Lecture 18: Asymptotic chi-square tests

Testing in multinomial distributions

Consider *n* independent trials with *k* possible outcomes for each trial. Let $p_j > 0$ be the probability that the *j*th outcome occurs in a given trial and X_j be the number of occurrences of the *j*th outcome in *n* trials. Then $X = (X_1, ..., X_k)$ has the multinomial distribution (Example 2.7) with the parameter $\mathbf{p} = (p_1, ..., p_k)$.

Let $\xi_i = (0, ..., 0, 1, 0, ..., 0)$, where the single nonzero component 1 is located in the *j*th position if the *i*th trial yields the *j*th outcome.

Then $\xi_1, ..., \xi_n$ are i.i.d. and $X/n = \overline{\xi} = \sum_{i=1}^n \xi_i/n$. X/n is an unbiased estimator of **p** and, by the CLT,

$$Z_n(\mathbf{p}) = \sqrt{n} \left(rac{\chi}{n} - \mathbf{p}
ight) = \sqrt{n} (ar{\xi} - \mathbf{p})
ightarrow_d N_k(0, \Sigma),$$

where $\Sigma = \text{Var}(X/\sqrt{n})$ is a symmetric $k \times k$ matrix whose *i*th diagonal element is $p_i(1-p_i)$ and (i,j)th off-diagonal element is $-p_ip_j$. We first consider the problem of testing

 $H_0: \mathbf{p} = \mathbf{p}_0$ versus $H_1: \mathbf{p} \neq \mathbf{p}_0,$

where $\mathbf{p}_0 = (p_{01}, ..., p_{0k})$ is a known vector of cell probabilities.

For testing $H : \mathbf{p} = \mathbf{p}_0$ vs $H_1 : \mathbf{p} \neq \mathbf{p}_0$, a class of tests related to the asymptotic tests described in §6.4.2 is the class of χ^2 -tests. A popular test is based on the following χ^2 -statistic:

$$\chi^{2} = \sum_{j=1}^{k} \frac{(X_{j} - np_{0j})^{2}}{np_{0j}} = \|D(\mathbf{p}_{0})Z_{n}(\mathbf{p}_{0})\|^{2},$$

where D(c) with $c = (c_1, ..., c_k)$ is the $k \times k$ diagonal matrix whose *j*th diagonal element is $c_i^{-1/2}$.

Another popular test is based on the following modified χ^2 -statistic:

$$\tilde{\chi}^2 = \sum_{j=1}^k \frac{(X_j - np_{0j})^2}{X_j} = \|D(X/n)Z_n(\mathbf{p}_0)\|^2.$$

The next result shows that a test of asymptotic significance level α rejects $H_0: \mathbf{p} = \mathbf{p}_0$ when $\chi^2 > \chi^2_{k-1,\alpha}$ (or $\tilde{\chi}^2 > \chi^2_{k-1,\alpha}$), where $\chi^2_{k-1,\alpha}$ is the $(1 - \alpha)$ th quantile of χ^2_{k-1} . Thus, these tests are called (asymptotic) χ^2 -tests.

Theorem 6.8

Let $\phi = (\sqrt{p_1}, ..., \sqrt{p_k})$ and Λ be a $k \times k$ projection matrix. (i) If $\Lambda \phi = a\phi$, then

 $[Z_n(\mathbf{p})]^{\tau} D(\mathbf{p}) \wedge D(\mathbf{p}) Z_n(\mathbf{p}) \rightarrow_d \chi_r^2,$

where χ_r^2 has the chi-square distribution χ_r^2 with $r = tr(\Lambda) - a$. (ii) The same result holds if $D(\mathbf{p})$ in (i) is replaced by D(X/n).

Remark

The χ^2 -statistic and the modified χ^2 -statistic are special cases of the statistics in Theorem 6.8(i) and (ii) with $\Lambda = I_k$ satisfying $\Lambda \phi = \phi$.

