Lecture 17: Likelihood ratio and asymptotic tests

Likelihood ratio

When both H_0 and H_1 are simple (i.e., $\Theta_0 = {\theta_0}$) and $\Theta_1 = {\theta_1}$), Theorem 6.1 applies and a UMP test rejects H_0 when

$$
\frac{f_{\theta_1}(X)}{f_{\theta_0}(X)}>c_0
$$

for some $c_0 > 0$.

The following definition is a natural extension of this idea.

Definition 6.2

Let $\ell(\theta) = f_{\theta}(X)$ be the likelihood function. For testing $H_0 : \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$, a *likelihood ratio* (LR) test is any test that rejects H_0 if and only if $\lambda(X) < c$, where $c \in [0,1]$ and $\lambda(X)$ is the likelihood ratio defined by

$$
\lambda(X) = \sup_{\theta \in \Theta_0} \ell(\theta) / \sup_{\theta \in \Theta} \ell(\theta).
$$

Discussions

If $\lambda(X)$ is well defined, then $\lambda(X) < 1$.

The rationale behind LR tests is that when H_0 is true, $\lambda(X)$ tends to be close to 1, whereas when H_1 is true, $\lambda(X)$ tends to be away from 1. If there is a sufficient statistic, then $\lambda(X)$ depends only on the sufficient statistic.

LR tests are as widely applicable as MLE's in §4.4 and, in fact, they are closely related to MLE's.

If θ is an MLE of θ and θ_0 is an MLE of θ subject to $\theta \in \Theta_0$ (i.e., Θ_0 is treated as the parameter space), then

 $\lambda(X) = \ell(\widehat{\theta}_0)/\ell(\widehat{\theta}).$

For a given $\alpha \in (0,1)$, if there exists a $c_{\alpha} \in [0,1]$ such that

$$
\sup_{\theta\in\Theta_0}P_{\theta}(\lambda(X)
$$

then an LR test of size α can be obtained.

beamer-tu-logo Even when the c.d.f. of $\lambda(X)$ is continuous or randomized LR tests are i[n](#page-2-0)troduced, it is still possible that such a c_{α} do[es](#page-0-0) n[ot](#page-0-0) [e](#page-1-0)[x](#page-2-0)[ist](#page-0-0)[.](#page-16-0)

Optimality

When a UMP or UMPU test exists, an LR test is often the same as this optimal test.

Proposition 6.5

Suppose that *X* has a p.d.f. in a one-parameter exponential family:

$$
f_{\theta}(x) = \exp{\{\eta(\theta)Y(x) - \xi(\theta)\}h(x)}
$$

w.r.t. a σ -finite measure v, where η is a strictly increasing and differentaible function of θ.

(i) For testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$, there is an LR test whose rejection region is the same as that of the UMP test *T*[∗] given in Theorem 6.2.

(ii) For testing H_0 : $\theta \leq \theta_1$ or $\theta \geq \theta_2$ versus H_1 : $\theta_1 < \theta < \theta_2$, there is an LR test whose rejection region is the same as that of the UMP test *T*[∗] given in Theorem 6.3.

beamer-tu-logo (iii) For testing the other two-sided hypotheses, there is an LR test whose rejection region is equivalent to $Y(X) < c_1$ or $Y(X) > c_2$ for some constants c_1 and c_2 .

Proof

We prove (i) only.

Let $\widehat{\theta}$ be the MLE of θ .

Note that $\ell(\theta)$ is increasing when $\theta \leq \widehat{\theta}$ and decreasing when $\theta > \widehat{\theta}$. Thus,

$$
\lambda(X) = \begin{cases} 1 & \widehat{\theta} \leq \theta_0 \\ \frac{\ell(\theta_0)}{\ell(\widehat{\theta})} & \widehat{\theta} > \theta_0. \end{cases}
$$

