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Lecture 17: Likelihood ratio and asymptotic tests

Likelihood ratio
When both H0 and H1 are simple (i.e., Θ0 = {θ0} and Θ1 = {θ1}),
Theorem 6.1 applies and a UMP test rejects H0 when

fθ1(X )

fθ0(X )
> c0

for some c0 > 0.
The following definition is a natural extension of this idea.

Definition 6.2
Let `(θ) = fθ (X ) be the likelihood function. For testing H0 : θ ∈Θ0
versus H1 : θ ∈Θ1, a likelihood ratio (LR) test is any test that rejects H0
if and only if λ (X ) < c, where c ∈ [0,1] and λ (X ) is the likelihood ratio
defined by

λ (X ) = sup
θ∈Θ0

`(θ)

/
sup
θ∈Θ

`(θ).
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Discussions
If λ (X ) is well defined, then λ (X )≤ 1.
The rationale behind LR tests is that when H0 is true, λ (X ) tends to be
close to 1, whereas when H1 is true, λ (X ) tends to be away from 1.
If there is a sufficient statistic, then λ (X ) depends only on the sufficient
statistic.
LR tests are as widely applicable as MLE’s in §4.4 and, in fact, they
are closely related to MLE’s.
If θ̂ is an MLE of θ and θ̂0 is an MLE of θ subject to θ ∈Θ0 (i.e., Θ0 is
treated as the parameter space), then

λ (X ) = `(θ̂0)
/
`(θ̂).

For a given α ∈ (0,1), if there exists a cα ∈ [0,1] such that

sup
θ∈Θ0

Pθ (λ (X ) < cα ) = α,

then an LR test of size α can be obtained.
Even when the c.d.f. of λ (X ) is continuous or randomized LR tests are
introduced, it is still possible that such a cα does not exist.
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Optimality
When a UMP or UMPU test exists, an LR test is often the same as this
optimal test.

Proposition 6.5
Suppose that X has a p.d.f. in a one-parameter exponential family:

fθ (x) = exp{η(θ)Y (x)−ξ (θ)}h(x)

w.r.t. a σ -finite measure ν , where η is a strictly increasing and
differentaible function of θ .
(i) For testing H0 : θ ≤ θ0 versus H1 : θ > θ0, there is an LR test whose
rejection region is the same as that of the UMP test T∗ given in
Theorem 6.2.
(ii) For testing H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2, there is an
LR test whose rejection region is the same as that of the UMP test T∗
given in Theorem 6.3.
(iii) For testing the other two-sided hypotheses, there is an LR test
whose rejection region is equivalent to Y (X ) < c1 or Y (X ) > c2 for
some constants c1 and c2.
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Proof
We prove (i) only.
Let θ̂ be the MLE of θ .
Note that `(θ) is increasing when θ ≤ θ̂ and decreasing when θ > θ̂ .
Thus,

λ (X ) =

{
1 θ̂ ≤ θ0
`(θ0)

`(θ̂)
θ̂ > θ0.

Then λ (X ) < c is the same as θ̂ > θ0 and `(θ0)/`(θ̂) < c.
From the property of exponential families, θ̂ is a solution of the
likelihood equation

∂ log`(θ)

∂θ
= η

′(θ)Y (X )−ξ
′(θ) = 0

and ψ(θ) = ξ ′(θ)/η ′(θ) has a positive derivative ψ ′(θ).

Since η ′(θ̂)Y −ξ ′(θ̂) = 0, θ̂ is an increasing function of Y and d θ̂

dY > 0.
Consequently, for any θ0 ∈Θ,
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d
dY

[
log`(θ̂)− log`(θ0)

]
=

d
dY

[
η(θ̂)Y −ξ (θ̂)−η(θ0)Y + ξ (θ0)

]
=

d θ̂

dY
η
′(θ̂)Y + η(θ̂)− d θ̂

dY
ξ
′(θ̂)−η(θ0)

=
d θ̂

dY
[η ′(θ̂)Y −ξ

′(θ̂)] + η(θ̂)−η(θ0)

= η(θ̂)−η(θ0),

which is positive (or negative) if θ̂ > θ0 (or θ̂ < θ0), i.e.,
log`(θ̂)− log`(θ0) is strictly increasing in Y when θ̂ > θ0 and strictly
decreasing in Y when θ̂ < θ0.
Hence, for any d ∈R, θ̂ > θ0 and `(θ0)/`(θ̂) < c is equivalent to Y > d
for some c ∈ (0,1).

