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Inverse covariance matrix

0 in Σ−1 = conditional independence (Xa⊥Xb|all the remaining variables)
= no edge between these two variables (nodes)
Traditionally,

Dempster (1972): introduced covariance selection. Discovering the
conditional independence.

Forward search: edges are added iteratively.

MLE fit (Speed and Kiiveri 1986) for O(p2) different models. But,
the existence of MLE is not guaranteed in general if the number of
observation is smaller than the number of nodes (Buhl 1993)

Neighborhood selection with the Lasso (here) : optimization of a
convex function, applied consecutively to each node in the graph.
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Neighborhood

Neighborhood nea of a node a ∈ Γ
= smallest subset of Γ\{a} so that Xa⊥all the remaining|Xnea

= {b ∈ Γ\{a} : (a, b) ∈ E}.
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Notations

p(n) = |Γ(n)| = the number of nodes (the number of variables)
n: the number of observartions
Optimal prediction of Xa given all remaining variables

θa = arg min
θ:θa=0

E (Xa −
∑

k∈Γ(n)

θkXk)2

Optimal prediction θa,A where A ⊆ Γ(n)\{a}

θa,A = arg min
θ:θk=0,∀k /∈A

E (Xa −
∑

k∈Γ(n)

θkXk)2

A: active set.
Relation to conditional independence is
θa
b = −Σ−1

ab /Σ−1
aa .

nea = {b ∈ Γ(n) : θa
b 6= 0}.
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Neighborhood selection with Lasso

Lasso estimate θ̂a,λ of θa

θ̂a,λ = arg min
θ:θa=0

(n−1‖Xa − Xθ‖2 + λ‖θ‖1) (3)

Neighborhood estimate

n̂eλ
a = {b ∈ Γ(n)|θ̂a,λ

b 6= 0}
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(unavailable) prediction-oracle value

λoracle = arg min
λ

E (Xa −
∑

k∈Γ(n)

θ̂a,λ
k Xk)2

Proposition 1.

Let the number of variables grow to infinity, p(n) →∞ for n →∞ with
p(n) = o(nγ) for some γ > 0. Assume that the covariance matrices Σ(n)
are identical to the identity matrix except for some pair
(a, b) ∈ Γ(n)× Γ(n) for which Σab(n) = Σba(n) = s for some 0 < s < 1
and all n ∈ N. The probability of selecting the wrong neighborhood for
node a converges to 1 under the prediction-oracle penalty

P(n̂eλoracle
a 6= nea) → 1 for n →∞.
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θa = (0,−Kab/Kaa, 0, 0, . . .) = (0, s, 0, 0, . . .). To be n̂eλ
a = nea,

θ̂a,λ = (0, τ, 0, 0, . . .) is the oracle Lasso solution for some τ 6= 0. Then, it
is the same as

1.P(∃λ, τ ≥ s : θ̂a,λ = (0, τ, 0, 0, . . .)) → 0 as n →∞.

and 2. (0, τ, 0, 0, . . .) cannot be the oracle Lasso solution as long as τ < s.
1. If θ̂ = (0, τ, 0, . . .) is a Lasso solution, from Lemma 1 and positiviity of
τ ,

< X1 − τX2,X2 >≥ | < X1 − τX2,Xk > | ∀k ∈ Γ(n), k > 2.

Substituting X1 = sXs + W1 yields

< W1,X2 > −(τ − s) < X2,X2 >≥ | < W1,Xk > −(τ − s) < X2,Xk > |.

Let Uk =< W1,Xk >. Uk , k = 2, . . . , p(n) are exchangeable. Let

D =< X2,X2 > − max
k∈Γ(n),k>2

| < X2,Xk > |.

It is sufficient to show

P(U2 > max
k∈Γ(n),k>2

Uk + (τ − s)D) → 0 for n →∞.
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Since τ − s > 0,

P(U2 > max
k∈Γ(n),k>2

Uk + (τ − s)D) ≤ P(U2 > max
k∈Γ(n),k>2

Uk) when D >= 0.

P(U2 > max
k∈Γ(n),k>2

Uk + (τ − s)D) ≤ 1 when D < 0.

P(U2 > max
k∈Γ(n),k>2

Uk + (τ − s)D) ≤ P(U2 > max
k∈Γ(n),k>2

Uk) + P(D < 0).

By Berstein inequality and p(n) = o(nγ),

P(D < 0) → 0 for n →∞.