Then $\lambda(X) < c$ is the same as $\hat{\theta} > \theta_0$ and $\ell(\theta_0)/\ell(\hat{\theta}) < c$. From the property of exponential families, $\hat{\theta}$ is a solution of the likelihood equation

$$
\frac{\partial \log \ell(\theta)}{\partial \theta} = \eta'(\theta) Y(X) - \xi'(\theta) = 0
$$

beamer-tu-logo and $\psi(\theta) = \xi'(\theta)/\eta'(\theta)$ has a positive derivative $\psi'(\theta)$. Since $\eta'(\widehat{\theta})Y - \xi'(\widehat{\theta}) = 0$, $\widehat{\theta}$ is an increasing function of *Y* and $\frac{d\theta}{dY} > 0$. Consequently, for any $\theta_0 \in \Theta$,

$$
\frac{d}{dY}\left[\log \ell(\widehat{\theta}) - \log \ell(\theta_0)\right] = \frac{d}{dY}\left[\eta(\widehat{\theta})Y - \xi(\widehat{\theta}) - \eta(\theta_0)Y + \xi(\theta_0)\right]
$$

$$
= \frac{d\widehat{\theta}}{dY}\eta'(\widehat{\theta})Y + \eta(\widehat{\theta}) - \frac{d\widehat{\theta}}{dY}\xi'(\widehat{\theta}) - \eta(\theta_0)
$$

$$
= \frac{d\widehat{\theta}}{dY}[\eta'(\widehat{\theta})Y - \xi'(\widehat{\theta})] + \eta(\widehat{\theta}) - \eta(\theta_0)
$$

$$
= \eta(\widehat{\theta}) - \eta(\theta_0),
$$

which is positive (or negative) if $\widehat{\theta} > \theta_0$ (or $\widehat{\theta} < \theta_0$), i.e.,

 $log \ell(\theta) - log \ell(\theta_0)$ is strictly increasing in *Y* when $\theta > \theta_0$ and strictly decreasing in *Y* when $\theta < \theta_0$.

Hence, for any $d \in \mathcal{R}, \hat{\theta} > \theta_0$ and $\ell(\theta_0)/\ell(\hat{\theta}) < c$ is equivalent to $Y > d$ for some $c \in (0,1)$.

Example 6.20

beamer-tu-logo Consider the testing problem H_0 : $\theta = \theta_0$ versus H_1 : $\theta \neq \theta_0$ based on i.i.d. $X_1, ..., X_n$ from the uniform distribution $U(0, \theta)$. We now show that the UMP test with rejection region $X_{(n)} > \theta_0$ or $X_{(n)}\leq \theta_0\alpha^{1/n}$ given in Exercise 19(c) is an LR [te](#page-3-0)[st.](#page-5-0)

UW-Madison (Statistics) [Stat 710, Lecture 17](#page-0-0) Jan 2019 5/17

Note that $\ell(\theta) = \theta^{-n} I_{(X_{(n)},\infty)}(\theta)$. **Hence**

$$
\lambda(X)=\left\{\begin{array}{ll} (X_{(n)}/\theta_0)^n & X_{(n)}\leq \theta_0 \\ 0 & X_{(n)} > \theta_0 \end{array}\right.
$$

and $\lambda(X) < c$ is equivalent to $X_{(n)} > \theta_0$ or $X_{(n)}/\theta_0 < c^{1/n}.$ Taking $c = \alpha$ ensures that the LR test has size α .

Example 6.21

 $\mathsf{Consider}\ \mathsf{normal}\ \mathsf{linear}\ \mathsf{model}\ X = \mathsf{N}_\mathsf{n}(\mathsf{Z}\mathsf{B}, \sigma^2I_\mathsf{n})\ \mathsf{and}\ \mathsf{the}\ \mathsf{hypotheses}$

$$
H_0: L\beta = 0 \qquad \text{versus} \qquad H_1: L\beta \neq 0,
$$

where *L* is an $s \times p$ matrix of rank $s \le r$ and all rows of *L* are in $\mathcal{R}(Z)$. The likelihood function in this problem is

$$
\ell(\theta) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}||X - Z\beta||^2\right\}, \quad \theta = (\beta, \sigma^2).
$$

Since $||X - Z\beta||^2 \ge ||X - Z\beta||^2$ for any β and the LSE $\hat{\beta}$,

$$
\ell(\theta) \leq \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}||X-Z\widehat{\beta}||^2\right\}.
$$