Example 6.20
Consider the testing problem H0 : θ = θ0 versus H1 : θ 6= θ0 based on
i.i.d. X1, ...,Xn from the uniform distribution U(0,θ).
We now show that the UMP test with rejection region X(n) > θ0 or
X(n) ≤ θ0α1/n given in Exercise 19(c) is an LR test.
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Note that `(θ) = θ−nI(X(n),∞)(θ).
Hence

λ (X ) =

{
(X(n)/θ0)n X(n) ≤ θ0
0 X(n) > θ0

and λ (X ) < c is equivalent to X(n) > θ0 or X(n)/θ0 < c1/n.
Taking c = α ensures that the LR test has size α.

Example 6.21

Consider normal linear model X = Nn(Zβ ,σ2In) and the hypotheses

H0 : Lβ = 0 versus H1 : Lβ 6= 0,

where L is an s×p matrix of rank s ≤ r and all rows of L are in R(Z ).
The likelihood function in this problem is

`(θ) =
(

1
2πσ2

)n/2
exp

{
− 1

2σ2 ‖X −Zβ‖2
}
, θ = (β ,σ2).

Since ‖X −Zβ‖2 ≥ ‖X −Z β̂‖2 for any β and the LSE β̂ ,

`(θ)≤
(

1
2πσ2

)n/2
exp

{
− 1

2σ2 ‖X −Z β̂‖2
}
.
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Treating the right-hand side of this expression as a function of σ2, it is
easy to show that it has a maximum at σ2 = σ̂2 = ‖X −Z β̂‖2/n and

sup
θ∈Θ

`(θ) = (2πσ̂
2)−n/2e−n/2.

Similarly, let β̂H0 be the LSE under H0 and σ̂2
H0

= ‖X −Z β̂H0‖2/n:

sup
θ∈Θ0

`(θ) = (2πσ̂
2
H0

)−n/2e−n/2.

Thus,

λ (X ) = (σ̂
2/σ̂

2
H0

)n/2 =

(
‖X −Z β̂‖2

‖X −Z β̂H0‖2

)n/2

.

For a two-sample problem, we let n = n1 + n2, β = (µ1,µ2), and

Z =

(
Jn1 0
0 Jn2

)
.

Testing H0 : µ1 = µ2 versus H1 : µ1 6= µ2 is the same as testing
H0 : Lβ = 0 versus H1 : Lβ 6= 0 with L = ( 1 −1 ).
The LR test is the same as the two-sample two-sided t-tests in §6.2.3.
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Example: Exercise 6.84
Let F and G be two known cumulative distribution functions on R and
X be a single observation from the cumulative distribution function
θF (x) + (1−θ)G(x), where θ ∈ [0,1] is unknown.
We first derive the likelihood ratio λ (X ) for testing

H0 : θ ≤ θ0 versus H1 : θ > θ0

where θ0 ∈ [0,1) is a known constant.
Let f and g be the probability densities of F and G, respectively, with
respect to the measure corresponding to F + G.
Then, the likelihood function is

`(θ) = θ [f (X )−g(X )] + g(X )

and
sup

0≤θ≤1
`(θ) =

{
f (X ) f (X )≥ g(X )
g(X ) f (X ) < g(X ).

For θ0 ∈ [0,1),

sup
0≤θ≤θ0

`(θ) =

{
θ0[f (X )−g(X )] + g(X ) f (X )≥ g(X )
g(X ) f (X ) < g(X ).
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Hence,

λ (X ) =

{
θ0[f (X)−g(X)]+g(X)

f (X) f (X )≥ g(X )

1 f (X ) < g(X ).

