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Variable Selection via Nonconcave Penalized 

Likelihood and its Oracle Properties 
Jianqing FAN and Runze Li 

Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use 
are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. 
In this article, penalized likelihood approaches are proposed to handle these kinds of problems. The proposed methods select variables 
and estimate coefficients simultaneously. Hence they enable us to construct confidence intervals for estimated parameters. The proposed 
approaches are distinguished from others in that the penalty functions are symmetric, nonconcave on (0, oo), and have singularities at the 
origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain 
conditions to yield continuous solutions. A new algorithm is proposed for optimizing penalized likelihood functions. The proposed ideas 
are widely applicable. They are readily applied to a variety of parametric models such as generalized linear models and robust regression 
models. They can also be applied easily to nonparametric modeling by using wavelets and splines. Rates of convergence of the proposed 
penalized likelihood estimators are established. Furthermore, with proper choice of regularization parameters, we show that the proposed 
estimators perform as well as the oracle procedure in variable selection; namely, they work as well as if the correct submodel were 
known. Our simulation shows that the newly proposed methods compare favorably with other variable selection techniques. Furthermore, 
the standard error formulas are tested to be accurate enough for practical applications. 

KEY WORDS: Hard thresholding; LASSO; Nonnegative garrote; Penalized likelihood; Oracle estimator; SCAD; Soft thresholding. 

1. INTRODUCTION 

Variable selection is an important topic in linear regression 
analysis. In practice, a large number of predictors usually are 
introduced at the initial stage of modeling to attenuate possible 
modeling biases. On the other hand, to enhance predictabil- 
ity and to select significant variables, statisticians usually use 
stepwise deletion and subset selection. Although they are 
practically useful, these selection procedures ignore stochas- 
tic errors inherited in the stages of variable selections. Hence, 
their theoretical properties are somewhat hard to understand. 
Furthermore, the best subset variable selection suffers from 
several drawbacks, the most severe of which is its lack of 
stability as analyzed, for instance, by Breiman (1996). In an 
attempt to automatically and simultaneously select variables, 
we propose a unified approach via penalized least squares, 
retaining good features of both subset selection and ridge 
regression. The penalty functions have to be singular at the 
origin to produce sparse solutions (many estimated coefficients 
are zero), to satisfy certain conditions to produce continuous 
models (for stability of model selection), and to be bounded 
by a constant to produce nearly unbiased estimates for large 
coefficients. The bridge regression proposed in Frank and 
Friedman (1993) and the least absolute shrinkage and selection 
operator (LASSO) proposed by Tibshirani (1996, 1997) are 
members of the penalized least squares, although their asso- 
ciated Lq penalty functions do not satisfy all of the preceding 
three required properties. 

The penalized least squares idea can be extended naturally 
to likelihood-based models in various statistical contexts. Our 
approaches are distinguished from traditional methods (usu- 
ally quadratic penalty) in that the penalty functions are sym- 
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metric, convex on (0, oo) (rather than concave for the negative 
quadratic penalty in the penalized likelihood situation), and 

possess singularities at the origin. A few penalty functions are 
discussed. They allow statisticians to select a penalty function 
to enhance the predictive power of a model and engineers to 

sharpen noisy images. Optimizing a penalized likelihood is 

challenging, because the target function is a high-dimensional 
nonconcave function with singularities. A new and generic 
algorithm is proposed that yields a unified variable selection 

procedure. A standard error formula for estimated coefficients 
is obtained by using a sandwich formula. The formula is tested 

accurately enough for practical purposes, even when the sam- 

ple size is very moderate. The proposed procedures are com- 

pared with various other variable selection approaches. The 
results indicate the favorable performance of the newly pro- 
posed procedures. 

Unlike the traditional variable selection procedures, the 

sampling properties on the penalized likelihood can be estab- 
lished. We demonstrate how the rates of convergence for the 

penalized likelihood estimators depend on the regularization 
parameter. We further show that the penalized likelihood esti- 
mators perform as well as the oracle procedure in terms of 

selecting the correct model, when the regularization param- 
eter is appropriately chosen. In other words, when the true 

parameters have some zero components, they are estimated as 
0 with probability tending to 1, and the nonzero components 
are estimated as well as when the correct submodel is known. 
This improves the accuracy for estimating not only the null 

components, but also the nonnull components. In short, the 

penalized likelihood estimators work as well as if the correct 
submodel were known in advance. The significance of this is 
that the proposed procedures outperform the maximum likeli- 
hood estimator and perform as well as we hope. This is very 
analogous to the superefficiency phenomenon in the Hodges 
example (see Lehmann 1983, p. 405). 

0 2001 American Statistical Association 
Journal of the American Statistical Association 

December 2001, Vol. 96, No. 456, Theory and Methods 
1348 



Fan and Li: Nonconcave Penalized Likelihood 

The proposed penalized likelihood method can be applied 
readily to high-dimensional nonparametric modeling. After 
approximating regression functions using splines or wavelets, 
it remains very critical to select significant variables (terms 
in the expansion) to efficiently represent unknown functions. 
In a series of work by Stone and his collaborators (see 
Stone, Hansen, Kooperberg, and Truong 1997), the traditional 
variable selection approaches were modified to select useful 
spline subbases. It remains very challenging to understand 
the sampling properties of these data-driven variable selec- 
tion techniques. Penalized likelihood approaches, outlined in 
Wahba (1990), and Green and Silverman (1994) and refer- 
ences therein, are based on a quadratic penalty. They reduce 
the variability of estimators via the ridge regression. In wavelet 

approximations, Donoho and Johnstone (1994a) selected sig- 
nificant subbases (terms in the wavelet expansion) via thresh- 

olding. Our penalized likelihood approach can be applied 
directly to these problems (see Antoniadis and Fan, in press). 
Because we select variables and estimate parameters simulta- 

neously, the sampling properties of such a data-driven variable 
selection method can be established. 

In Section 2, we discuss the relationship between the penal- 
ized least squares and the subset selection when design matri- 
ces are orthonormal. In Section 3, we extend the penalized 
likelihood approach discussed in Section 2 to various para- 
metric regression models, including traditional linear regres- 
sion models, robust linear regression models, and generalized 
linear models. The asymptotic properties of the penalized 
likelihood estimators are established in Section 3.2. Based 
on local quadratic approximations, a unified iterative algo- 
rithm for finding penalized likelihood estimators is proposed 
in Section 3.3. The formulas for covariance matrices of the 
estimated coefficients are also derived in this section. Two 
data-driven methods for finding unknown thresholding param- 
eters are discussed in Section 4. Numerical comparisons and 
simulation studies also are given in this section. Some discus- 
sion is given in Section 5. Technical proofs are relegated to 
the Appendix. 

2. PENALIZED LEAST SQUARES AND 
VARIABLE SELECTION 

Consider the linear regression model 

y=X/8+E, (2.1) 

where y is an n x 1 vector and X is an n x d matrix. As in 
the traditional linear regression model, we assume that yi's are 
conditionally independent given the design matrix. There are 
strong connections between the penalized least squares and 
the variable selection in the linear regression model. To gain 
more insights about various variable selection procedures, in 
this section we assume that the columns of X in (2.1) are 
orthonormal. The least squares estimate is obtained via min- 
imizing I[y- X3112, which is equivalent to Jip- fP12, where 
/B = XTy is the ordinary least squares estimate. 