UW-Madison (Statistics) [Stat 710, Lecture 17](#page-0-0) Jan 2019 6/17

Treating the right-hand side of this expression as a function of σ^2 , it is easy to show that it has a maximum at $\sigma^2 = \widehat{\sigma}^2 = \|X - Z\beta\|^2/n$ and

$$
\sup_{\theta \in \Theta} \ell(\theta) = (2\pi \widehat{\sigma}^2)^{-n/2} e^{-n/2}.
$$

Similarly, let β_{H_0} be the LSE under H_0 and $\widehat{\sigma}_{H_0}^2 = \|X - Z\beta_{H_0}\|^2/n$:

$$
\sup_{\theta \in \Theta_0} \ell(\theta) = (2\pi \widehat{\sigma}_{H_0}^2)^{-n/2} e^{-n/2}.
$$

Thus,

$$
\lambda(X)=(\widehat{\sigma}^2/\widehat{\sigma}_{H_0}^2)^{n/2}=\left(\frac{\|X-Z\widehat{\beta}\|^2}{\|X-Z\widehat{\beta}_{H_0}\|^2}\right)^{n/2}.
$$

For a two-sample problem, we let $n = n_1 + n_2$, $\beta = (\mu_1, \mu_2)$, and

$$
Z=\left(\begin{array}{cc}J_{n_1}&0\\0&J_{n_2}\end{array}\right).
$$

The LR test is the same as the two-sample two-sided t-tests in §6.2.3. \parallel Testing H_0 : $\mu_1 = \mu_2$ versus H_1 : $\mu_1 \neq \mu_2$ is the same as testing H_0 : $L\beta = 0$ versus H_1 : $L\beta \neq 0$ with $L = (1, -1)$.

Example: Exercise 6.84

Let F and G be two known cumulative distribution functions on $\mathscr R$ and *X* be a single observation from the cumulative distribution function $\theta F(x) + (1-\theta)G(x)$, where $\theta \in [0,1]$ is unknown. We first derive the likelihood ratio $\lambda(X)$ for testing

 H_0 : $\theta \le \theta_0$ versus H_1 : $\theta > \theta_0$

where $\theta_0 \in [0,1)$ is a known constant. Let *f* and *g* be the probability densities of *F* and *G*, respectively, with respect to the measure corresponding to $F + G$. Then, the likelihood function is

 $\ell(\theta) = \theta[f(X) - g(X)] + g(X)$

and

$$
\sup_{0\leq\theta\leq 1}\ell(\theta)=\left\{\begin{array}{ll}f(X)&f(X)\geq g(X)\\g(X)&f(X)
$$

For $\theta_0 \in [0,1)$,

$$
\sup_{0\leq\theta\leq\theta_0}\ell(\theta)=\left\{\begin{array}{ll}\theta_0[f(X)-g(X)]+g(X) & f(X)\geq g(X) \\ g(X) & f(X)
$$

UW-Madison (Statistics) [Stat 710, Lecture 17](#page-0-0) Jan 2019 8/17

Hence,

$$
\lambda(X)=\left\{\begin{array}{ll} \frac{\theta_0[f(X)-g(X)]+g(X)}{f(X)} & \quad f(X)\geq g(X) \\ 1 & \quad f(X)
$$

$$
f(X) \ge g(X)
$$

$$
f(X) < g(X).
$$

Choose a constant *c* with $\theta_0 \leq c < 1$. Then $\lambda(X) \leq c$ is the same as

$$
\frac{g(X)}{f(X)} \leq \frac{c-\theta_0}{1-\theta_0}
$$

We may find a *c* with $P(\lambda(X) \le c) = \alpha$ when $\theta = \theta_0$. Consider next

$$
H_0: \theta_1 \leq \theta \leq \theta_2 \quad \text{versus} \quad H_1: \theta < \theta_1 \text{ or } \theta > \theta_2
$$
\n
$$
\text{where } 0 \leq \theta_1 < \theta_2 \leq 1 \text{ are known constants.}
$$
\n
$$
\text{For } 0 \leq \theta_1 \leq \theta_2 \leq 1,
$$
\n
$$
\sup_{0 \leq \theta_1 \leq \theta \leq \theta_2 \leq 1} \ell(\theta) = \left\{ \begin{array}{ll} \theta_2[f(X) - g(X)] + g(X) & f(X) \geq g(X) \\ \theta_1[f(X) - g(X)] + g(X) & f(X) < g(X) \end{array} \right.
$$
\n
$$
\text{Hence,}
$$
\n
$$
\lambda(X) = \left\{ \begin{array}{ll} \frac{\theta_2[f(X) - g(X)] + g(X)}{f(X)} & f(X) \geq g(X) \\ \frac{\theta_1[f(X) - g(X)] + g(X)}{g(X)} & f(X) < g(X). \end{array} \right.
$$