Choose a constant c with θ0 ≤ c < 1.
Then λ (X )≤ c is the same as

g(X )

f (X )
≤ c−θ0

1−θ0

We may find a c with P(λ (X )≤ c) = α when θ = θ0.
Consider next

H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2

where 0≤ θ1 < θ2 ≤ 1 are known constants.
For 0≤ θ1 ≤ θ2 ≤ 1,

sup
0≤θ1≤θ≤θ2≤1

`(θ) =

{
θ2[f (X )−g(X )] + g(X ) f (X )≥ g(X )
θ1[f (X )−g(X )] + g(X ) f (X ) < g(X )

Hence,

λ (X ) =


θ2[f (X)−g(X)]+g(X)

f (X) f (X )≥ g(X )

θ1[f (X)−g(X)]+g(X)
g(X) f (X ) < g(X ).
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Choose a constant c with max{1−θ1,θ2} ≤ c < 1.
Then λ (X )≤ c is the same as

g(X )

f (X )
≤ c−θ0

1−θ0
or

g(X )

f (X )
≥ θ1

c− (1−θ1)
.

How to find a c with supθ1≤θ≤θ2
P(λ (X )≤ c) = α?

Finally, consider

H0 : θ ≤ θ1 or θ ≥ θ2 versus θ1 < θ < θ2

where 0≤ θ1 ≤ θ2 ≤ 1 are known constants.
Note that

sup
0≤θ≤θ1,θ2≤θ≤1

`(θ) = sup
0≤θ≤1

`(θ).

Hence,
λ (X ) = 1

This means that, unless we consider randomizing, we cannot find a c
such that supθ≤θ1 or θ≥θ2

P(λ (X )≤ c) = α.
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It is often difficult to construct a test with exactly size α or level α.
Tests whose rejection regions are constructed using asymptotic theory
(so that these tests have asymptotic level α) are called asymptotic
tests, which are useful when a test of exact size α is difficult to find.

Definition 2.13 (asymptotic tests)
Let X = (X1, ...,Xn) be a sample from P ∈P and Tn(X ) be a test for
H0 : P ∈P0 versus H1 : P ∈P1.

(i) If limsupn αTn (P)≤ α for any P ∈P0, then α is an asymptotic
significance level of Tn.

(ii) If limn→∞ supP∈P0
αTn (P) exists, it is called the limiting size of Tn.

(iii) Tn is consistent iff the type II error probability converges to 0.

If P0 is not a parametric family, the limiting size of Tn may be 1.
This is the reason why we consider the weaker requirement in (i).
If α ∈ (0,1) is a pre-assigned level of significance for the problem,
then a consistent test Tn having asymptotic significance level α is
called asymptotically correct, and a consistent test having limiting
size α is called strongly asymptotically correct.
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In the i.i.d. case we can obtain the asymptotic distribution (under H0) of
the likelihood ratio λ (X ) so that an LR test having asymptotic
significance level α can be obtained.

Theorem 6.5 (asymptotic distribution of likelihood ratio)
Assume the conditions in Theorem 4.16.
Suppose that H0 : θ = g(ϑ), where ϑ is a (k − r)-vector of unknown
parameters and g is a continuously differentiable function from Rk−r to
Rk with a full rank ∂g(ϑ)/∂ϑ .
Under H0,

−2logλn→d χ
2
r ,

where λn = λ (X ) and χ2
r is a random variable having the chi-square

distribution χ2
r .

Consequently, the LR test with rejection region λn < e−χ2
r ,α/2 has

asymptotic significance level α, where χ2
r ,α is the (1−α)th quantile of

the chi-square distribution χ2
r .
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Proof

Without loss of generality, we assume that there exist an MLE θ̂ and
an MLE ϑ̂ under H0 such that

λn = sup
θ∈Θ0

`(θ)
/

sup
θ∈Θ

`(θ) = `(g(ϑ̂))
/
`(θ̂).

Let sn(θ) = ∂ log`(θ)/∂θ and I1(θ) be the Fisher information about θ

contained in X1.
Following the proof of Theorem 4.17 in §4.5.2, we can obtain that

√
nI1(θ)(θ̂ −θ) = n−1/2sn(θ) + op(1),

and
2[log`(θ̂)− log`(θ)] = n(θ̂ −θ)τ I1(θ)(θ̂ −θ) + op(1).

Then

2[log`(θ̂)− log`(θ)] = n−1[sn(θ)]τ [I1(θ)]−1sn(θ) + op(1).