Denote z = XTy and let y = XXTy. A form of the penalized 
least squares is 

d d 

Ily _- Xpll2 
+ A E pj(13j 1) = I IlY -_ ll2 + (Zj -j)2 

j=l j=l 

+ A , pj(I3jl). (2.2) 
j=1 

The penalty functions pj(-) in (2.2) are not necessarily the 
same for all j. For example, we may wish to keep impor- 
tant predictors in a parametric model and hence not be will- 
ing to penalize their corresponding parameters. For simplicity 
of presentation, we assume that the penalty functions for all 
coefficients are the same, denoted by p(|-l). Furthermore, we 
denote Ap(l .) by PA ( l), so P(I' I) may be allowed to depend 
on A. Extensions to the case with different thresholding func- 
tions do not involve any extra difficulties. 

The minimization problem of (2.2) is equivalent to mini- 
mizing componentwise. This leads us to consider the penal- 
ized least squares problem 

(z- 0)2 +PA(IIo). (2.3) 

By taking the hard thresholding penalty function [see 
Fig. l(a)] 

PA(IO0) = A2 - (101 - A)2I(l < A), (2.4) 

we obtain the hard thresholding rule (see Antoniadis 1997 and 
Fan 1997) 

= zI(lzl > A); (2.5) 

see Figure 2(a). In other words, the solution to (2.2) is 
simply zjI(IZjI > A), which coincides with the best subset 
selection, and stepwise deletion and addition for orthonor- 
mal designs. Note that the hard thresholding penalty func- 
tion is a smoother penalty function than the entropy penalty 
PA(IO0) = (A2/2)I(101 % 0), which also results in (2.5). The 
former facilitates computational expedience in other settings. 

A good penalty function should result in an estimator with 
three properties. 

1. Unbiasedness: The resulting estimator is nearly unbi- 
ased when the true unknown parameter is large to avoid 
unnecessary modeling bias. 

2. Sparsity: The resulting estimator is a thresholding rule, 
which automatically sets small estimated coefficients to 
zero to reduce model complexity. 

3. Continuity: The resulting estimator is continuous in data 
z to avoid instability in model prediction. 

We now provide some insights on these requirements. 
The first order derivative of (2.3) with respect to 0 is 

sgn(0){101 +pA(0l)} - z. It is easy to see that when pA(0I) 
= 

0 for large 101, the resulting estimator is z when lzl is 
sufficiently large. Thus, when the true parameter 101 is 
large, the observed value lzl is large with high probability. 
Hence the penalized least squares simply is 0 = z, which is 
approximately unbiased. Thus, the condition that p' (I0) = 0 
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(a) Hard thresholding penalty 

0 
theta 

(b) L1 penalty (c) SCAD penalty 

0 5 
theta 

0 
theta 

Figure 1. Three Penalty Functions PA(0) and Their Quadratic Approximations. The values of A are the same as those in Figure 5(c). 

for large 101 is a sufficient condition for unbiasedness for a 
large true parameter. It corresponds to an improper prior dis- 
tribution in the Bayesian model selection setting. A sufficient 
condition for the resulting estimator to be a thresholding rule 
is that the minimum of the function I01 + P'(I0I) is positive. 
Figure 3 provides further insights into this statement. When 
IzI < mine0o{Il + pA(II)}, the derivative of (2.3) is posi- 
tive for all positive 0's (and is negative for all negative 0's). 
Therefore, the penalized least squares estimator is 0 in this 
situation, namely 0 = 0 for IzI < min0o0{10 +p' ((I0)} When 

lzl > min 0 101 + P ( 101), two crossings may exist as shown 
in Figure 1; the larger one is a penalized least squares esti- 
mator. This implies that a sufficient and necessary condition 
for continuity is that the minimum of the function 101 + p (I0i1) 
is attained at 0. From the foregoing discussion, we conclude 
that a penalty function satisfying the conditions of sparsity 
and continuity must be singular at the origin. 

It is well known that the L2 penalty PA (l0) = A1012 results 
in a ridge regression. The L1 penalty A(101) = A101 yields a 
soft thresholding rule 

0j = sgn(zj)(zjl- A)+, 

(a) Hard 
10 

5- 

0 

-5 

-10 . ..... 
-10 -5 0 5 

z 

which was proposed by Donoho and Johnstone (1994a). 
LASSO, proposed by Tibshirani (1996, 1997), is the penalized 
least squares estimate with the L1 penalty in the general least 
squares and likelihood settings. The Lq penalty PA ([0) = Al0oq 

leads to a bridge regression (Frank and Friedman 1993 and 
Fu 1998). The solution is continuous only when q > 1. How- 
ever, when q > 1, the minimum of IO[+ pA(IO[) is zero and 
hence it does not produce a sparse solution [see Fig. 4(a)]. 
The only continuous solution with a thresholding rule in this 
family is the L, penalty, but this comes at the price of shifting 
the resulting estimator by a constant A [see Fig. 2(b)]. 

2.1 Smoothly Clipped Absolute Deviation Penalty 

The Lq and the hard thresholding penalty functions do not 
simultaneously satisfy the mathematical conditions for unbi- 
asedness, sparsity, and continuity. The continuous differen- 
tiable penalty function defined by 

p'A(0) = A I(0 < A)+ (aA-1)A I(0 > A) 
I (a - I)A 

(2.6) 

(b) Lasso 

10 

for some a > 2 and 0 > 0, 

(c) SCAD 

0 
Z 

0 
Z 

(2.7) 

10 

Figure 2. Plot of Thresholding Functions for (a) the Hard, (b) the Soft, and (c) the SCAD Thresholding Functions With A = 2 and a = 3.7 
for SCAD. 
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0 

Figure 3. A Plot of 0 + p (0) Against 0(6 > 0). 

improves the properties of the L1 penalty and the hard 
thresholding penalty function given by (2.4) [see Fig. l(c) 
and subsequent discussion]. We call this penalty function the 
smoothly clipped absolute deviation (SCAD) penalty. It corre- 
sponds to a quadratic spline function with knots at A and aA. 
This penalty function leaves large values of 0 not excessively 
penalized and makes the solution continuous. The resulting 
solution is given by 

sgn(z)(zl - A)+, when lzl < 2A, 
0= {(a - )z-sgn(z)aA}/(a-2), when 2A < lzl < aA, 

z, when Izi > aA 

(2.8) 

[see Fig. 2(c)]. This solution is owing to Fan (1997), who gave 
a brief discussion in the settings of wavelets. In this article, 
we use it to develop an effective variable selection procedure 
for a broad class of models, including linear regression models 
and generalized linear models. For simplicity of presentation, 
we use the acronym SCAD for all procedures using the SCAD 
penalty. The performance of SCAD is similar to that of firm 
shrinkage proposed by Gao and Bruce (1997) when design 
matrices are orthonormal. 