UW-Madison (Statistics) [Stat 710, Lecture 17](#page-0-0) Jan 2019 9/17

Choose a constant *c* with max $\{1-\theta_1, \theta_2\} < c < 1$. Then $\lambda(X) < c$ is the same as

$$
\frac{g(X)}{f(X)} \leq \frac{c-\theta_0}{1-\theta_0} \quad \text{or} \quad \frac{g(X)}{f(X)} \geq \frac{\theta_1}{c-(1-\theta_1)}.
$$

 $\textsf{How to find a}\ c \text{ with } \textsf{sup}_{\theta_1\leq\theta\leq\theta_2}P(\lambda(X)\leq c)=\alpha?$ Finally, consider

 $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ versus $\theta_1 \leq \theta \leq \theta_2$

where $0 \leq \theta_1 \leq \theta_2 \leq 1$ are known constants. Note that

$$
\sup_{0\leq\theta\leq\theta_1,\theta_2\leq\theta\leq 1}\ell(\theta)=\sup_{0\leq\theta\leq 1}\ell(\theta).
$$

Hence,

$$
\lambda(X)=1
$$

beamer-tu-logo This means that, unless we consider randomizing, we cannot find a *c* $\mathsf{such\ that\ sup}_{\theta\leq\theta_1\text{ or }\theta\geq\theta_2}P(\lambda(X)\leq c)=\alpha.$

It is often difficult to construct a test with exactly size α or level α . Tests whose rejection regions are constructed using asymptotic theory (so that these tests have asymptotic level α) are called asymptotic tests, which are useful when a test of exact size α is difficult to find.

Definition 2.13 (asymptotic tests)

Let $X = (X_1, ..., X_n)$ be a sample from $P \in \mathcal{P}$ and $T_n(X)$ be a test for H_0 : $P \in \mathscr{P}_0$ versus H_1 : $P \in \mathscr{P}_1$.

- (i) If lim sup_n $\alpha_{\mathcal{T}_n}(P) \leq \alpha$ for any $P \in \mathscr{P}_0$, then α is an *asymptotic significance level* of *Tn*.
- (ii) If lim*n*→[∞] sup*P*∈P⁰ α*Tⁿ* (*P*) exists, it is called the *limiting size* of *Tn*.
- (iii) *Tⁿ* is *consistent* iff the type II error probability converges to 0.
	- \bullet If \mathcal{P}_0 is not a parametric family, the limiting size of T_n may be 1. This is the reason why we consider the weaker requirement in (i).
	- called *asymptotically correct*, and a consistent test having limiting $\|$ If $\alpha \in (0,1)$ is a pre-assigned level of significance for the problem, then a consistent test T_n having asymptotic significance level α is size α is called *strongly* asymptotically co[rre](#page-9-0)[ct](#page-11-0)[.](#page-9-0)

UW-Madison (Statistics) [Stat 710, Lecture 17](#page-0-0) Jan 2019 11/17

In the i.i.d. case we can obtain the asymptotic distribution (under H_0) of the likelihood ratio $\lambda(X)$ so that an LR test having asymptotic significance level α can be obtained.

Theorem 6.5 (asymptotic distribution of likelihood ratio)

Assume the conditions in Theorem 4.16.

Suppose that H_0 : $\theta = g(\vartheta)$, where ϑ is a $(k - r)$ -vector of unknown parameters and *g* is a continuously differentiable function from \mathscr{R}^{k-r} to \mathcal{R}^k with a full rank $\partial q(\vartheta)/\partial \vartheta$.

Under H₀.

$$
-2\log\lambda_n\to_d\chi^2_r,
$$

where $\lambda_{n}\!=\!\lambda_{\left(}X\right)$ and $\chi_{\textit{r}}^{2}$ is a random variable having the chi-square distribution χ^2_r .

beamer-tu-logo Consequently, the LR test with rejection region $\lambda_n < e^{-\chi_{r,\alpha}^2/2}$ has asymptotic significance level α , where $\chi^2_{\rm r,\alpha}$ is the $(1-\alpha)$ th quantile of the chi-square distribution χ^2_r .

