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Lecture 23: Variance estimation, replication, jackknife,
and bootstrap
Motivation
To evaluate and compare different estimators, we need consistent
estimators of variances or asymptotic variances of estimators.
This is also important for hypothesis testing and confidence sets.
Let Var(θ̂) be the variance or asymptotic variance of an estimator θ̂ .
Traditional approach to estimate Var(θ̂): Derivation and substitution
• First, we derive a theoretical formula
• Approximation (asymptotic theory) is usually needed
• The formula may depend on unknown quantities
•We then substitute unknown quantities by estimators

Example: the δ -method
Y1, ...,Yn are iid (k -dimensional)
θ = g(µ) (e.g., a ratio of two components of µ), θ̂ = g(Ȳ )
Var(θ̂)≈ [∇g(µ)]T Var(Ȳ )∇g(µ)

An estimator of Var(θ̂) is V̂n = [∇g(Ȳ )]T (S2/n)∇g(Ȳ )
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By the SLLN, X̄ →a.s. µ and S2→a.s. Var(X1).

Hence, V̂n is strongly consistent for Var(θ̂n), provided that ∇g(µ) 6= 0
and ∇g is continuous at µ.

Example 5.15
Let Y1, ...,Yn be i.i.d. random variables with finite µy = EY1,
σ2

y = Var(Y1), γy = EY 3
1 , and κy = EY 4

1 .
Consider the estimation of θ = (µy ,σ

2
y ).

Let θ̂n = (X̄ , σ̂2
y ), where σ̂2

y = n−1
∑

n
i=1(Yi − Ȳ )2.

If Xi = (Yi ,Y 2
i ), then θ̂n = g(X̄ ) with g(x) = (x1,x2−x2

1 )

Var(X1) =

(
σ2

y γy −µy (σ2
y + µ2

y )

γy −µy (σ2
y + µ2

y ) κy − (σ2
y + µ2

y )2

)
and

∇g(x) =

(
1 0
−2x1 1

)
.

The estimator V̂n is strongly consistent, since ∇g(x) is continuous.

Is the derivative ∇g always easy to derive?
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An alternative method?
Suppose we can independently obtain B copies of the data set X
Say X 1, ...,X B

Then we can calculate θ̂ b = θ̂(X b), b = 1, ...,B
Variance of θ̂ can be estimated as

1
B

B

∑
b=1

(
θ̂

b− 1
B

B

∑
l=1

θ̂
l

)2

No derivation is needed (at the expense of more computations)
These estimators are valid for large B (B→ ∞, law of large numbers).

But typically, we only have one dataset, X .

Pseudo-replications
Can we apply the same idea by creating B pseudo-replicate datasets?
This means X 1, ...,X B are “copies” of X , but they are not independent
of X (in fact, they are dependent on X )
These methods are called resampling or replication methods.
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Jackknife
Consider pseudo replicates X i = (X1, ...,Xi−1,Xi+1, ...,Xn), i = 1, ...,n.
Let θ̂−i be the same estimator as θ̂n but based on X i , i = 1, ...,n.
Since θ̂n and θ̂−1, ..., θ̂−n estimate the same quantity, the following
“sample variance" can be used as a measure of the variation of θ̂n:

1
n−1

n

∑
i=1

(
θ̂−i − θ̄n

)2
, θ̄n =

1
n

n

∑
i=1

θ̂−i

Two issues:
• θ̂−i ’s are not independent.
• θ̂−i − θ̂−j usually converges to 0 at a fast rate (such as n−1).

If θ̂n = X̄ is the sample mean, then θ̂−i − θ̄n = (n−1)−1(X̄ −Xi) and
1

n−1

n

∑
i=1

(
θ̂−i − θ̄n

)2
=

1
(n−1)3

n

∑
i=1

(
Xi − X̄

)2
=

S2

(n−1)2

Thus, the correction factor (n−1)2/n should be multiplied, which leads
to the jackknife variance estimator of Var(θ̂n)

V̂J =
n−1

n

n

∑
i=1

(
θ̂−i − θ̄n

)2
.
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Theorem 5.17.
Let X1, ...,Xn be i.i.d. random d-vectors from F with finite µ = E(X1)
and Var(X1), and let θ̂n = g(X̄ ). Suppose that ∇g is continuous at µ

and ∇g(µ) 6= 0. Then the jackknife variance estimator V̂J is strongly
consistent for Var(θ̂n).