(a)( 
5 / 

I/ 
4.5- 

4 
/ 

3.5- 
/ 

3- 1 

2.5- / 

2- 

1.5- / 

1 

0.5 , 

ot 0 1 2 3 4 

e 

The thresholding rule in (2.8) involves two unknown param- 
eters A and a. In practice, we could search the best pair (A, a) 
over the two-dimensional grids using some criteria, such as 
cross-validation and generalized cross-validation (Craven and 
Wahba 1979). Such an implementation can be computation- 
ally expensive. To implement tools in Bayesian risk analy- 
sis, we assume that for given a and A, the prior distribution 
for 0 is a normal distribution with zero mean and variance 
aA. We compute the Bayes risk via numerical integration. 
Figure 5(a) depicts the Bayes risk as a function of a under the 
squared loss, for the universal thresholding A = /2 log(d) (see 
Donoho and Johnstone, 1994a) with d = 20, 40, 60, and 100; 
and Figure 5(b) is for d = 512, 1024, 2048, and 4096. From 
Figure 5, (a) and (b), it can be seen that the Bayesian risks 
are not very sensitive to the values of a. It can be seen from 
Figure 5(a) that the Bayes risks achieve their minimums at 
a t 3.7 when the value of d is less than 100. This choice gives 
pretty good practical performance for various variable selec- 
tion problems. Indeed, based on the simulations in Section 
4.3, the choice of a = 3.7 works similarly to that chosen by 
the generalized cross-validation (GCV) method. 

2.2 Performance of Thresholding Rules 

We now compare the performance of the four previously 
stated thresholding rules. Marron, Adak, Johnstone, Neumann, 
and Patil (1998) applied the tool of risk analysis to under- 
stand the small sample behavior of the hard and soft thresh- 
olding rules. The closed forms for the L2 risk functions 
R(0, 0) = E(0 - 0)2 were derived under the Gaussian model 
Z - N(O, a2) for hard and soft thresholding rules by Donoho 
and Johnstone (1994b). The risk function of the SCAD thresh- 
olding rule can be found in Li (2000). To gauge the perfor- 
mance of the four thresholding rules, Figure 5(c) depicts their 
L2 risk functions under the Gaussian model Z - N(O, 1). To 
make the scale of the thresholding parameters roughly com- 
parable, we took A = 2 for the hard thresholding rule and 
adjusted the values of A for the other thresholding rules so that 
their estimated values are the same when 0 = 3. The SCAD 

b) (c) 

4.5 

4 

3.5- 

3 

2.5 

1.5 

1 

0.5 

0 1 2 3 4 

0 0 

Figure 4. Plot of pA(0) Functions Over 0 > 0 (a) for Lq Penalties, (b) the Hard Thresholding Penalty, and (c) the SCAD Penalty. In (a), the heavy 
line corresponds to L1, the dash-dot line corresponds to L5, and the thin line corresponds to L2 penalties. 
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(a) Posterior risk functions (b) Posterior risk functions 

2 3 4 5 6 7 8 
a 

-4 -2 0 2 
theta 

Figure 5. Risk Functions of Proposed Procedures Under the Quadratic Loss. (a) Posterior risk functions of the SCAD under the prior 0 6 

N(O,aA) using the universal thresholding A = ,/21og(d) for four different values d: heavy line, d = 20; dashed line, d = 40; medium line, d = 60; 
thin line, d = 100. (b) Risk functions similar to those for (a): heavy line, d = 572; dashed line, d = 1,024; medium line, d = 2,048; thin line, 
d = 4,096. (c) Risk functions of the four different thresholding rules. The heavy, dashed, and solid lines denote minimum SCAD, hard, and soft 
thresholding rules, respectively. 

performs favorably compared with the other two thresholding 
rules. This also can be understood via their corresponding 
penalty functions plotted in Figure 1. It is clear that the SCAD 
retains the good mathematical properties of the other two 
thresholding penalty functions. Hence, it is expected to per- 
form the best. For general o2, the picture is the same, except 
it is scaled vertically by o2, and the 0 axis should be replaced 
by 0/-. 

3. VARIABLE SELECTION VIA PENALIZED 
LIKELIHOOD 

The methodology in the previous section can be applied 
directly to many other statistical contexts. In this section, we 
consider linear regression models, robust linear models, and 
likelihood-based generalized linear models. From now on, we 
assume that the design matrix X = (xij) is standardized so that 
each column has mean 0 and variance 1. 

3.1 Penalized Least Squares and Likelihood 

In the classical linear regression model, the least squares 
estimate is obtained via minimizing the sum of squared resid- 
ual errors. Therefore, (2.2) can be extended naturally to the 
situation in which design matrices are not orthonormal. Simi- 
lar to (2.2), a form of penalized least squares is 

d 

(y- X/3) (y- X/3) + n LPA(|/3j|). 
j=l 

(3.1) 

Minimizing (3.1) with respect to f8 leads to a penalized least 
squares estimator of jf. 

It is well known that the least squares estimate is not robust. 
We can consider the outlier-resistant loss functions such as 
the L1 loss or, more generally, Huber's t function (see Huber 
1981). Therefore, instead of minimizing (3.1), we minimize 

n d 

f(li - xil1) + n PA(I3jl) (3.2) 
i=l1 j=1 

with respect to /f. This results in a penalized robust estimator 
for f8. 

For generalized linear models, statistical inferences are 
based on underlying likelihood functions. The penalized max- 
imum likelihood estimator can be used to select significant 
variables. Assume that the data {(xi, Y,)} are collected inde- 
pendently. Conditioning on xi, Y, has a density fi(g(x'f,), yi), 
where g is a known link function. Let (i = log f denote the 
conditional log-likelihood of Yi. A form of the penalized like- 
lihood is 

n d 

Eti(g(xrp), Yi) -n E PA (jlJ1)' 
i=l j=I 

Maximizing the penalized likelihood function is equivalent to 
minimizing 

nl d 

- ti(g(x'3), yi) +r PA(ijl) 
i=l j=l 

(3.3) 

with respect to fl. To obtain a penalized maximum likelihood 
estimator of fl, we minimize (3.3) with respect to f3 for some 
thresholding parameter A. 

3.2 Sampling Properties and Oracle Properties 

In this section, we establish the asymptotic theory for our 
nonconcave penalized likelihood estimator. Let 

0 = ( .1 .. dO) = (p0 To) T 

Without loss of generality, assume that P20 = 0. Let I(Po) be 
the Fisher information matrix and let I, (,/3, 0) be the Fisher 
information knowing f20 = 0. We first show that there exists 
a penalized likelihood estimator that converges at the rate 

Op(n-/2 + an), (3.4) 

where an = max{pA (I,jol ): Pjo 7 0}. This implies that for the 
hard thresholding and SCAD penalty functions, the penalized 
likelihood estimator is root-n consistent if An -> 0. Further- 
more, we demonstrate that such a root-n consistent estimator 

2.6! 

2.4! 

