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Introduction

high dimensional data analysis
p → pn

p = O(na) for some a > 0
log p = O(na) for some a > 0, which is NP-dimensionality,
or loosely ultra high dimensionality

variable/model selection: approach 1 (penalized
pseudo-likelihood)

bridge regression (1993), LASSO (1996), SCAD (2001),
Dantzig selector (2007), and their variants.
theoretical studies on persistency, consistency and oracle
properties.
limitations: may not perform well in ultra high dimensional
setting due to the simultaneous challenges of
computational expediency, statistical accuracy and
algorithmic stability (Fan et al. 2009)



Introduction

variable/model selection: approach 2
Fan and Lv (2008): SIS method
limitations: only restricts to the ordinary linear model, and
technical arguments can not be easily extended
Huang et al. (2008): based on marginal bridge regression
similar limitations

SIS in GLMs: Fan et al. (2009), Fan and Song (2010)

Hall et al. (2009): used a different marginal utility, derived
from an empirical likelihood point of view
Hall and Miller (2009): proposed a generalized correlation
ranking, which allows nonlinear regression
Wang (2009): Forward Regression
Fan and his colleagues (2010+): nonparametric IS for
additive model, penalized composite quasi-likelihood, SIS
for Cox’s proportional hazards model, ...



Introduction

In this paper, rank the maximum marginal likelihood
estimator (MMLE) or maximum marginal likelihood, for
GLMs

An important extension of SIS in Fan and Lv (2008)

Advantages: a new framework, which does not depend on
the normality assumption even in the linear model setting;
can be applied to possibly other models, like Cox model;
can easily be applied to the generalized correlation ranking
and other rankings based on a group of marginal variables.

The two methods, ranking MMLE or maximum marginal
likelihood, are equivalent in terms of sure screening
properties.



Outline

1 Introduction

2 Generalized Linear Models(GLMs or GLIM)

3 Independence Screening with MMLE

4 An Exponential Bound for QMLE (a more general result)

5 Sure Screening Properties with MMLE
Population Aspects
Sampling Aspects: uniform convergence and sure screening
Controlling False Selection Rates

6 A Likelihood Ratio Screening

7 Numerical Results

8 Conclusion Remarks



assume the pdf of Y is

fY (y ; θ) = exp{yθ − b(θ) + c(y)}

only model the mean regression, do not consider the
dispersion parameter

the model to be considered is

E(Y |X = x) = b′(θ(x)) = g−1(

pn∑

j=0

βjxj)

focus on the canonical link function for simplicity of
presentation

assume EXj = 0, EX 2
j = 1, j = 1, ..., pn.
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assume the true sparse model is
M⋆ = {1 ≤ j ≤ pn : β⋆

j 6= 0}, where β⋆ = (β⋆
0 , β⋆

1 , ..., β⋆
pn

)
denotes the true value, and sn = |M⋆|
the maximum marginal likelihood estimator is defined as

β̂M
j = (β̂M

j ,0, β̂
M
j ) = argminβ0,βj Pnl(β0 + βj Xj , Y )

similarly, define the population version of the minimizer of
the componentwise regression

βM
j = (βM

j ,0, β
M
j ) = argminβ0,βj El(β0 + βjXj , Y ),

where E denotes the expectation under the true model

variables selected are M̂γn = {1 ≤ j ≤ pn : |β̂M
j | ≥ γn},

where γn is a predefined threshold value
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consider i.i.d. data {X i , Yi}
a regression model for X and Y is assumed with
quasi-likelihood function −l(X T β, Y )

define β0 = argminβEl(X T β, Y ) to be the population
parameter

define β̂ = argminβPnl(X T β, Y ), which is QMLE

assume that β0 is an interior point of a sufficient large,
compact and convex set B ∈ Rq



Regularity Conditions

A. The Fisher information

I(β) = E{[ ∂

∂β
l(X T β, Y )][

∂

∂β
l(X T β, Y )]T }

is finite and positive definite at β = β0. Moreover,
‖I(β)‖B = supβ∈B,‖x‖=1 ‖I(β)1/2x‖ exists.