Since U2, . . . ,Up(n) are exchangeable, P(U2 > maxk∈Γ(n),k>2 Uk) =
P(U3 > maxk∈Γ(n),k=2,>3 Uk) = · · · = P(Up > max2<=k<p−1 Uk) and sum
of those should be 1. Therefore,
P(U2 > maxk∈Γ(n),k>2 Uk) = (p(n)− 1)−1 → 0 for n →∞.
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2. (0, τ, 0, . . .) with τ < s cannot be the oracle Lasso solution.
Suppose (0, τmax , 0, 0, . . .) is the Lasso solution θ̂a,λ for some λ = λ̃ > 0
with τmax < s. Since τmax is the maximal value such that (0, τ, 0, . . .) is a
Lasso solution, there exists some k ∈ Γ(n) > 2 such that

|n−1 < X1 − τmaxX2,X2 > | = |n−1 < X1 − τmaxX2,Xk > | = λ̃.

For sufficiently small δλ ≥ 0, a Lasso solution for the penalty λ̃− δλ is
given by

(0, τmax + δθ2, δθ3, 0, . . .).

From LARS, δθ2 = δθ3. If we compare the squared error for these solution

Lδθ − L0 = −2(s − τmax)δθ + 2δθ2 < 0 for any 0 < δθ < 1/2(s − τmax)
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Lemma 1

Lasso estimate θ̂a,A,λ of θa,A is given by

θ̂a,A,λ = arg min
θ:θk=0∀k /∈A

(n−1‖Xa − Xθ‖2 + λ‖θ‖1) (10)

.

Lemma 1

Given θ ∈ Rp(n), let G (θ) be a p(n)-dimensional vector with elements

Gb(θ) = −2n−1 < Xa − Xθ, Xb > .

A vector θ̂ with θ̂k = 0,∀k ∈ Γ(n)\A is a solution to the above
⇐⇒ for all b ∈ A,
Gb(θ̂) = −sign(θ̂b)λ in case θ̂b 6= 0
and |Gb(θ̂)| ≤ λ in case θ̂b = 0. Moreover, if the solution is not unique and
|Gb(θ̂)| < λ for some solution θ, then θ̂b = 0 for all solution of the above.
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Proof.

D(θ) = subdifferential of (n−1‖Xa − Xθ‖2 + λ‖θ‖1) with respect to θ =
{G (θ) + λe, e ∈ S} where S ⊂ Rp(n) is given by
S = {e ∈ Rp(n)|eb = sign(θb) if θb 6= 0 and eb ∈ [−1, 1]}. θ̂ is a solution
to the above iff ∃d ∈ D(θ) so that db = 0∀b ∈ A.
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Assumptions

X ∼ N(0,Σ)

High-dimensionality Assumption 1. There exists γ > 0 so that
p(n) = O(nγ) for n →∞.

Non-singularity Assumption 2. (a) For all a ∈ Γ(n) and n ∈ N ,
Var(Xa) = 1. (b) There exists v2 > 0 so that for all n ∈ N and
a ∈ Γ(n), Var(Xa|XΓ(n)\{a}) ≥ v2.[This excludes singular or nearly
singular covariance matrices.]

Sparsity Assumption 3. There exists some 0 ≤ κ < 1 so that
maxa∈Γ(n) |nea| = O(nκ) for n →∞. [restriction on the size of the
neighborhood].
Assumption 4. There exists some ϑ < ∞ so that for all neighboring
nodes a, b ∈ Γ(n) and all n ∈ N, ‖θa,neb\{a}‖1 ≤ ϑ. [This is fulfilled if
assumption 2 holds and the size of the overlap of neighborhoods is
bounded by an arbitrarily large number from above. ]
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Magnitude of partial correlations Assumption 5. There exists a
constant δ > 0 and some ξ > κ so that for every (a, b) ∈ E ,
|πa,b| ≥ δn−(1−ξ)/2.

Neighborhood stability Sa(b) :=
∑

k∈nea
sign(θa,nea

k )θb,nea

k .
Assumption 6. There exists some δ < 1 so that for all a, b ∈ Γ(n)
with b /∈ nea, |Sa(b)| < δ.
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Theorem 1: controlling type-I error

Theorem 1

Let assumptions 1-6 be fulfilled. Let the penalty parameter satisfy
λn ∼ dn−(1−ε)/2 with some κ < ε < ξ and d > 0. There exists some c > 0
so that, for all a ∈ Γ(n),

P(n̂eλ
a ⊆ nea) = 1− O(exp(−cnε)) for n →∞.

It means that the probability of falsely including any of the
non-neighboring variables is vanishing exponentially fast. Proposition 3
says that assumption 6 cannot be relaxed.

Proposition 3

If there exists some a, b ∈ Γ(n) with b /∈ nea and |Sa(b)| > 1, then

P(n̂eλ
a ⊆ nea) → 0 for n →∞.
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Proof of Thm 1

P(n̂eλ
a ⊆ nea) = 1− P(∃b ∈ Γ(n)\cla : θ̂a,λ

b 6= 0).