Proof

The result in (ii) follows from the result in (i) and $X/n \rightarrow_p \mathbf{p}$. To prove (i), let $D = D(\mathbf{p})$, $Z_n = Z_n(\mathbf{p})$, and $Z = N_k(0, I_k)$. From the asymptotic normality of Z_n and Theorem 1.10,

 $Z_n^{\tau} D \wedge D Z_n \rightarrow_d Z^{\tau} A Z$ with $A = \Sigma^{1/2} D \wedge D \Sigma^{1/2}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From Exercise 51 in §1.6, the result in (i) follows if we can show that $A^2 = A$ (i.e., A is a projection matrix) and $tr(A) = tr(\Lambda) - a$. Since Λ is a projection matrix and $\Lambda \phi = a\phi$, a must be either 0 or 1. Note that $D\Sigma D = I_k - \phi \phi^{\tau}$. Then

$$\begin{aligned} A^{3} &= \Sigma^{1/2} D \wedge D \Sigma D \wedge D \Sigma D \wedge D \Sigma^{1/2} \\ &= \Sigma^{1/2} D (\Lambda - a\phi\phi^{\tau}) (\Lambda - a\phi\phi^{\tau}) \wedge D \Sigma^{1/2} \\ &= \Sigma^{1/2} D (\Lambda - 2a\phi\phi^{\tau} + a^{2}\phi\phi^{\tau}) \wedge D \Sigma^{1/2} \\ &= \Sigma^{1/2} D (\Lambda - a\phi\phi^{\tau}) \wedge D \Sigma^{1/2} \\ &= \Sigma^{1/2} D \wedge D \Sigma D \wedge D \Sigma^{1/2} \\ &= A^{2}, \end{aligned}$$

which implies that the eigenvalues of A must be 0 or 1. Therefore, $A^2 = A$. Also,

$$\operatorname{tr}(A) = \operatorname{tr}[\Lambda(D\Sigma D)] = \operatorname{tr}(\Lambda - a\phi\phi^{\tau}) = \operatorname{tr}(\Lambda) - a.$$

(4) (5) (4) (5)

Example 6.23 (Goodness of fit tests)

Let $Y_1, ..., Y_n$ be i.i.d. from F. Consider the problem of testing

$$H_0: F = F_0$$
 versus $H_1: F \neq F_0$,

where F_0 is a known c.d.f. (For instance, $F_0 = N(0, 1)$.) One way to test $H_0 : F = F_0$ is to partition the range of Y_1 into k disjoint events $A_1, ..., A_k$ and test $H_0 : \mathbf{p} = \mathbf{p}_0$ with $p_j = P_F(A_j)$ and $p_{0j} = P_{F_0}(A_j), j = 1, ..., k$. Let X_j be the number of Y_i 's in $A_j, j = 1, ..., k$. Based on X_j 's, the χ^2 -tests discussed previously can be applied. They are called *goodness of fit* tests.

In the goodness of fit tests discussed in Example 6.23, F_0 in H_0 is known so that p_{0i} 's can be computed.

In some cases, we need to test the following hypotheses:

$$H_0: F = F_{\theta}$$
 versus $H_1: F \neq F_{\theta}$,

where θ is an unknown parameter in $\Theta \subset \mathscr{R}^{s}$. For example, $F_{\theta} = N(\mu, \sigma^{2}), \ \theta = (\mu, \sigma^{2})$. If we still try to test $H_0 : \mathbf{p} = \mathbf{p}_0$ with $p_j = P_{F_\theta}(A_j), j = 1, ..., k$, the result in Example 6.23 is not applicable since \mathbf{p} is unknown under H_0 . A generalized χ^2 -test can be obtained using the following result. Let $\mathbf{p}(\theta) = (p_1(\theta), ..., p_k(\theta))$ be a *k*-vector of known functions of $\theta \in \Theta \subset \mathscr{R}^s$, where s < k.

Consider the testing problem

 $H_0: \mathbf{p} = \mathbf{p}(\theta)$ versus $H_1: \mathbf{p} \neq \mathbf{p}(\theta)$.

Note that $H_0: \mathbf{p} = \mathbf{p}_0$ is the special case of $H_0: \mathbf{p} = \mathbf{p}(\theta)$ with s = 0. Let $\hat{\theta}$ be an MLE of θ under H_0 .

By Theorem 6.5, the LR test that rejects H_0 when $-2\log \lambda_n > \chi^2_{k-s-1,\alpha}$ has asymptotic significance level α , where $\chi^2_{k-s-1,\alpha}$ is the $(1-\alpha)$ th quantile of χ^2_{k-s-1} and

$$\lambda_n = \prod_{j=1}^{k} [p_j(\widehat{\theta})]^{X_j} / (X_j/n)^{X_j}.$$

Using the fact that $p_j(\widehat{\theta})/(X_j/n) \rightarrow_p 1$ under H_0 and

$$\log(1+x) = x - x^2/2 + o(|x|^2)$$
 as $|x| \to 0$,

UW-Madison (Statistics)