Proof.
Let X̄−i be the sample mean based on X1, ...,Xi−1,Xi+1, ...,Xn.
From the mean-value theorem, we have

θ̂−i − θ̂n = g(X̄−i)−g(X̄ )

= [∇g(ξn,i)]τ (X̄−i − X̄ )

= [∇g(X̄ )]τ (X̄−i − X̄ ) + Rn,i ,

where Rn,i =
[
∇g(ξn,i)−∇g(X̄ )

]τ
(X̄−i − X̄ ) and ξn,i is a point on the

line segment between X̄−i and X̄ .
From X̄−i − X̄ = (n−1)−1(X̄ −Xi), it follows that ∑

n
i=1(X̄−i − X̄ ) = 0 and

1
n

n

∑
i=1

(θ̂−i − θ̂n) =
1
n

n

∑
i=1

Rn,i = R̄n.
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From the definition of the jackknife estimator,

V̂J = An + Bn + 2Cn,

where

An =
n−1

n
[∇g(X̄ )]τ

n

∑
i=1

(X̄−i − X̄ )(X̄−i − X̄ )τ
∇g(X̄ ),

Bn =
n−1

n

n

∑
i=1

(Rn,i − R̄n)2,

Cn =
n−1

n

n

∑
i=1

(Rn,i − R̄n)[∇g(X̄ )]τ (X̄−i − X̄ ).

By X̄−i − X̄ = (n−1)−1(X̄ −Xi), the SLLN, and the continuity of ∇g at
µ,

An/ Var(θ̂n)→a.s. 1.
Also,

(n−1)
n

∑
i=1
‖X̄−i − X̄‖2 =

1
n−1

n

∑
i=1
‖Xi − X̄‖2 = O(1) a.s. (1)
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Hence maxi≤n ‖X̄−i − X̄‖2→a.s. 0, which, together with the continuity of
∇g at µ and ‖ξn,i − X̄‖ ≤ ‖X̄−i − X̄‖, implies that

un = max
i≤n
‖∇g(ξn,i)−∇g(X̄ )‖→a.s. 0.

From (1), ∑
n
i=1 ‖X̄−i − X̄‖2/ Var(θ̂n) = O(1) a.s. and

Bn

Var(θ̂n)
≤ n−1

Var(θ̂n)n

n

∑
i=1

R2
n,i ≤

un

Var(θ̂n)

n

∑
i=1
‖X̄−i − X̄‖2→a.s. 0.

By the Cauchy-Schwarz inequality,
(Cn/Vn)2 ≤ (An/Vn)(Bn/Vn)→a.s. 0, which completes the proof.

Discussion

A key step in the proof is that θ̂−i − θ̂n can be approximated by
[∇g(X̄ )]τ (X̄−i − X̄ ), which indicates that V̂J is consistent for θ̂n that
can be well approximated by some linear statistic.
More results can be found in Shao and Tu (1995, Chapter 2).
The jackknife method can be applied to non-i.i.d. problems.
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Bootstrap

Create bootstrap pseudo-replicate datasets X ∗1, ...,X ∗B randomly
generated from X .
Let θ̂ ∗b be the same as an estimator θ̂ but based on X ∗b, b = 1, ...,B.
Is

1
B

B

∑
b=1

(
θ̂
∗b− 1

B

B

∑
l=1

θ̂
∗l

)2

(2)

still a valid estimator of Var(θ̂)?
In fact, the cdf G(t) = P(θ̂ −θ ≤ t) can be estimated as

1
B

B

∑
b=1

I
(

θ̂
∗b− θ̂ ≤ t

)
=

# of b’s such that θ̂ ∗b− θ̂ ≤ t
B

(3)

where I(A) is the indicator function of A.