Consider the Lasso estimate θ̂a,nea,λ which is constrained to have non-zero
components only in nea. Let E be the event

max
k∈Γ(n)\cla

|Gk(θ̂a,nea,λ)| < λ.

On this event, by Lemma 1, θ̂a,nea,λ is a solution of (3) with A = Γ(n)\{a}
as well as a solution of (10).

P(∃b ∈ Γ(n)\cla : θ̂a,λ
b 6= 0) ≤ 1− P(E) = P( max

k∈Γ(n)\cla
|Gk(θ̂a,nea,λ) ≥ λ|).

It is sufficient to show there exists a constant c > 0 so that for all
b ∈ Γ(n)\cla,

P(|Gb(θ̂
a,nea,λ)| ≥ λ) = O(exp(−cnε)).
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cont. prof of Thm 1.

One can write for any b ∈ Γ(n)\cla,

Xb =
∑

m∈nea

θb,nea
m Xm + Vb,

where Vb ∼ N(0, σ2
b) for some σ2

b ≤ 1 and Vb is independent of
{Xm|m ∈ cla}. Plugging this in gradient calculation,

Gb(θ̂
a,nea,λ) =− 2n−1

∑
m∈nea

θb,nea
m < Xa − X θ̂a,nea,λ,Xm >

− 2n−1 < Xa − X θ̂a,nea,λ,Vb > .

By lemma 2, there exists some c > 0 so that with probability
1− O(exp(−cnε)),

sign(θ̂a,nea,λ) = sign(θa,nea

k ),∀k ∈ nea.
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cont. prof of Thm 1.

With Lemma1, assumption 6, we get with probability 1− O(exp(−cnε))
and some δ < 1,

|Gb(θ̂
a,nea,λ)| ≤ δλ + |2n−1 < Xa − X θ̂a,nea,λ,Vb > |.

Then, it remains to be shown that

P(|2n−1 < Xa,Vb > | ≥ (1− δ)λ) = O(exp(−cnε)).
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Theorem 2

Let the assumptions of Theorem 1 be fulfilled. For λ = λn as a in
Theorem 1, it holds for some c > 0 that

P(nea ⊆ n̂eλ
a ) = 1− O(exp(−cnε)) for n →∞.

Proposition 4 says that assumption 5 cannot be relaxed.

Proposition 4

Let the assumptions of Theorem 1 be fulfilled with ϑ < 1 in Assumption 4.
For a ∈ Γ(n), let there be some b ∈ γ(n)\{a} with πab 6= 0 and
|πab| = O(n−(1−ξ)/2) for n →∞ for some ξ < ε. Then

P(b ∈ n̂eλ
a ) → 0 for n →∞.
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Proof of Thm2

P(nea ⊆ n̂eλ
a ) = 1− P(∃b ∈ nea : θ̂a,λ

b = 0)

Let E be the event
max

k∈Γ(n)\cla
|Gk(θ̂a,nea,λ)| < λ.

As in Thm 1, θ̂a,nea,λ is a solution of (3). Then,

P(∃b ∈ nea : ˆθa,λ
b = 0) ≤ P(∃b ∈ nea : θ̂a,nea,λ

b = 0) + P(Ec).

P(EC ) = O(exp(−cnε)) by theorem 1 and
P(θ̂a,nea,λ = 0) = O(exp(−cnε)) by lemma 2.
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Edge set

Ideally, edge set can be given by

E = {(a, b) : a ∈ neb ∧ b ∈ nea}.

An estimate of the edge set is

Êλ,∧ = {(a, b) : a ∈ n̂eλ
b ∧ b ∈ n̂eλ

a}.

Or
Êλ,∨ = {(a, b) : a ∈ n̂eλ

b ∨ b ∈ n̂eλ
a}.

Corollary 1

Under the conditions of Theorem 2, for some c > 0,

P(Êλ = E ) = 1− P(exp(−cnε)) for n →∞.
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λ?

How to choose the penalty?
For any level 0 < α < 1, the penalty

λ(α) =
2σ̂a√

n
Φ̃−1(

α

2p(n)2
).

Theorem 3

Assumptions 1-6 be fulfilled. Using the penalty λ(α), it holds for all n ∈ N
that

P(∃a ∈ Γ(n) : Ĉλ
a * Ca) ≤ α.

This constrains the probability of (falsely) connecting two distinct
connectivity components of the true graph.

presented by Jee Young Moon () High dimensional graphs and variable selection with the Lasso Nicolai Meinshausen and Peter Buhlmann The annals of Statistics (2006)Feb. 19 . 2010 21 / 21


	Inverse covariance matrix
	Neighborhood
	Neighborhood selection with Lasso
	Lemmas
	Assumptions
	Theorem 1: controlling type-I error
	Theorem 2