2.2- 

2- 
^ 0 
W1 

(c) Risk functions 
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must satisfy /2 = 0 and /, is asymptotic normal with covari- 
ance matrix I/', if n'/2A, - oo. This implies that the penal- 
ized likelihood estimator performs as well as if /20 = 0 were 
known. In language similar to Donoho and Johnstone (1994a), 
the resulting estimator performs as well as the oracle estima- 
tor, which knows in advance that P20 = 0. 

The preceding oracle performance is closely related to 
the superefficiency phenomenon. Consider the simplest linear 
regression model y = 1,nL + e, where - N, (0, I,). A super- 
efficient estimate for iL is 

Y, if lyl > n-/4, 
cY, if IYI < n-/4, 

owing to Hodges (see Lehmann 1983, p. 405). If we set c to 
0, then bn coincides with the hard thresholding estimator with 
the thresholding parameter A, = n-l/4. This estimator correctly 
estimates the parameter at point 0 without paying any price 
for estimating the parameter elsewhere. 

We now state the result in a fairly general setting. To 
facilitate the presentation, we assume that the penalization is 
applied to every component of 8. However, there is no extra 
difficulty to extend it to the case where some components 
(e.g., variance in the linear models) are not penalized. 

Set Vi = (Xi, Y/), i = 1,. . , n. Let L(,8) be the log- 
likelihood function of the observations V,... ., Vn and 
let Q(,) be the penalized likelihood function L(/3)- 
n jd=l PA, (I/jl). We state our theorems here, but their proofs 
are relegated to the Appendix, where the conditions for the 
theorems also can be found. 

Theorem 1. Let V, .... Vn be independent and identi- 
cally distributed, each with a density f(V, /) (with respect 
to a measure /,) that satisfies conditions (A)-(C) in the 

Appendix. If max{pAn (/l3jo):3 jo0 0} 0, then there exists 
a local maximizer ,8 of Q(/,) such that 1iP-,t1Bo = Op(n-1/2+ 
an), where an is given by (3.4). 

It is clear from Theorem 1 that by choosing a proper An, 
there exists a root-n consistent penalized likelihood estimator. 
We now show that this estimator must possess the sparsity 
property /2 = 0, which is stated as follows. 

Lemma 1. Let V,, . . , V be independent and identically 
distributed, each with a density f(V, /3) that satisfies condi- 
tions (A)-(C) in the Appendix. Assume that 

liminfliminf P' (0)/A, > 0. (3.5) n--oo 0-?0+ " 

If An - 0 and %/n-A -> oo as n -> oo, then with probabil- 
ity tending to 1, for any given P/ satisfying 11/,1 - P/lo = 

Op(n-1/2) and any constant C, 

Q { (' ) = P2<Cn-1/2 { (} 
Denote 

= diag{p$(|/,ol) .. , p(l3o) 
and 

b = (p J 3, J)sgn( sgn (,) o),.. p(Io)sgn( 3o)) 

where s is the number of components of 8/0. 

Theorem 2 (Oracle Property). Let V,,...., V, be inde- 
pendent and identically distributed, each with a density 
f(V,,/) satisfying conditions (A)-(C) in Appendix. Assume 
that the penalty function PA (10\) satisfies condition (3.5). If 
An -> 0 and /~An, -> oo as n -> oo, then with probability tend- 

ing to 1, the root-n consistent local maximizers 8 = (~]) in 
Theorem 1 must satisfy: 

(a) Sparsity: /2 = 0. 

(b) Asymptotic normality: 

>n(II (Plo) + ) -- P 10 

+ (Il(P,l)+ Y)-'b}-- NN{0, I,(,l0)} 

in distribution, where I, (PI0) = I, (Po,, 0), the Fisher informa- 
tion knowing /2 = 0. 

As a consequence, the asymptotic covariance matrix of , is 

-{II (t0) + } 'I (0) II (t10) + }-, 

which approximately equals (l/n)I'l(l,,o) for the threshold- 
ing penalties discussed in Section 2 if An tends to 0. 

Remark 1. For the hard and SCAD thresholding penalty 
functions, if An -> 0, an = 0. Hence, by Theorem 2, when 

/X,An -- oo, their corresponding penalized likelihood esti- 
mators possess the oracle property and perform as well as 
the maximum likelihood estimates for estimating ./, knowing 
32 = 0. However, for the L, penalty, an = An. Hence, the root- 
n consistency requires that An = Op(n-'/2). On the other hand, 
the oracle property in Theorem 2 requires that V/nAn -- oo. 
These two conditions for LASSO cannot be satisfied simul- 
taneously. Indeed, for the L, penalty, we conjecture that the 
oracle property does not hold. However, for Lq penalty with 
q < 1, the oracle property continues to hold with suitable 
choice of An. 

Now we briefly discuss the regularity conditions (A)-(C) 
for the generalized linear models (see McCullagh and Nelder 
1989). With a canonical link, the condition distribution of Y 
given X = x belongs to the canonical exponential family, that 
is, with a density function 

f(y; x,) = c(y)exp{ yxT/ 
- 

b(XT/3) 

Clearly, the regularity conditions (A) are satisfied. The Fisher 
information matrix is 

I(,8) = E{b"(x /3)xx } /a(). 

Therefore, if E{b"(xrT3)xxT} is finite and positive definite, 
then condition (B) holds. If for all P in some neighborhood 
of po, Ib(3)(xrT)l < Mo(x) for some function Mo(x) satisfy- 
ing EBo{Mo(x)XjXkXI < oo for all j, k, 1, then condition (C) 
holds. For general link functions, similar conditions need to 
guarantee conditions (B) and (C). The mathematical deriva- 
tion of those conditions does not involve any extra difficulty 
except more tedious notation. Results in Theorems 1 and 2 
also can be established for the penalized least squares (3.1) 
and the penalized robust linear regression (3.2) under some 
mild regularity conditions. See Li (2000) for details. 
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3.3 A New Unified Algorithm 

Tibshirani (1996) proposed an algorithm for solving 
constrained least squares problems of LASSO, whereas 
Fu (1998) provided a "shooting algorithm" for LASSO. 
See also LASS02 submitted by Berwin Turlach at Statlib 
(http://lib.stat.cmu.edu/S/). In this section, we propose a new 
unified algorithm for the minimization problems (3.1), (3.2), 
and (3.3) via local quadratic approximations. The first term in 
(3.1), (3.2), and (3.3) may be regarded as a loss function of 
p3. Denote it by e(P3). Then the expressions (3.1), (3.2), and 
(3.3) can be written in a unified form as 

d 

e(p8) + n yPA(I3jl1). 
j=l 

(3.6) 

The Ll, hard thresholding, and SCAD penalty functions are 
singular at the origin, and they do not have continuous second 
order derivatives. However, they can be locally approximated 
by a quadratic function as follows. Suppose that we are given 
an initial value p0 that is close to the minimizer of (3.6). If 

/3jo is very close to 0, then set 3j = 0. Otherwise they can be 
locally approximated by a quadratic function as 

[pA (l1jI)]' = P'(Ijl)sgn(3j) p {pA(Ijo1)/13jo01}3j, 

when pj # 0. In other words, 

PA(llj) p PA(I3jo I) + H {I(IPjol)/lP3jo I} (3 -O) 

for /3j j30. (3.7) 

Figure 1 shows the LI, hard thresholding, and SCAD penalty 
functions, and their approximations on the right-hand side of 
(3.7) at two different values of /30. A drawback of this approx- 
imation is that once a coefficient is shrunken to zero, it will 
stay at zero. However, this method significantly reduces the 
computational burden. 