The answer to this question depends on
• how the sample X is taken
• how X 1, ...,X B are constructed
• the type of the estimator, θ̂
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A heuristic description for the bootstrap
P: the population producing data X
P̂: an estimated of the population based on data X
X ∗: the bootstrap data produced by P̂

real world P ⇒ X ⇒ θ̂ = θ̂(X )

bootstrap P̂ ⇒ X ∗ ⇒ θ̂ ∗ = θ̂(X ∗)

Var(θ̂) and G(t) = P(θ̂ −θ ≤ t) can be approximated by Var∗(θ̂ ∗) and
Ĝ(t) = P∗(θ̂ ∗− θ̂ ≤ t), respectively, where the variance and probability
are taken under the bootstrap sampling conditioned on X .
If P̂ is close to P, then

Ĝ(t) is close to G(t);
Var∗(θ̂ ∗) is close to Var(θ̂).

Note that Var∗(θ̂ ∗) and Ĝ(t) are functions of X and are estimators.
If they have explicit forms, then they can be directly used.
If not, then we approximate them by the Monte Carlo approximations
(2) and (3), respectively, based on bootstrap data sets X ∗1, ...,X ∗B

(copies of X ∗).
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How do we generate X ∗ based on X?

Parametric bootstrap
Let X1, ...,Xn be iid with a cdf Fθ where θ is an unknown parameter
vector and Fθ is known when θ is known.
Let θ̂ be an estimator of θ based on X = (X1, ...,Xn).
Parametric bootstrap data set X ∗ = (X ∗1 , ...,X

∗
n ) is obtained by generate

iid X ∗1 , ...,X
∗
n from F

θ̂
.

Example: location-scale problems

Let Fθ (x) = F0
(x−µ

σ

)
, where µ = E(X1), σ2 =Var(X1) and F0 is a

known cdf.
Let X̄ be the sample mean, S2 be the sample variance, and

T =

√
n(X̄ −µ)

S
=
√

n
n

∑
i=1

Xi −µ

S

The distribution of T does not depend on any parameter.
It is the t-distribution with degrees of freedom n−1 if F0 is normal.
Otherwise its explicit form is unknown.
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Let θ̂ = (X̄ ,S2) Generate iid X ∗i , i = 1, ...,n, from F
θ̂
.

Then (X ∗i − X̄ )/S2 ∼ F0

T ∗ =
√

n
n

∑
i=1

X ∗bi − Ȳ
S

∼ T

The parametric bootstrap is prefect: Var∗(T ∗) = Var(T ).
If we calculate Var∗(T ∗) by Monte Carlo approximation, then the
parametric bootstrap is exactly the same as the simulation approach.
In general, if there is a function τ such that

Varθ (θ̂) = τ(θ), X1, ...,Xn are iid from Fθ

then
Var∗

θ̂
(θ̂
∗) = τ(θ̂), X ∗1 , ...,X

∗
n are iid from F

θ̂

Hence, the parametric bootstrap is simply the substitution approach.
If θ̂ is consistent and τ is continuous, then Var∗

θ̂
(θ̂ ∗) is consistent.

If τ does not have a close form, we apply Monte Carlo approximation.
In the location-scale example, τ = a constant and hence the bootstrap
is prefect.
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Example
Let X1, ...,Xn be iid from Fθ .
Define µ = µ(θ) = Eθ (X1), µj = µj(θ) = Eθ (X1−µ)j , j = 2,3,4.
Consider the estimation of µ2 by X̄ 2.
A direct calculation shows that

Varθ (X̄ 2) =
4[µ(θ)]2µ2(θ)

n
+

4µ(θ)µ3(θ)

n2 +
µ4(θ)

n3

Based on the previous discussion, the parametric bootstrap variance
estimator is

Var∗θ (X̄ ∗2) =
4[µ(θ̂)]2µ2(θ̂)

n
+

4µ(θ̂)µ3(θ̂)

n2 +
µ4(θ̂)

n3

It is a consistent estimator if µ, µj , j = 2,3,4, are continuous functions.