Regularity Conditions

B. The function l(xT β, y) satisfies the Lipschitz property with
positive constant kn:

|l(xT β, y) − l(xT β′, y)|In(x , y) ≤ kn|xT β − xT β′|In(x , y),

for β,β′ ∈ B, where In(x , y) = I((x , y) ∈ Ωn) with
Ωn = {(x , y) : ‖x‖∞ ≤ Kn, |y | ≤ K ⋆

n }, for some sufficiently large
positive constants Kn and K ⋆

n . In addition, there exists a
sufficiently large constant C such that with
bn = CknV−1

n (q/n)1/2 and Vn given in condition C,

sup
β∈B,‖β−β0‖≤bn

|E [l(X T β, Y ) − l(X T β0, Y )](1 − In(X , Y ))| ≤ o(q/n).

where Vn is the constant given in condition C.



Regularity Conditions

C. The function l(X T β, Y ) is convex in β, satisfying

E [l(X T β, Y ) − l(X T β0, Y )] ≥ Vn‖β − β0‖2,

for all ‖β − β0‖ ≤ bn and some positive constants Vn.



Theorem 1

Theorem
Theorem 1. Under conditions A-C, it holds that for any t > 0,

P(
√

n‖β̂ − β0‖ ≥ 16kn(1 + t)/Vn) ≤ exp(−2t2/K 2
n ) + nP(Ωc

n).



Proof of Theorem 1

Lemma
Lemma 2. (Symmetrization,Lemma 2.3.1,van der Vaart and
Wellner,1996) Let Z1, ..., Zn be independent random variables
with values in Z and F is a class of real valued functions on Z.
Then

E{sup
f∈F

|(Pn − P)f (Z )|} ≤ 2E{sup
f∈F

|Pnεf (Z )|},

where ε1, ..., εn be a Rademacher sequence (i.e., i.i.d.
sequence taking values ±1 with probability 1/2) independent of
Z1, ..., Zn and Pf (Z ) = Ef (Z ).



Proof of Theorem 1

Lemma
Lemma 3. (Contraction theorem,Ledoux and Talagrand,1991)
Let z1, ..., zn be nonrandom elements of some space Z and let
F be a class of real valued functions on Z. Let ε1, ..., εn be a
Rademacher sequence. Consider Lipschitz functions
γi : R 7→ R, that is,

|γi(s) − γi(s̃)| ≤ |s − s̃|,∀s, s̃ ∈ R.

Then for any function f̃ : Z 7→ R, we have

E{sup
f∈F

|Pnε(γ(f ) − γ(f̃ ))|} ≤ 2E{sup
f∈F

|Pnε(f − f̃ )|}.



Proof of Theorem 1

Lemma
Lemma 4. (Concentration theorem,Massart,2000) Let Z1, ..., Zn

be independent random variables with values in some space Z
and let γ ∈ Γ, a class of real valued functions on Z. We assume
that for some positive constants li ,γ and ui ,γ,
li ,γ ≤ γ(Zi) ≤ ui ,γ∀γ ∈ Γ. Define

L2 = sup
γ∈Γ

n∑

i=1

(ui ,γ − li ,γ)
2/n, Z = sup

γ∈Γ
|(Pn − P)γ(Z )|,

then for any t > 0,

P(Z ≥ EZ + t) ≤ exp(− nt2

2L2 ).



Proof of Theorem 1

Let N > 0, define B(N) = {β ∈ B : ‖β − β0‖ ≤ N}, and

G1(N) = sup
β∈B(N)

|(Pn − P){l(X T β, Y ) − l(X T β0, Y )}In(X , Y )|.

Lemma
Lemma 5. For all t > 0, it holds that

P(G1(N) ≥ 4Nkn(q/n)1/2(1 + t)) ≤ exp(−2t2/K 2
n ).



Proof of Theorem 1

Proof of Lemma 5:

On the set Ωn,

|l(X T β, Y ) − l(X T β0, Y )| ≤ kn|X T (β − β0)|
≤ kn‖X‖‖β − β0‖
≤ kn · q1/2Kn · N,

by Lipschitz and Cauchy-Schwartz respectively. Hence,
L2 = 4k2

n qK 2
n N2.

On the other hand,



Proof of Theorem 1

EG1(N) ≤ 2E [ sup
β∈B(N)

|Pnε{l(X T β, Y ) − l(X T β0, Y )}In(X , Y )|]

≤ 4knE [ sup
β∈B(N)

|PnεX T (β − β0)In(X , Y )|]

≤ 4knE‖PnεX In(X , Y )‖ sup
β∈B(N)

‖β − β0‖

≤ 4knN(E‖PnεX In(X , Y )‖2)1/2

= 4knN(E‖X‖2In(X , Y )/n)1/2

≤ 4knN(E‖X‖2/n)1/2 = 4knN(q/n)1/2.