If f(,5) is the L, loss as in (3.2), then it does not have 
continuous second order partial derivatives with respect to 38. 
However, i(ly- x7Tl) in (3.2) can be analogously approx- 
imated by {f(y - xTpI)/(y -xTp0)2}(y- XT1)2, as long as 
the initial value p80 of 8 is close to the minimizer. When some 
of the residuals y -xTr,0 are small, this approximation is not 
very good. See Section 3.4 for some slight modifications of 
this approximation. 

Now assume that the log-likelihood function is smooth with 
respect to , so that its first two partial derivatives are contin- 
uous. Thus the first term in (3.6) can be locally approximated 
by a quadratic function. Therefore, the minimization problem 
(3.6) can be reduced to a quadratic minimization problem and 
the Newton-Raphson algorithm can be used. Indeed, (3.6) can 
be locally approximated (except for a constant term) by 

e(o) + vt(to)T (1 - 0o) + 2( - Vo) Tv( po)(o) - po) 

+ ?ntS,(,To)t, (3.8) 

where 

Ve(,o) We(Af) = 
apo Vo2(e0) = a2( 

apJ aT' 

EA(Po) = diag{pA(I/3,01)/1I,01 ...P PA(|Idol)/I3doI } 

The quadratic minimization problem (3.8) yields the solution 

.[1 = Po - {V2 (P0) + n EA(p0) }- ( ve(P0) + nUA (P0) ) 
(3.9) 

where UA(Po) = E(3o)3o- When the algorithm converges, 
the estimator satisfies the condition 

0e(/o) + nPA (Ijol)sgn(/jo) = 0, 

the penalized likelihood equation, for nonzero elements of 
p0. Specifically, for the penalized least squares problem (3.1), 
the solution can be found by iteratively computing the ridge 
regression 

#I = {XTX + nEA (Po)}']Xy. 

Similarly we obtain the solution for (3.2) by iterating 

= XTWX+ 'nEA(PO)}-X Wy, 

where W = diag{|(ly1 - XTR0i)/(yl - xTo)2 * * (l - 

Xn rl)/(Yn- Po)2 
As in the maximum likelihood estimation (MLE) setting, 

with the good initial value P80, the one-step procedure can 
be as efficient as the fully iterative procedure, namely, the 
penalized maximum likelihood estimator, when the Newton- 
Raphson algorithm is used (see Bickel 1975). Now regarding 
fp(k-l) as a good initial value at the kth step, the next iteration 
also can be regarded as a one-step procedure and hence the 
resulting estimator still can be as efficient as the fully itera- 
tive method (see Robinson 1988 for the theory on the differ- 
ence between the MLE and the k-step estimators). Therefore, 
estimators obtained by the aforementioned algorithm with a 
few iterations always can be regarded as a one-step estima- 
tor, which is as efficient as the fully iterative method. In this 
sense, we do not have to iterate the foregoing algorithm until 
convergence as long as the initial estimators are good enough. 
The estimators from the full models can be used as initial esti- 
mators, as long as they are not overly parameterized. 

3.4 Standard Error Formula 

The standard errors for the estimated parameters can be 
obtained directly because we are estimating parameters and 
selecting variables at the same time. Following the conven- 
tional technique in the likelihood setting, the corresponding 
sandwich formula can be used as an estimator for the covari- 
ance of the estimates pl, the nonvanishing component of f/. 
That is, 

cov(8 ) = {V2(8) + nl,( ) -)cov{V( )} 

x {Vl2(/B,))+ n A(B,)} . (3.10) 

1354 



Fan and Li: Nonconcave Penalized Likelihood 

Compare with Theorem 2(b). This formula is shown to have 
good accuracy for moderate sample sizes. 

When the LI loss is used in the robust regression, some 
slight modifications are needed in the aforementioned algo- 
rithm and its corresponding sandwich formula. For i(x) = lxl, 
the diagonal elements of W are {Iril-} with ri = Yi-xXTPo. 
Thus, for a given current value of f0, when some of the resid- 
uals {ri} are close to 0, these points receive too much weight. 
Hence, we replace the weight by (a, + ri l)-1. In our imple- 
mentations, we took an as the 2n-1/2 quantile of the absolute 
residuals { rl, i = 1, . ., n}. Thus, the constant an changes 
from iteration to iteration. 

3.5 Testing Convergence of the Algorithm 

We now demonstrate that our algorithm converges to the 
right solution. To this end, we took a 100-dimensional vector 
f8 consisting of 50 zeros and other nonzero elements gener- 
ated from N(0, 52), and used a 100 x 100 orthonormal design 
matrix X. We then generated a response vector y from the 
linear model (2.1). We chose an orthonormal design matrix 
for our testing case, because the penalized least squares has 
a closed form mathematical solution so that we can compare 
our output with the mathematical solution. Our experiment 
did show that the proposed algorithm converged to the right 
solution. It took MATLAB 0.27, 0.39, and 0.16 s to converge 
for the penalized least squares with the SCAD, L1, and hard 
thresholding penalties. The numbers of iterations were 30, 30, 
and 5, respectively for the penalized least squares with the 
SCAD, LI, and the hard thresholding penalty. In fact, after 10 
iterations, the penalized least squares estimators are already 
very close to the true value. 

4. NUMERICAL COMPARISONS 

The purpose of this section is to compare the performance 
of the proposed approaches with existing ones and to test the 
accuracy of the standard error formula. We also illustrate our 
penalized likelihood approaches by a real data example. In 
all examples in this section, we computed the penalized like- 
lihood estimate with the LI penalty, referred as to LASSO, 
by our algorithm rather than those of Tibshirani (1996) and 
Fu (1998). 

4.1 Prediction and Model Error 

The prediction error is defined as the average error in the 
prediction of Y given x for future cases not used in the con- 
struction of a prediction equation. There are two regression 
situations, X random and X controlled. In the case that X is 
random, both Y and x are randomly selected. In the controlled 
situation, design matrices are selected by experimenters and 
only y is random. For ease of presentation, we consider only 
the X-random case. 

In X-random situations, the data (xi, Yj) are assumed to be 
a random sample from their parent distribution (x, Y). Then, 
if (x) is a prediction procedure constructed using the present 
data, the prediction error is defined as 

where the expectation is taken only with respect to the new 
observation (x, Y). The prediction error can be decomposed as 

PE(/) = EY - E(Yjx)}2 +E{E(YIx) - (x)}2 

The first component is the inherent prediction error due to 
the noise. The second component is due to lack of fit to an 
underlying model. This component is called model error and 
is denoted ME(/^). The size of the model error reflects perfor- 
mances of different model selection procedures. If Y = xTr + 
e, where E(elx) =0, then ME(/1) = (f - p)TE(xxT)(j _ -). 