Proof

Without loss of generality, we assume that there exist an MLE $\widehat{\theta}$ and an MLE $\widehat{\vartheta}$ under H_0 such that

$$
\lambda_n = \sup_{\theta \in \Theta_0} \ell(\theta) / \sup_{\theta \in \Theta} \ell(\theta) = \ell(g(\widehat{\vartheta})) / \ell(\widehat{\theta}).
$$

Let $s_n(\theta) = \partial \log \ell(\theta)/\partial \theta$ and $I_1(\theta)$ be the Fisher information about θ contained in *X*1.

Following the proof of Theorem 4.17 in §4.5.2, we can obtain that

$$
\sqrt{n}I_1(\theta)(\widehat{\theta}-\theta)=n^{-1/2}s_n(\theta)+o_p(1),
$$

and

$$
2[\log \ell(\widehat{\theta}) - \log \ell(\theta)] = n(\widehat{\theta} - \theta)^{\tau} I_1(\theta)(\widehat{\theta} - \theta) + o_p(1).
$$

Then

$$
2[\log \ell(\widehat{\theta}) - \log \ell(\theta)] = n^{-1}[s_n(\theta)]^{\tau}[l_1(\theta)]^{-1}s_n(\theta) + o_p(1).
$$

Similarly, under H₀,

$$
2[\log \ell(g(\widehat{\vartheta})) - \log \ell(g(\vartheta))] = n^{-1} [\widetilde{\mathsf{s}}_n(\vartheta)]^{\tau} [\widetilde{\mathsf{I}}_1(\vartheta)]^{-1} \widetilde{\mathsf{s}}_n(\vartheta) + o_p(1),
$$

 QQ

イロト イ押ト イヨト イヨ

where $\tilde{s}_n(\vartheta) = \partial \log \ell(g(\vartheta))/\partial \vartheta = D(\vartheta) s_n(g(\vartheta)), D(\vartheta) = \partial g(\vartheta)/\partial \vartheta$, and $I_1(\vartheta)$ is the Fisher information about ϑ (under H_0) contained in X_1 . Combining these results, we obtain that, under H₀,

$$
-2\log \lambda_n = 2[\log \ell(\widehat{\theta}) - \log \ell(g(\widehat{\vartheta}))]
$$

= $n^{-1}[s_n(g(\vartheta))]^T B(\vartheta) s_n(g(\vartheta)) + o_p(1)$

where $B(\vartheta) = [I_1(g(\vartheta))]^{-1} - [D(\vartheta)]^{\tau} [\tilde{l}_1(\vartheta)]^{-1} D(\vartheta).$ By the CLT, $n^{-1/2}[I_1(\theta)]^{-1/2}s_n(\theta) \rightarrow_d Z$, where $Z = N_k(0, I_k)$. Then, it follows from Theorem 1.10(iii) that, under H_0 ,

$$
-2\log\lambda_n\rightarrow_d Z^{\tau}[l_1(g(\vartheta))]^{1/2}B(\vartheta)[l_1(g(\vartheta))]^{1/2}Z.
$$

Let $D = D(\vartheta)$, $B = B(\vartheta)$, $A = I_1(q(\vartheta))$, and $C = I_1(\vartheta)$. Then

$$
(A^{1/2}BA^{1/2})^2 = A^{1/2}BABA^{1/2}
$$

= $A^{1/2}(A^{-1} - D^{\tau}C^{-1}D)A(A^{-1} - D^{\tau}C^{-1}D)A^{1/2}$
= $(I_k - A^{1/2}D^{\tau}C^{-1}DA^{1/2})(I_k - A^{1/2}D^{\tau}C^{-1}DA^{1/2})$

=
$$
I_k - 2A^{1/2}D^{\tau}C^{-1}DA^{1/2} + A^{1/2}D^{\tau}C^{-1}DAD^{\tau}C^{-1}DA^{1/2}
$$

\n= $I_k - A^{1/2}D^{\tau}C^{-1}DA^{1/2}$
\n= $A^{1/2}BA^{1/2}$,

where the fourth equality follows from the fact that $\mathcal{C}=DAD^\tau.$ This shows that $A^{1/2}BA^{1/2}$ is a projection matrix. The rank of $A^{1/2}BA^{1/2}$ is

$$
tr(A^{1/2}BA^{1/2}) = tr(I_{k} - D^{\tau}C^{-1}DA)
$$

= $k - tr(C^{-1}DAD^{\tau})$
= $k - tr(C^{-1}C)$
= $k - (k - r)$
= r .