If we apply the asymptotic approach, then we estimate Varθ (X̄ 2) by

4[µ(θ̂)]2µ2(θ̂)

n
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Nonparametric bootstrap
Without any model, we can apply the simple nonparametric bootstrap.
If X = (X1, ...,Xn), X1, ...,Xn are iid, then P is the cdf of X1 and P̂ is
the empirical cdf based on X1, ...,Xn.
If we generate iid bootstrap data X ∗1 , ...,X

∗
n from P̂, then it is the same

as taking a simple random sample with replacement from X .

Property of Var∗(θ̂ ∗)

Consider first θ̂ = X̄ , the sample mean, θ̂ ∗ = X̄ ∗, the sample mean of
X ∗1 , ...,X

∗
n .

E∗(X̄ ∗) =
1
n

n

∑
i=1

E∗(X ∗i ) =
1
n

n

∑
i=1

X̄ = X̄

Var∗(X̄ ∗) =
1
n2

n

∑
i=1

Var∗(X ∗i ) =
1
n2

n

∑
i=1

1
n

n

∑
j=1

(Xj − X̄ )(Xj − X̄ )τ

=
1
n2

n

∑
j=1

(Xj − X̄ )(Xj − X̄ )τ =
n−1

n2 S2 ≈ S2

n

When n is small, we may make an adjustment of n
n−1 .
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Consider next the estimation of g(µ), where µ = E(X1) and g is a
continuously differentiable function.
Our estimator is θ̂ = g(X̄ ).
The bootstrap analog is θ̂ ∗ = g(X̄ ∗).
When n is large,

g(X̄ ∗) = g(X̄ ) + ∇g(X̄ )(X̄ ∗− X̄ ) + · · · ≈ g(X̄ ) + ∇g(X̄ )(X̄ ∗− X̄ )

and
Var∗(θ̂

∗) = Var∗[g(X̄ ∗)]

≈ ∇g(X̄ )Var∗(X̄ ∗− X̄ )∇gτ (X̄ )

≈ n−1
n2 ∇g(X̄ )S2

∇gτ (X̄ )

Example
Let X1, ...,Xn be iid from F .
Define µ = Eθ (X1), µj = Eθ (X1−µ)j , j = 2,3,4.
Consider the estimation of µ2 by X̄ 2:

Var(X̄ 2) =
4µ2µ2

n
+

4µµ3

n2 +
µ4

n3
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and
Var∗(X̄ ∗2) =

4X̄ 2m2

n
+

4X̄m3

n2 +
m4

n3

where
mj =

1
n

n

∑
i=1

(Xi − X̄ )j , j = 2,3,4.

This is because the mean of the empirical cdf F̂n is X̄ and the j th
central moment of F̂n is is mj .
In this case, we have an explicit form for the bootstrap variance
estimator Var∗(X̄ ∗2) so no Monte Carlo is needed.
This bootstrap variance estimator is consistent, since sample moments
mj ’s are consistent for µj ’s, by the WLLN.
Since g′(x) = 2x when g(x) = x2, the use of the approximation derived
eariler gives that

Var∗(X̄ ∗2)≈ 4X̄ 2m2

n
which is also consistent since the terms ignored are of the orders n−2.
In fact, the delta-method produces the variance estimator

[g′(X̄ )]2S2

n
=

4X̄ 2S2

n
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Discussion

In general, the expression Var∗(θ̂ ∗) is usually complicated and not
explicit, so Monte Carlo approximation is necessary.
In fact, the idea of using the bootstrap is not to derive its explicit
form (since it involves complex derivations).
The bootstrap is to replace theoretical derivations by repeated
computations.
In many cases the theoretical derivations are difficult or messy.
The user does not need to do theoretical derivations.
However, they should be told when using the bootstrap produces
correct variance estimators and how to do the bootstrap.
The research on the bootstrap methodology still requires
theoretical derivations.
The jackknife shares the same idea as the bootstrap in some
aspects, e.g., replacing theoretical derivations by repeated
computations, but the bootstrap is a more complete methodology.
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