4.2 Selection of Thresholding Parameters 

To implement the methods described in Sections 2 and 3, 
we need to estimate the thresholding parameters A and a 
(for the SCAD). Denote by 0 the tuning parameters to be 
estimated, that is, 0 = (A, a) for the SCAD and 0 = A for 
the other penalty functions. Here we discuss two methods of 
estimating 0: fivefold cross-validation and generalized cross- 
validation, as suggested by Breiman (1995), Tibshirani (1996), 
and Fu (1998). 

For completeness, we now describe the details of the 
cross-validation and the generalized cross-validation proce- 
dures. Here we discuss only these two procedures for lin- 
ear regression models. Extensions to robust linear models and 
likelihood-based linear models do not involve extra difficul- 
ties. The fivefold cross-validation procedure is as follows: 
Denote the full dataset by T, and denote cross-validation 
training and test set by T - TV and TV, respectively, for 
v = 1..., 5. For each 0 and v, we find the estimator P (0) 
of /3 using the training set T - T". Form the cross-validation 
criterion as 

cW(e)=E: E {y,-x^W'''( '}2. CV(0) = E {Yk-Xj(k(0 ) . 
= (Yk, Xk)ETV 

We find a 0 that minimizes CV(0). 
The second method is the generalized cross-validation. For 

linear regression models, we update the solution by 

p1(8) = IXTX +n2A(P0o)-IXTy. 

Thus the fitted value y of y is X{XTX + nEA(Po)}-lXTy, and 

Px{I30)} = XIXTX+ nY I(I)1lXT PX {fl(0) } = X {XrX + nIA () }IX 

can be regarded as a projection matrix. Define the num- 
ber of effective parameters in the penalized least squares 
fit as e(0) = tr[Px{,8(0)}]. Therefore, the generalized cross- 
validation statistic is 

GCV(o) = Ily-X(0)/II 
n {1 - e(0)/n}2 

and 0 = argmino{GCV(0)}. 
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4.3 Simulation Study 

In the following examples, we numerically compare the 
proposed variable selection methods with the ordinary least 
squares, ridge regression, best subset selection, and nonneg- 
ative garrote (see Breiman 1995). All simulations are con- 
ducted using MATLAB codes. We directly used the constraint 
least squares module in MATLAB to find the nonnegative gar- 
rote estimate. As recommended in Breiman (1995), a fivefold 
cross-validation was used to estimate the tuning parameter for 
the nonnegative garrote. For the other model selection pro- 
cedures, both fivefold cross-validation and generalized cross- 
validation were used to estimate thresholding parameters. 
However, their performance was similar. Therefore, we present 
only the results based on the generalized cross-validation. 

Example 4.1 (Linear Regression). In this example we 
simulated 100 datasets consisting of n observations from the 
model 

Y = x T + 's?, 

where -8 = (3, 1.5, 0, 0, 2, 0, 0, O)T, and the components of x 
and E are standard normal. The correlation between xi and xi 
is pli-il with p = .5. This is a model used in Tibshirani (1996). 
First, we chose n = 40 and a = 3. Then we reduced a to 1 and 
finally increased the sample size to 60. The model error of the 
proposed procedures is compared to that of the least squares 
estimator. The median of relative model errors (MRME) over 
100 simulated datasets are summarized in Table 1. The aver- 
age of 0 coefficients is also reported in Table 1, in which the 
column labeled "Correct" presents the average restricted only 
to the true zero coefficients, and the column labeled "Incor- 
rect" depicts the average of coefficients erroneously set to 0. 

From Table 1, it can be seen that when the noise level 
is high and the sample size is small, LASSO performs the 
best and it significantly reduces both model error and model 
complexity, whereas ridge regression reduces only model 
error. The other variable selection procedures also reduce 
model error and model complexity. However, when the noise 
level is reduced, the SCAD outperforms the LASSO and the 
other penalized least squares. Ridge regression performs very 
poorly. The best subset selection method performs quite sim- 
ilarly to the SCAD. The nonnegative garrote performs quite 
well in various situations. Comparing the first two rows in 
Table 1, we can see that the choice of a = 3.7 is very reason- 
able. Therefore, we used it for other examples in this article. 
Table 1 also depicts the performance of an oracle estimator. 
From Table 1, it also can be seen that the performance of 

Table 1. Simulation Results for the Linear Regression Model 

Avg. No. of 0 Coefficients 

Method MRME (%) Correct Incorrect 

n=40, o-=3 
SCAD1 72.90 4.20 .21 
SCAD2 69.03 4.31 .27 
LASSO 63.19 3.53 .07 
Hard 73.82 4.09 .19 
Ridge 83.28 0 0 
Best subset 68.26 4.50 .35 
Garrote 76.90 2.80 .09 
Oracle 33.31 5 0 

n = 40, o-=1 
SCAD' 54.81 4.29 0 
SCAD2 47.25 4.34 0 
LASSO 63.19 3.51 0 
Hard 69.72 3.93 0 
Ridge 95.21 0 0 
Best subset 53.60 4.54 0 
Garrote 56.55 3.35 0 
Oracle 33.31 5 0 

n = 60, o7=1 
SCAD1 47.54 4.37 0 
SCAD2 43.79 4.42 0 
LASSO 65.22 3.56 0 
Hard 71.11 4.02 0 
Ridge 97.36 0 0 
Best subset 46.11 4.73 0 
Garrote 55.90 3.38 0 
Oracle 29.82 5 0 

NOTE: The value of a in SCAD1 is obtained by generalized cross-validation, whereas the 
value of a in SCAD2 is 3.7. 

SCAD is expected to be as good as that of the oracle esti- 
mator as the sample size n increases (see Tables 5 and 6 for 
more details). 

We now test the accuracy of our standard error formula 

(3.10). The median absolute deviation divided by .6745, 
denoted by SD in Table 2, of 100 estimated coefficients in the 
100 simulations can be regarded as the true standard error. The 
median of the 100 estimated SD's, denoted by SDm, and the 
median absolute deviation error of the 100 estimated standard 
errors divided by .6745, denoted by SDmad, gauge the over- 
all performance of the standard error formula (3.10). Table 2 

presents the results for nonzero coefficients when the sample 
size n = 60. The results for the other two cases with n = 40 
are similar. Table 2 suggests that the sandwich formula per- 
forms surprisingly well. 

Table 2. Standard Deviations of Estimators for the Linear Regression Model (n = 60) 

? f/2 15 

Method SD SDm (SDmad) SD SDm (SDmad) SD SDm (SDmad) 

SCAD1 .166 .161 (.021) .170 .160 (.024) .148 .145 (.022) 
SCAD2 .161 .161 (.021) .164 .161 (.024) .151 .143 (.023) 
LASSO .164 .154 (.019) .173 .150 (.022) .153 .142 (.021) 
Hard .169 .161 (.022) .174 .162 (.025) .178 .148 (.021) 
Best subset .163 .155 (.020) .152 .154 (.026) .152 .139 (.020) 
Oracle .155 .154 (.020) .147 .153 (.024) .146 .137 (.019) 
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Table 3. Simulation Results for the Robust Linear Model 

Avg. No. of 0 Coefficients 

Method MRME (%) Correct Incorrect 

SCAD (a =3.7) 35.52 4.71 0 
LASSO 52.80 4.29 0 
Hard 47.22 4.70 0 
Best subset 41.53 4.85 .18 
Oracle 23.33 5 0 

Example 4.2 (Robust Regression). In this example, we 
simulated 100 datasets consisting of 60 observations from the 
model 

Y = x + e, 

where /8 and x are the same as those in Example 1. The e is 
drawn from the standard normal distribution with 10% outliers 
from the standard Cauchy distribution. The simulation results 
are summarized in Table 3. From Table 3, it can be seen that 
the SCAD somewhat outperforms the other procedures. The 
true and estimated standard deviations of estimators via sand- 
wich formula (3.7) are shown in Table 4, which indicates that 
the performance of the sandwich formula is very good. 