Then, use lemma 4,

P(G1(N) ≥ 4Nkn(q/n)1/2(1 + t)) ≤ exp−2t2/K 2
n .



Proof of Theorem 1

Proof of Theorem 1. (See Appendix)
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First, for the sure screening purpose, if a variable Xj is
jointly important (β⋆

j 6= 0), will it still be marginally

important (βM
j 6= 0)?

Second, for the model selection consistency purpose, if a
variable Xj is jointly unimportant (β⋆

j = 0), will it still be

marginally unimportant (βM
j = 0)?



Theorem 2

Theorem
Theorem 2. For j = 1, ..., pn, the marginal regression
parameters βM

j = 0 iff cov(b′(X T β⋆), Xj) = 0.

Corollary
Corollary 1. If the partial orthogonality condition holds, i.e.,
{Xj , j /∈ M⋆} is independent of {Xi , i ∈ M⋆}, then βM

j = 0, for
j /∈ M⋆.



Proof of Theorem 2

Proof of Theorem 2. (See Appendix)



Theorem 3

Theorem

Theorem 3. If |cov(b′(X T β⋆), Xj)| ≥ c1n−κ for j ∈ M⋆ and a
positive constant c1 > 0, then there exists a positive constant
c2 such that minj∈M⋆

|βM
j | ≥ c2n−κ, provided that b′′(.) is

bounded or

EG(a|Xj |)|Xj |I(|Xj | ≥ nη) ≤ dn−κ, for some 0 < η < κ,

and some sufficiently small positive constants a and d, where
G(|x |) = sup|u|≤|x| |b′(u)|.



Proof of Theorem 3

Proof of Theorem 3. (See Appendix)



Note that for the normal and Bernoulli distributions, b′′(.) is
bounded, whereas for the Poisson distribution,
G(|x |) = exp(|x |) and Theorem 3 requires the tails of Xj to
be light.

In the proof of Theorem 5, it can be shown that

pn∑

j=1

|βM
j |2 = O(‖Σβ⋆‖2) = O(λmax(Σ)),

which means there can not be too many variables that
have marginal coefficient |βM

j | that exceeds certain
thresholding level. That achieves the sparsity in final
selected model.



Gaussian Covariates

Proposition 1. Suppose that Z and X are jointly normal
with mean zero and standard deviation 1. For a strictly
monotonic function f , cov(X , Z ) = 0 iff cov(X , f (Z )) = 0,
provided the latter covariance exists. In addition,

|cov(X , f (Z ))| ≥ |ρ| inf
|x|≤c|ρ|

|g′(x)|EX 2I(|X | ≤ c),

for any c > 0, where ρ = EXZ , g(x) = Ef (x + ε) with
ε ∼ N(0, 1 − ρ2).

Using Proposition 1, for Gaussian covariates, βM
j = 0 iff

cov(X T β⋆, Xj) = 0. Also, condition for Theorem 3 is that
|cov(X T β⋆, Xj)| ≥ c1n−κ, which is a minimum condition
required even for the least squares model (Fan and Lv,
2008).



Regularity Conditions

A’. The marginal Fisher information:
Ij(βj) = E{b′′(X T

j βj)X jX
T
j } is finite and positive definite at

βj = βM
j , for j = 1, ..., pn. Moreover, ‖Ij(βj)‖B is bounded

from above.

B’. The second derivative of b(θ) is continuous and
positive. There exists an ε1 > 0 such that for all
j = 1, ..., pn,

sup
β∈B,‖β−βM

j ‖≤ε1

|Eb(XT
j β)I(|Xj | > Kn)| ≤ o(n−1).

C’. For all βj ∈ B, we have
E [l(X T

j βj , Y ) − l(X T
j βM

j , Y )] ≥ V‖βj − βM
j ‖2, for some

positive V , bounded from below uniformly over j = 1, ..., pn.