Stat 710, Lecture 18

we obtain that

$$-2\log \lambda_n = -2\sum_{j=1}^k X_j \log \left(1 + \frac{p_j(\widehat{\theta})}{X_j/n} - 1\right)$$

$$= -2\sum_{j=1}^k X_j \left(\frac{p_j(\widehat{\theta})}{X_j/n} - 1\right) + \sum_{j=1}^k X_j \left(\frac{p_j(\widehat{\theta})}{X_j/n} - 1\right)^2 + o_p(1)$$

$$= \sum_{j=1}^k \frac{[X_j - np_j(\widehat{\theta})]^2}{X_j} + o_p(1)$$

$$= \sum_{j=1}^k \frac{[X_j - np_j(\widehat{\theta})]^2}{np_j(\widehat{\theta})} + o_p(1),$$

where the third equality follows from $\sum_{j=1}^{k} p_j(\hat{\theta}) = \sum_{j=1}^{k} X_j / n = 1$.

Generalized χ^2 -statistics

The generalized χ^2 -statistics χ^2 and $\tilde{\chi}^2$ are defined to be the previously defined χ^2 -statistics with p_{0j} 's replaced by $p_j(\hat{\theta})$'s.

UW-Madison (Statistics)

Theorem 6.9

Under $H_0: \mathbf{p} = \mathbf{p}(\theta)$, the generalized χ^2 -statistics converge in distribution to χ^2_{k-s-1} .

The χ^2 -test with rejection region $\chi^2 > \chi^2_{k-s-1,\alpha}$ (or $\tilde{\chi}^2 > \chi^2_{k-s-1,\alpha}$) has asymptotic significance level α , where $\chi^2_{k-s-1,\alpha}$ is the $(1-\alpha)$ th quantile of χ^2_{k-s-1} .

Discussion

Theorem 6.9 can be applied to derive a goodness of fit test for $H_0: \mathbf{p} = \mathbf{p}(\theta)$ vs $H_1: \mathbf{p} = \mathbf{p}(\theta)$.

However, one has to compute an MLE of θ under $H_0 : \mathbf{p} = \mathbf{p}(\theta)$, which is different from an MLE under $H_0 : F = F_{\theta}$ unless $F = F_{\theta}$ and $\mathbf{p} = \mathbf{p}(\theta)$ are the same; see Moore and Spruill (1975).

Many elementary textbooks, however, use an MLE under H_0 : $F = F_{\theta}$, which is wrong.

MLE under $\mathbf{p} = \mathbf{p}(\theta)$

From the multinomial distribution, the MLE $\hat{\theta}$ in the generalized χ^2 test should maximize the likelihood

$$\ell(\theta) = \frac{n!}{x_1!\cdots x_k!} [p_1(\theta)]^{x_1} \cdots [p_k(\theta)]^{x_k} I_{x_1+\cdots+x_k=1}$$

This MLE $\hat{\theta}$ is different from the MLE maximizing the likelihood based on the family $\{F_{\theta}\}$

For testing $H_0: F = N(\mu, \sigma^2)$, for example,

$$p_j(\theta) = \Phi\left(\frac{a_{j+1}-\mu}{\sigma}\right) - \Phi\left(\frac{a_j-\mu}{\sigma}\right), \quad j = 1, ..., k$$

where $-\infty = a_1 < a_2 < \cdots < a_k < a_{k+1} = \infty$ and a_j 's are fixed constants. This MLE $\hat{\theta} = (\hat{\mu}, \hat{\sigma}^2)$ is certainly different from $\hat{\mu} =$ the sample mean and $\hat{\sigma}^2 = (n-1)/n$ times the sample variance, which is the MLE under the normal model $N(\mu, \sigma^2)$.

Example 6.24 ($r \times c$ contingency tables)

The following $r \times c$ contingency table is a natural extension of the 2 × 2 contingency table considered in Example 6.12:

	<i>A</i> ₁	A_2	•••	Ac	Total
<i>B</i> ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	•••	<i>X</i> _{1<i>c</i>}	<i>n</i> 1
<i>B</i> ₂	<i>X</i> ₂₁	X ₂₂	•••	X _{2c}	n ₂
•••		•••	•••		• • •
Br	<i>X</i> _{<i>r</i>1}	X _{r2}	•••	X _{rc}	n _r
Total	<i>m</i> ₁	<i>m</i> ₂	•••	mc	n

where A_i 's are disjoint events with $A_1 \cup \cdots \cup A_c = \Omega$ (the sample space of a random experiment), B_i 's are disjoint events with $B_1 \cup \cdots \cup B_r = \Omega$, and X_{ij} is the observed frequency of the outcomes in $A_j \cap B_j$.