Example 4.3 (Logistic Regression). In this example, we 
simulated 100 datasets consisting of 200 observations from 
the model Y - Beroulli{p(xTr3)}, where p(u) = exp(u)/(1 + 
exp(u)), and the first six components of x and f3 are the same 
as those in Example 1. The last two components of x are 
independently identically distributed as a Bernoulli distribu- 
tion with probability of success .5. All covariates are stan- 
dardized. Model errors are computed via 1000 Monte Carlo 
simulations. The summary of simulation results is depicted in 
Tables 5 and 6. From Table 5, it can be seen that the perfor- 
mance of the SCAD is much better than the other two penal- 
ized likelihood estimates. Results in Table 6 show that our 
standard error estimator works well. From Tables 5 and 6, 
SCAD works as well as the oracle estimator in terms of the 
MRME and the accuracies of estimated standard errors. 

We remark that the estimated SDs for the LI penalized like- 
lihood estimator (LASSO) are consistently smaller than the 
SCAD, but its overall MRME is larger than that of the SCAD. 
This implies that the biases in the LI penalized likelihood esti- 
mators are large. This remark applies to all of our examples. 
Indeed, in Table 7, all coefficients were noticeably shrunken 
by LASSO. 

Table 5. Simulation Results for the Logistic Regression 

Avg. No. of 0 Coefficients 

Method MRME (%) Correct Incorrect 

SCAD (a = 3.7) 26.48 4.98 .04 
LASSO 53.14 3.76 0 
Hard 59.06 4.27 0 
Best subset 31.63 4.84 .01 
Oracle 25.71 5 0 

Example 4.4. In this example, we apply the proposed 
penalized likelihood methodology to the bums data, collected 
by the General Hospital Bur Center at the University of 
Southern California. The dataset consists of 981 observations. 
The binary response variable Y is 1 for those victims who sur- 
vived their burs and 0 otherwise. Covariates XI = age, X2 = 
sex, X3 = log(bur area + 1), and binary variable X4 = oxygen 
(0 normal, 1 abnormal) were considered. Quadratic terms of 
XI and X3, and all interaction terms were included. The inter- 
cept term was added and the logistic regression model was 
fitted. The best subset variable selection with the Akaike infor- 
mation criterion (AIC) and the Bayesian information criterion 
(BIC) was applied to this dataset. The unknown parameter A 
was chosen by generalized cross-validation: it is .6932, .0015, 
and .8062 for the penalized likelihood estimates with the 
SCAD, LI, and hard thresholding penalties, respectively. The 
constant a in the SCAD was taken as 3.7. With the selected 
A, the penalized likelihood estimator was obtained at the 6th, 
28th, and 5th step iterations for the penalized likelihood with 
the SCAD, L1, and hard thresholding penalties, respectively. 
We also computed 10-step estimators, which took us less than 
50 s for each penalized likelihood estimator, and the differ- 
ences between the full iteration estimators and the 10-step 
estimators were less than 1%. The estimated coefficients and 
standard errors for the transformed data, based on the penal- 
ized likelihood estimators, are reported in Table 7. 

From Table 7, the best subset procedure via minimizing 
the BIC scores chooses 5 out of 13 covariates, whereas the 
SCAD chooses 4 covariates. The difference between them is 
that the best subset keeps X4. Both SCAD and the best sub- 
set variable selection (BIC) do not include X2 and X2 in the 
selected subset, but both LASSO and the best subset variable 
selection (AIC) do. LASSO chooses the quadratic term of XI 
and X3 rather than their linear terms. It also selects an inter- 
action term X2X3, which may not be statistically significant. 
LASSO shrinks noticeably large coefficients. In this example, 

Table 4. Standard Deviations of Estimators for the Robust Regression Model 

I1 P2 /5 

Method SD SDm (SDmad) SD SDm (SDmad) SD SDm (SDad) 

SCAD .167 .171 (.018) .185 .176 (.022) .165 .155 (.020) 
LASSO .158 .165 (.022) .159 .167 (.020 .182 .154 (.019) 
Hard .179 .168 (.018) .176 .176 (.025) .157 .154 (.020) 
Best subset .198 .172 (.023) .185 .175 (.024) .199 .152 (.023) 
Oracle .163 .199 (.040) .156 .202 (.043) .166 .177 (.037) 
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Table 6. Standard Deviations of Estimators for the Logistic Regression 

f3 12 15 

Method SD SDm (SD,ad) SD SDm (SDmd) SD SDm (SDmd) 

SCAD (a =3.7) .571 .538 (.107) .383 .372 (.061) .432 .398 (.065) 
LASSO .310 .379 (.037) .285 .284 (.019) .244 .287 (.019) 
Hard .675 .561 (.126) .428 .400 (.062) .467 .421 (.079) 
Best subset .624 .547 (.121) .398 .383 (.067) .468 .412 (.077) 
Oracle .553 .538 (.103) .374 .373 (.060) .432 .398 (.064) 

the penalized likelihood with the hard thresholding penalty 
retains too many predictors. Particularly, it selects variables 

X2 and X2X3. 

5. CONCLUSION 

We proposed a variable selection method via penalized 
likelihood approaches. A family of penalty functions was 

introduced. Rates of convergence of the proposed penalized 
likelihood estimators were established. With proper choice of 

regularization parameters, we have shown that the proposed 
estimators perform as well as the oracle procedure for vari- 
able selection. The methods were shown to be effective and 
the standard errors were estimated with good accuracy. A uni- 

fied algorithm was proposed for minimizing penalized likeli- 

hood function, which is usually a sum of convex and concave 

functions. Our algorithm is backed up by statistical theory and 

hence gives estimators with good statistical properties. Com- 

pared with the best subset method, which is very time con- 

suming, the newly proposed methods are much faster, more 

effective, and have strong theoretical backup. They select vari- 

ables simultaneously via optimizing a penalized likelihood, 
and hence the standard errors of estimated parameters can 

be estimated accurately. The LASSO proposed by Tibshirani 

(1996) is a member of this penalized likelihood family with 

LI penalty. It has good performance when the noise to signal 
ratio is large, but the bias created by this approach is notice- 

ably large. See also the remarks in Example 4.3. The penal- 
ized likelihood with the SCAD penalty function gives the best 

performance in selecting significant variables without creating 

excessive biases. The approach proposed here can be applied 
to other statistical contexts without any extra difficulties. 

