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Outline

» Lasso (Tibshirani, 1996)

» The Bayesian Lasso (Park and Casella, 2008 )
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Variable Selection

» Why?
» Interpretation: principle of parsimony.

» Prediction: bias and variance tradeoff.

» What if number of variables is greater than number of
observations (p > n)?

» Shrinkage!

» loss function + penalty function. Ridge regression, Lasso
(Tibshirani, 1996) and other methods.
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Lasso (Tibshirani, 1996)

» Consider linear regression model
y=XB+e, e~ N,do?l),

where y is the centered response (.7, yi = 0);
X1,...,Xp, columns of X, are centered to have 0 mean
and standardized to have unit L, norm.

» The Lasso method solves the following optimization
problem

p
min{lly — XA|?} subject to} |3 <t (1)

i=1

where t needs to be tuned by cross validation.
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Why Lasso can Set Some (3; to be 07

» The loss function ||y — X(3||? equals to the quadratic
function

(3 —3)"XTX(8 — B) + constant, (2)

where B is the least square estimate.

» Consider the case p = 2.

» The constraint |31 + |B2| < t is a diamond region in the
R? space.
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Why Lasso can Set Some (3; to be 07

» Curves are the contours of (2).
» The rotated square is the constraint region.
» Lasso solution is the place where the contour first touches

the square.
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Bayesian Interpretation of Lasso

» Lasso problem can be written into:

minlly — X1 + A 1B} (3)

i=1

» Consider the Bayesian model y ~ N(Xz, I,) and
Bi ~ %e‘”ﬁf‘ (Laplacian prior).

» The solution of (3) can be interpreted as the posterior
mode of (3 in the above Bayesian model.
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Laplacian Priors

» The Laplacian prior assigns more weight to regions near
zero than the normal prior.
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The Prostate Cancer Example

> s=t/|fL,.
» The broken line is at s = 0.44.
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The Bayesian Lasso (Park and Casella, 2008)

» Model y | X, 3,02 ~ N(X3, c?).

» Set the conditional Laplacian prior to f3;

Bi | 0 ~ e B,
20

where conditioning on o?

unique posterior mode.

is important to guarantee a
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Unconditional Prior May Lead to Bimodal
Posteriors
» Consider §3; ~ 2e Ml with p =1, n =10, X" X =1,
XTy =5 yTy=26and \ = 3.

» The posterior distributions of (Ino?, 3) are bimodal.

In(6®)
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Rewrite the Laplacian Prior

» It can written into a mixture of the following hierarchical
priors (integrating out ?)

Bi | (0%,97) ~ N(0,0°77) ~7 | 0® ~ Exp(A\°/2). (4)

» The reason is

o0 2
el — / Le_zz/@s)%e_azsﬂd& a>0
0

2 \27s
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Empirical Treatment of A

» Estimate A\ by the marginal maximum likelihood. Use the
MCEM algorithm and update the value of A\ by

A — 2P .
> 71 Exwen[07ly]

» Assign a hyperprior to A\? that places high density at the
marginal maximum likelihood estimate.

13/ 14



The Full Conditional Distributions
Assign m(0?) = 1/0?, then we have
> B~ N(AXTy,02A1), A= XTX + D;* and
D, = diag(+3,...,73).
» 02 ~ InvGammma(a, b) with shape parameter

a= (n+ p)/2 and scale parameter
b=(y—XB3)"(y — XB)/2+BTD;*B/2.

> 1/~7 ~ InvGuassian(a, b) with a = /\202/3? and
b= )2

» The inverse Guassian distribution with parameter a and b
is of the following form:

b5 b(x — a)?
f(x)= 7 exp{ 20@x | x > 0.
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