

$$H_0: R(\theta) = 0,$$

where $R(\theta)$ is a continuously differentiable function from \mathscr{R}^k to \mathscr{R}^r . Wald (1943) introduced a test that rejects H_0 when the value of

 $W_n = [R(\widehat{\theta})]^{\tau} \{ [C(\widehat{\theta})]^{\tau} [I_n(\widehat{\theta})]^{-1} C(\widehat{\theta}) \}^{-1} R(\widehat{\theta})$

is large, where $C(\theta) = \partial R(\theta) / \partial \theta$, $I_n(\theta)$ is the Fisher information matrix based on $X_1, ..., X_n$, and $\hat{\theta}$ is an MLE or RLE of θ .

Rao (1947) introduced a score test that rejects H_0 when the value of

 $R_n = [s_n(\tilde{\theta})]^{\tau} [I_n(\tilde{\theta})]^{-1} s_n(\tilde{\theta})$

is large, where $s_n(\theta) = \partial \log \ell(\theta) / \partial \theta$ is the score function and $\tilde{\theta}$ is an MLE or RLE of θ under $H_0 : R(\theta) = 0$.

- Wald's test requires computing $\hat{\theta}$, not $\tilde{\theta} = g(\hat{\vartheta})$.
- Rao's score test requires computing $\tilde{\theta}$, not $\hat{\theta}$.

Theorem 6.6

Assume the conditions in Theorem 4.16.

(i) Under $H_0: R(\theta) = 0$, where $R(\theta)$ is a continuously differentiable function from \mathscr{R}^k to \mathscr{R}^r , $W_n \to_d \chi_r^2$ and, therefore, the test rejects H_0 if and only if $W_n > \chi_{r,\alpha}^2$ has asymptotic significance level α , where $\chi_{r,\alpha}^2$ is the $(1 - \alpha)$ th quantile of the chi-square distribution χ_r^2 . (ii) The result in (i) still holds if W_n is replaced by R_n .

Proof

(i) Using Theorems 1.12 and 4.17,

$$\sqrt{n}[R(\widehat{\theta}) - R(\theta)] \to_d N_r \left(0, [C(\theta)]^{\tau} [I_1(\theta)]^{-1} C(\theta) \right),$$

where $I_1(\theta)$ is the Fisher information about θ contained in X_1 . Under H_0 , $R(\theta) = 0$ and, therefore (by Theorem 1.10),

 $n[R(\widehat{\theta})]^{\tau}\{[C(\theta)]^{\tau}[I_1(\theta)]^{-1}C(\theta)\}^{-1}R(\widehat{\theta}) \to_d \chi^2_r$

Then the result follows from Slutsky's theorem (Theorem 1.11) and the fact that $\hat{\theta} \rightarrow_{p} \theta$ and $I_{1}(\theta)$ and $C(\theta)$ are continuous at θ . (ii) See the textbook.