APPENDIX: PROOFS 

Before we present the proofs of the theorems, we first state some 

regularity conditions. Denote by l the parameter space for P. 

Regularity Conditions 

(A) The observations Vi are independent and identically dis- 
tributed with probability density f(V, 13) with respect to some mea- 
sure ,u. f(V, p) has a common support and the model is identifiable. 
Furthermore, the first and second logarithmic derivatives of f satis- 

fying the equations 

E agf (V'1) ]=0 forj=l,...,d 

and 

jk ( = Ep log f (V, ) log f (V, 3) 

= 8 [- 33k log f (V, ] 

(B) The Fisher information matrix 

1() = E [ logf(V, )][ 
- logf(V, )0] 

is finite and positive definite at Pf = 13-. 

(C) There exists an open subset o of Qn that contains the true 

parameter point 130 such that for almost all V the density f(V, ,8) 

Table 7. Estimated Coefficients and Standard Errors for Example 4.4 

Best Subset Best Subset 

Method MLE (AIC) (BIC) SCAD LASSO Hard 

Intercept 5.51 (.75) 4.81 (.45) 6.12 (.57) 6.09 (.29) 3.70 (.25) 5.88 (.41) 
X, -8.83 (2.97) -6.49 (1.75) -12.15 (1.81) -12.24 (.08) 0 (-) -11.32 (1.1) 
X2 2.30 (2.00) 0 (-) 0 (-) 0 (-) 0 (-) 2.21 (1.41) 
X3 -2.77 (3.43) 0 (-) -6.93 (.79) -7.00 (.21) 0 (-) -4.23 (.64) 
X4 -1.74 (1.41) .30 (.11) -.29 (.11) 0 (-) -.28 (.09) -1.16 (1.04) 
X2 -.75 (.61) -1.04 (.54) 0 (-) 0 (-) -1.71 (.24) 0 (-) 

X32 -2.70 (2.45) -4.55 (.55) 0 (-) 0 (-) -2.67 (.22) -1.92 (.95) 
X1X2 .03 (.34) (0 () 0 ( (-) 0 (-) 0 (-) 
XlX3 7.46 (2.34) 5.69 (1.29) 9.83 (1.63) 9.84 (.14) .36 (.22) 9.06 (.96) 
X1X4 .24 (.32) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 
X2X3 -2.15 (1.61) 0 (-) 0 (-) 0 (-) -0.10 (.10) -2.13 (1.27) 
X2X4 -.12 (.16) 0 (-) (-) 0 (-) 0 (-) 0 (-) 
X3X4 1.23 (1.21) 0 (-) 0 (-) 0 (-) 0 (-) .82 (1.01) 
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admits all third derivatives (df(V, P))/(dl3j aPk ap) for all Pf E o. 
Furthermore, there exist functions Mjkl such that 

a3 

a,j dp3 k 
log f(V, Mj) Mjkl(V) for all e w, 

where mjkl = E&o[Mkl(V)] < oo for j, k, 1. 

These regularity conditions guarantee asymptotic normality of the 
ordinary maximum likelihood estimates. See, for example, Lehmann 

(1983). 

Proof of Theorem 1 

Let a, = n-1/2 + an. We want to show that for any given s > 0, 
there exists a large constant C such that 

P{ sup Q(o (o+ a,u) < Q(0O)} > 1-E. 
lull=c 

(A.1) 

This implies with probability at least 1- e that there exists a local 
maximum in the ball {160 + anu: Ilull < C}. Hence, there exists a 
local maximizer such that 1p - pll = Op(ac). 

Using PA (0) = 0, we have 

Dn (u) Q(3o + a,u) - Q(o) 

< L(Po+anu)-L(oP)- n {pA,n(lOjo+Canujl)-px (l13iol)}, 
j=1 

where s is the number of components of Pti. Let L'(P0) be the gra- 
dient vector of L. By the standard argument on the Taylor expansion 
of the likelihood function, we have 

Dn (u) < anL' (Po)Tu uTI (O)una2l + p (1) 
s 

- [nanPn (l3Pjo )sgn(/3jo)uj 
j=1 

+ 2 
o|)u{l+ (1)}]. (A.2) nan,px (I/3j01 (A.2) 

Note that n-112L'(10) = Op(1). Thus, the first term on the right-hand 
side of (A.2) is on the order Op(nl/2an) = Op(nac). By choosing 
a sufficiently large C, the second term dominates the first term uni- 

formly in Ilull = C. Note that the third term in (A.2) is bounded by 

sncanan ||u|| + na2 max{ |IP. (IPol)l/ 8jo : 0?} Ilull2 

This is also dominated by the second term of (A.2). Hence, by choos- 

ing a sufficiently large C, (A.1) holds. This completes the proof of 
the theorem. 

Proof of Lemma 1 

It is sufficient to show that with probability tending to 1 as n -* oo, 
for any /p satisfying fl -P10 = Op(n-l/2) and for some small n = 

Cn-1/2 and j=s +l,..., d, 

Q(p) < 0 for 0</3 < (A.3) 
af3j 

> 0 for -En < fj < 0. (A.4) 

To show (A.3), by Taylor's expansion, we have 

adQ dLnp nPA(I/3jjl)sgn(/3j) 

dL(po) d d2L(o) d d a3L(P*) 
dx ( +j 

X, 
, )(3 0) ' -1 o )- + E (p1 j sp1n;3k 

x (P1 - P2o)(k - PkO) - np (|Pj )sgn(p/), 

where fB* lies between p and p0. Note that by the standard argu- 
ments, 

= Op(n-/2) 
dl3j 

and 
1 a2L(B0o) { a2L(p,) ( 
n j31 -( aEjl 0-+p o . 

By the assumption that Pf- P0 = Op(n-1/2), we have 

0Q(P) 
= nA {-Anp j (l/1j )sgn(3j) +Op(n-/2/An)}. 

Whereas liminfn^ liminf0o+ An A,' () > 0 and n- /2/An - 0, 
the sign of the derivative is completely determined by that of f3j. 
Hence, (A.3) and (A.4) follow. This completes the proof. 

Proof of Theorem 2 

It follows by Lemma 1 that part (a) holds. Now we prove part (b). 
It can be shown easily that there exists a pi in Theorem 1 that is a 
root-n consistent local maximizer of Qf{(')}, which is regarded as a 
function of fpl, and that satisfies the likelihood equations 

=0 for j= l,....,s. 
a o =(pn t 

Note that ,l is a consistent estimator, 

dL(P) 

dpj p=(Oi) 

(A.5) 

- npA (I3j I)sgn(3,j) 

aL(po) S { a2L(op0) } 3 
da, a+l3a3, 

+O )M ( 
-P 

) 

- n (p (lP ol)sgn(Co) + {p( (ojol) + op(l)}(j3 -Pj)). 

It follows by Slutsky's theorem and the central limit theorem that 

V>n(II (10) + ){ p, - P10 + (II (pO1) + E)-lb} - N{O, 1, (P1)} 

in distribution. 

[Received March 2000. Revised December 2000.] 
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