Regularity Conditions

D. There exists some positive constants m0, m1, s0, s1 and
α, such that for sufficiently large t ,

P(|Xj | > t) ≤ (m1 − s1) exp{−m0tα}, j = 1, ..., pn,

and that

E exp(b(XT β⋆ + s0) − b(XT β⋆))

+E exp(b(XT β⋆ − s0) − b(XT β⋆)) ≤ s1.

E. The conditions in Theorem 3 hold.



Conditions A’-C’ are satisfied in a lot of examples of GLMs,
such as linear regression, logistic regression and Poisson
regression. Note that the second part of condition D
ensures the tail of the response variable Y to be
exponentially light, as shown in the following.

Lemma
Lemma 1. If condition D holds, for any t > 0,

P(|Y | ≥ m0tα/s0) ≤ s1 exp(−m0tα).



Proof of Lemma 1

Proof of Lemma 1. (See Appendix)



Theorem 4

Theorem
Theorem 4. Suppose that conditions A’, B’, C’ and D hold.
(1) If n1−2κ/(k2

n K 2
n ) → ∞, then for any c3 > 0, there exists a

positive constant c4 such that

P( max
1≤j≤pn

|β̂M
j − βM

j | ≥ c3n−κ)

≤ pn{exp(−c4n1−2κ/(k2
n K 2

n )) + nm1 exp(−m0K α
n )}.

(2) If, in addition, condition E holds, then by taking γn = c5n−κ

with c5 ≤ c2/2, we have

P(M⋆ ⊂ M̂γn)

≥ 1 − sn{exp(−c4n1−2κ/(k2
n K 2

n )) + nm1 exp(−m0K α
n )}.



Proof of Theorem 4

Proof of Theorem 4. (See Appendix)



No conditions on covariance matrix!

If we assume that minj∈M⋆
|cov(b′(X T β⋆), Xj)| ≥ c1n−κ+δ

for any δ > 0, then one can take γn = cn−κ+δ/2 for any
c > 0 in Theorem 4. This is essentially the thresholding
used in Fan and Lv (2008).



Regularity Conditions

F. The variance var(X T β⋆) is bounded from above and
below.

G. Either b′′(.) is bounded or X M = (X1, ..., Xpn)
T follows an

elliptically contoured distribution, i.e., X M = Σ
1/2
1 RU, and

|Eb′(X T β⋆)(X T β⋆ − β⋆
0)| is bounded, where U is uniformly

distributed on the unit sphere in p-dimensional Euclidean
space, independent of the nonnegative random variable R,
and Σ1 = var(X M).



Theorem 5

Theorem
Theorem 5. Under conditions A’, B’, C’, D, F and G, we have for
any γn = c5n−κ, there exists a c4 such that

P[|M̂γn | ≤ O{n2κλmax(Σ)}]
≥ 1 − pn{exp(−c4n1−2κ/(k2

n K 2
n )) + nm1 exp(−m0K α

n )}.



Proof of Theorem 5

Proof of Theorem 5. (See Appendix)
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The likelihood ratio screening is equivalent to the MMLE
screening in the sense that they both possess the sure
screening property and that the number of selected
variables of the two methods are of the same order of
magnitude.

Marginal utility: letting L̂0 = minβ0 Pnl(Y , β0), define
L̂j = L̂0 − minβ0,βj Pnl(Yi , β0 + Xjβj).

Feature ranking: select features with largest marginal
utilities: M̂νn = {1 ≤ j ≤ pn : L̂j ≥ νn}.

The main results are Theorems 6-9, which are analogous
to Theorem 2-5.
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Consider 3 settings of how to generate the covariates in
logistic regressions and linear models

Compare two SIS procedures with LASSO, and SCAD

The minimum model size is used as a measure of the
effectiveness of a screening method

The initial intension is to demonstrate that the simple SIS
does not perform much worse than the far more
complicated procedures like the LASSO and the SCAD

The SIS can even outperform those more complicated
methods in terms of variable screening
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Any surrogates screening, as long as which can preserve
the non-sparsity structure of the true model and is feasible
in computation, can be a good option for population
variable screening.

The proposed procedure does not cover all GLMs, such as
some non-canonical link cases.

The main idea of the technical proofs is broadly applicable.

Another important extension is to generalize the concept of
marginal regression to the marginal group regression,
where the number of covariates m in each marginal
regression is greater than or equal to one. This leads to a
new procedure called group variables screening.

How to choose the tuning parameter γn is another
interesting and important problem.



THANK YOU!!
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