There are two important applications in this problem.

- testing independence of $\{A_i : j = 1, ..., c\}$ and $\{B_i : i = 1, ..., r\}$;
- testing equality of multinomial distributions.

イロト イ団ト イヨト イヨト

Testing independence

Testing independence of $\{A_j : j = 1, ..., c\}$ and $\{B_i : i = 1, ..., r\}$ is equivalent to testing hypotheses

 $H_0: p_{ii} = p_{i.} p_{.i}$ for all i, j versus $H_1: p_{ij} \neq p_{i}.p_{ij}$ for some i, j, where $p_{ii} = P(A_i \cap B_i) = E(X_{ii})/n$, $p_{i.} = P(B_i)$, and $p_{i.} = P(A_i)$, i = 1, ..., r, j = 1, ..., c. In this case, $X = (X_{ii}, i = 1, ..., r, j = 1, ..., c)$ has the multinomial distribution with parameters p_{ij} , i = 1, ..., r, j = 1, ..., c. Under H_0 , MLE's of p_i and p_i are $\bar{X}_i = n_i/n$ and $\bar{X}_i = m_i/n$, respectively, i = 1, ..., r, j = 1, ..., c (exercise). The number of free parameters is rc - 1. Under H_0 , the number of free parameters is r - 1 + c - 1 = r + c - 2. The difference of the two is rc - r - c + 1 = (r - 1)(c - 1). By Theorem 6.9, the χ^2 -test rejects H_0 when $\chi^2 > \chi^2_{(r-1)(r-1)\alpha}$, where

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(X_{ij} - n\bar{X}_{i}.\bar{X}_{.j})^{2}}{n\bar{X}_{i}.\bar{X}_{.j}}$$

and $\chi^2_{(r-1)(c-1),\alpha}$ is the $(1 - \alpha)$ th quantile of the chi-square distribution $\chi^2_{(r-1)(c-1)}$.

One can also obtain the modified χ^2 -test by replacing $n\bar{X}_i \bar{X}_j$ by X_{ij} in the denominator of each term of the sum in χ^2 .

Testing equality of multinomial distributions

Suppose that $(X_{1j}, ..., X_{rj})$, j = 1, ..., c, are *c* independent random vectors having the multinomial distributions with parameters $(p_{1j}, ..., p_{rj})$, j = 1, ..., c, respectively. Consider the problem of testing whether *c* multinomial distributions are the same, i.e.,

 $H_0: p_{ij} = p_{i1}$ for all i, j versus $H_1: p_{ij} \neq p_{i1}$ for some i, j.

Since $(X_{1j},...,X_{rj})$ has the multinomial distribution with size n_j and probability vector $(p_{1j},...,p_{rj})$, the MLE of p_{ij} is X_{ij}/n . Let $Y_i = \sum_{j=1}^{c} X_{ij}$.

Testing equality of multinomial distributions

Under H_0 , $(Y_1, ..., Y_r)$ has the multinomial distribution with size n and probability vector (p_{11}, \dots, p_{r1}) . Hence, the MLE of p_{i1} under H_0 is $\bar{X}_{i.} = Y_i/n$. Note that $m_i = n\bar{X}_{i}, j = 1, ..., c$. Hence, under H_0 , the MLE of the expected (i, j)th frequency is $n\bar{X}_i, \bar{X}_j$. The number of free parameters in this case is c(r-1). Under H_0 , the number of free parameters is r-1. The difference of the two is c(r-1) - (r-1) = (r-1)(c-1). Hence, by Theorem 6.9, $\chi^2 \rightarrow_d \chi^2_{(r-1)(c-1)}$ under H_0 , where χ^2 is the same as that in testing independence. The rejection region of the χ^2 -test is still $\chi^2 > \chi^2_{(r-1)(c-1),\alpha}$.

LR tests

One can also obtain the LR test in this problem.

When r = c = 2, the LR test is equivalent to Fisher's exact test given in Example 6.12, which is a UMPU test.

When r > 2 or c > 2, however, a UMPU test does not exist.

UW-Madison (Statistics)

Stat 710, Lecture 18

Construction of asymptotic tests

A simple method of constructing asymptotic tests (for almost all problems, parametric or nonparametric) for testing

 $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$,

where θ is a vector of parameters, is to use an asymptotically normally distributed estimator of θ .