Thus, by Exercise 51 in §1.6,

$$
Z^{\tau}[I_1(g(\vartheta))]^{1/2}B(\vartheta)[I_1(g(\vartheta))]^{1/2}Z=\chi^2_r
$$

UW-Madison (Statistics) [Stat 710, Lecture 17](#page-0-0) Jan 2019 15/17

Asymptotic tests based on likelihoods

There are two popular asymptotic tests based on likelihoods that are asymptotically equivalent to LR tests.

The hypothesis $H_0: \theta = g(\vartheta)$ is equivalent to a set of $r \leq k$ equations:

$$
H_0: R(\theta)=0,
$$

where $R(\theta)$ is a continuously differentiable function from \mathscr{R}^k to $\mathscr{R}^r.$ Wald (1943) introduced a test that rejects H_0 when the value of

 $W_n = [R(\widehat{\theta})]^{\tau} \{ [C(\widehat{\theta})]^{\tau} [I_n(\widehat{\theta})]^{-1} C(\widehat{\theta}) \}^{-1} R(\widehat{\theta})$

is large, where $C(\theta) = \partial R(\theta)/\partial \theta$, $I_n(\theta)$ is the Fisher information matrix based on $X_1, ..., X_n$, and $\hat{\theta}$ is an MLE or RLE of θ . Rao (1947) introduced a *score* test that rejects H_0 when the value of

 $R_n = [s_n(\tilde{\theta})]^{\tau} [I_n(\tilde{\theta})]^{-1} s_n(\tilde{\theta})$

is large, where $s_n(\theta) = \partial \log \ell(\theta)/\partial \theta$ is the score function and $\tilde{\theta}$ is an MLE or RLE of θ under H_0 : $R(\theta) = 0$.

- Wald's test requires computing $\hat{\theta}$, not $\tilde{\theta} = g(\hat{\vartheta})$.
- **•** Rao's score test requires computing $\tilde{\theta}$, n[ot](#page-14-0) $\hat{\theta}$ [.](#page-16-0)

Theorem 6.6

Assume the conditions in Theorem 4.16.

(i) Under H_0 : $R(\theta) = 0$, where $R(\theta)$ is a continuously differentiable function from \mathscr{R}^k to \mathscr{R}^r , $\mathcal{W}_n \,{\to}_d \,\chi^2_r$ and, therefore, the test rejects H_0 if and only if $W_n > \chi^2_{r,\alpha}$ has asymptotic significance level α , where $\chi^2_{r,\alpha}$ is the (1 – α)th quantile of the chi-square distribution χ^2_r . (ii) The result in (i) still holds if W_n is replaced by R_n .

Proof

(i) Using Theorems 1.12 and 4.17,

$$
\sqrt{n}[R(\widehat{\theta})-R(\theta)]\rightarrow_d N_r\left(0,[C(\theta)]^{\tau}[I_1(\theta)]^{-1}C(\theta)\right),
$$

where $I_1(\theta)$ is the Fisher information about θ contained in X_1 . Under H_0 , $R(\theta) = 0$ and, therefore (by Theorem 1.10),

 $n[R(\widehat{\theta})]$ τ{[$C(\theta)$]^τ[$I_1(\theta)$]⁻¹ $C(\theta)$ }⁻¹ $R(\widehat{\theta}) \rightarrow_d \chi^2_r$

beamer-tu-logo Then the result follows from Slutsky's theorem (Theorem 1.11) and the fact that $\hat{\theta} \rightarrow_{p} \theta$ and $I_1(\theta)$ and $C(\theta)$ are continuous at θ . (ii) See the textbook.

UW-Madison (Statistics) [Stat 710, Lecture 17](#page-0-0) Jan 2019 17/17