Similarly, under H0,

2[log`(g(ϑ̂))− log`(g(ϑ))] = n−1[s̃n(ϑ)]τ [̃I1(ϑ)]−1s̃n(ϑ) + op(1),
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where s̃n(ϑ) = ∂ log`(g(ϑ))/∂ϑ = D(ϑ)sn(g(ϑ)), D(ϑ) = ∂g(ϑ)/∂ϑ ,
and Ĩ1(ϑ) is the Fisher information about ϑ (under H0) contained in X1.
Combining these results, we obtain that, under H0,

−2logλn = 2[log`(θ̂)− log`(g(ϑ̂))]

= n−1[sn(g(ϑ))]τB(ϑ)sn(g(ϑ)) + op(1)

where B(ϑ) = [I1(g(ϑ))]−1− [D(ϑ)]τ [̃I1(ϑ)]−1D(ϑ).
By the CLT, n−1/2[I1(θ)]−1/2sn(θ)→d Z , where Z = Nk (0, Ik ).
Then, it follows from Theorem 1.10(iii) that, under H0,

−2logλn→d Z τ [I1(g(ϑ))]1/2B(ϑ)[I1(g(ϑ))]1/2Z .

Let D = D(ϑ), B = B(ϑ), A = I1(g(ϑ)), and C = Ĩ1(ϑ).
Then

(A1/2BA1/2)2 = A1/2BABA1/2

= A1/2(A−1−DτC−1D)A(A−1−DτC−1D)A1/2

= (Ik −A1/2DτC−1DA1/2)(Ik −A1/2DτC−1DA1/2)
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= Ik −2A1/2DτC−1DA1/2 + A1/2DτC−1DADτC−1DA1/2

= Ik −A1/2DτC−1DA1/2

= A1/2BA1/2,

where the fourth equality follows from the fact that C = DADτ .
This shows that A1/2BA1/2 is a projection matrix.
The rank of A1/2BA1/2 is

tr(A1/2BA1/2) = tr(Ik −DτC−1DA)

= k − tr(C−1DADτ )

= k − tr(C−1C)

= k − (k − r)

= r .

Thus, by Exercise 51 in §1.6,

Z τ [I1(g(ϑ))]1/2B(ϑ)[I1(g(ϑ))]1/2Z = χ
2
r
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Asymptotic tests based on likelihoods
There are two popular asymptotic tests based on likelihoods that are
asymptotically equivalent to LR tests.
The hypothesis H0 : θ = g(ϑ) is equivalent to a set of r ≤ k equations:

H0 : R(θ) = 0,
where R(θ) is a continuously differentiable function from Rk to Rr .
Wald (1943) introduced a test that rejects H0 when the value of

Wn = [R(θ̂)]τ{[C(θ̂)]τ [In(θ̂)]−1C(θ̂)}−1R(θ̂)

is large, where C(θ) = ∂R(θ)/∂θ , In(θ) is the Fisher information
matrix based on X1, ...,Xn, and θ̂ is an MLE or RLE of θ .
Rao (1947) introduced a score test that rejects H0 when the value of

Rn = [sn(θ̃)]τ [In(θ̃)]−1sn(θ̃)

is large, where sn(θ) = ∂ log`(θ)/∂θ is the score function and θ̃ is an
MLE or RLE of θ under H0 : R(θ) = 0.

Wald’s test requires computing θ̂ , not θ̃ = g(ϑ̂).
Rao’s score test requires computing θ̃ , not θ̂ .
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Theorem 6.6
Assume the conditions in Theorem 4.16.
(i) Under H0 : R(θ) = 0, where R(θ) is a continuously differentiable
function from Rk to Rr , Wn→d χ2

r and, therefore, the test rejects H0 if
and only if Wn > χ2

r ,α has asymptotic significance level α, where χ2
r ,α is

the (1−α)th quantile of the chi-square distribution χ2
r .

(ii) The result in (i) still holds if Wn is replaced by Rn.

Proof
(i) Using Theorems 1.12 and 4.17,

√
n[R(θ̂)−R(θ)]→d Nr

(
0, [C(θ)]τ [I1(θ)]−1C(θ)

)
,

where I1(θ) is the Fisher information about θ contained in X1.
Under H0, R(θ) = 0 and, therefore (by Theorem 1.10),

n[R(θ̂)]τ{[C(θ)]τ [I1(θ)]−1C(θ)}−1R(θ̂)→d χ
2
r

Then the result follows from Slutsky’s theorem (Theorem 1.11) and the
fact that θ̂ →p θ and I1(θ) and C(θ) are continuous at θ .
(ii) See the textbook.
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