Let $\hat{\theta}_n$ be an estimator of θ based on a sample of size *n* from *P*. Suppose that under H_0 ,

$$V_n^{-1/2}(\widehat{\theta}_n-\theta) \rightarrow_d N_k(0,I_k),$$

where V_n is the asymptotic covariance matrix of θ_n .

If V_n is known when $\theta = \theta_0$, then we define a test with rejection region

$$(\widehat{\theta}_n - \theta_0)^{\tau} V_n^{-1} (\widehat{\theta}_n - \theta_0) > \chi^2_{k,\alpha}$$

where $\chi^2_{k,\alpha}$ is the $(1 - \alpha)$ th quantile of the chi-squared distribution χ^2_k . This test has asymptotic significance level α .

If V_n depends on the unknown population P even if H_0 is true ($\theta = \theta_0$), then we have to replace V_n by an estimator \hat{V}_n .

If \widehat{V}_n is consistent, then the resulting test still has asymptotic significance level α .

Although the following result shows that this test is asymptotically correct (§2.5.3), this test may not be the best or even nearly best solution to the problem.

Theorem 6.12

Assume that

$$V_n^{-1/2}(\widehat{\theta}_n-\theta) \rightarrow_d N_k(0,I_k),$$

holds for any P.

Assume also that $\lambda_+[V_n] \to 0$, where $\lambda_+[V_n]$ is the largest eigenvalue of V_n .

(i) The test having rejection region

$$(\widehat{\theta}_n - \theta_0)^{\tau} V_n^{-1} (\widehat{\theta}_n - \theta_0) > \chi_{k,\alpha}^2$$

with a known V_n (or with V_n replaced by a consistent estimator \hat{V}_n) is consistent.

(ii) If we choose $\alpha = \alpha_n \to 0$ as $n \to \infty$ and $\chi^2_{k,1-\alpha_n}\lambda_+[V_n] = o(1)$, then the test in (i) is Chernoff-consistent.

UW-Madison (Statistics)

Example 6.27

Let $X_1, ..., X_n$ be i.i.d. random variables from a symmetric c.d.f. *F* having finite variance and positive *F*'.

Consider the problem of testing H_0 : *F* is symmetric about 0 versus H_1 : *F* is not symmetric about 0.

Under H_0 , there are many estimators that are asymptotically normal. We consider the following three estimators:

(1) $\widehat{\theta}_n = \overline{X}$ and $\theta = E(X_1);$

(2) $\hat{\theta}_n = \hat{\theta}_{0.5}$ (the sample median) and $\theta = F^{-1}(\frac{1}{2})$ (the median of *F*); (3) $\hat{\theta}_n = \bar{X}_a$ (the *a*-trimmed sample mean) and $\theta = \int x J(F(x)) dF(x)$ with $J(t) = (1 - 2a)^{-1} I_{(a,1-a)}(t)$, $a \in (0, \frac{1}{2})$.

Although the θ 's in (1)-(3) are different in general, in all cases $\theta = 0$ is equivalent to that H_0 holds.

For \bar{X} , it follows from the CLT that

$$V_n^{-1/2}(\bar{X}-\theta) \rightarrow_d N(0,1)$$

with $V_n = \sigma^2/n$ for any F, where $\sigma^2 = \text{Var}(X_1)$. From the SLLN, S^2/n is a consistent estimator of V_n for any F. Thus, Theorem 6.12 applies with $\hat{\theta}_n = \bar{X}$ and V_n replaced by S^2/n .

UW-Madison (Statistics)

This test is asymptotically equivalent to the one-sample t-test derived in §6.2.3.

From Theorem 5.10, $\hat{\theta}_{0.5}$ satisfies

$$V_n^{-1/2}(\widehat{\theta}-\theta) \rightarrow_d N(0,1)$$

with $V_n = 4^{-1} [F'(\theta)]^{-2} n^{-1}$ for any *F*.

A consistent estimator of V_n can be obtained using the bootstrap method considered in §5.5.3.

Another consistent estimator of V_n can be obtained using Woodruff's interval introduced in §7.4 (see Exercise 86 in §7.6).

Thus, Theorem 6.12 applies with $\hat{\theta}_n = \hat{\theta}_{0.5}$ and V_n replaced by a consistent estimator.

It follows from the discussion in §5.3.2 that \bar{X}_a satisfies

$$V_n^{-1/2}(\bar{X}_a-\theta)\to_d N(0,1)$$

A consistent estimator of V_n can be obtained using the formula for σ_a^2 . Thus, Theorem 6.12 applies with $\hat{\theta}_n = \bar{X}_a$ and V_n replaced by a consistent estimator is asymptotically correct.