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Introduction

Setting

> v; = x;0* +¢;, where ¢1,--- ,&, are i.i.d. mean 0 and
variance o?.

> A:{j:ﬁj‘;«éo} and |A| = po < p.
> %XTX — C, where C is a positive definite matrix.

C= [ G Cio ] , where (i1 is a pg X pg matrix.
C1
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Introduction

Definition of Oracle Procedures

We call 6 an oracle procedure if 3(5) (asymptotically) has the
following oracle properties:

1. Identifies the right subset model, { 1B # o} —A

2. /n (B(é)A - ﬁ;) —4 N(0,X*), where * is the covariance
matrix knowing the true subset model.
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Introduction

Definition of LASSO (Tibshirani, 1996)

A

(N — 4 '
165} rg mén

p
p 2
Y= i+ 2 D181
=1

» )\, varies with n. A, = {j : B}") + 0}_
» LASSO variable selection is consistent iff lim, P (A, = A) = 1.

Presented by Dongjun Chung The Adaptive Lasso and Its Oracle Properties Hui Zou (2006),



Inconsistency of LASSO

Proposition 1: Inconsistency of LASSO

Proposition 1
If \n/v/n — Xo >0, then limsup, P (A, =A) < c <1, where cis
a constant depending on the true model.
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Inconsistency of LASSO

Theorem 1: Necessary Condition for Consistency of LASSO

Theorem 1
Suppose that lim, P (A, = A) = 1. Then there exists some sign
vector s = (s1,- - ,spo)T, sj =1 or —1, such that

|C21Cﬂ15’ <1. (1)
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Inconsistency of LASSO

Corollary 1: Interesting Case of Inconsistency of LASSO

Corollary 1

Suppose that pg =2m+1 >3 and p = pg + 1, so there is one
irrelevant predictor. Let Ci1 = (1 — p1) | + p1J1, where J; is the
matrix of 1's and Cip = pzf and Cyr = 1. If —ﬁ <p1 < —i
and 1+ (po — 1) p1 < |p2| < /(1 + (po — 1) p1) /po, then
condition (1) cannot be satisfied. Thus LASSO variable selection is
inconsistent.

Presented by Dongjun Chung The Adaptive Lasso and Its Oracle Properties Hui Zou (2006),



Inconsistency of LASSO

Corollary 1: Interesting Case of Inconsistency of LASSO
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Definition of Adaptive LASSO

P

~ . p 2 Yy

0wl - s+ i
j=1

» weight vector w =1/ ’3‘7 (data-dependent) and v > 0.

» (3 is a root-n-consistent estimator to 3%, e.g. 3 = B(ols).

> AL = {j B o}.
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Penalty Function of LASSO, SCAD and Adaptive LASSO
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Remarks: Adaptive LASSO

» The data-dependent W is the key for its oracle properties.

» As n grows, the weights for zero-coefficient predictors get
inflated, while the weights for nonzero-coefficient predictors
converge to a finite constant.

» In the view of Fan and Li, 2001 (presented by Yang Zhao),
adaptive lasso satisfies three properties of good penalty
function: unbiasedness, sparsity, and continuity.
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Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2
Suppose that \,//n — 0 and A\,n(0~1/2 — o0, Then the
adaptive LASSO must satisfy the following:

1. Consistency in variable selection: lim, P (A}, = A) = 1.

2. Asymptotic normality: \/n <BA:\(") - ﬂ;) —a N (0,02CY).
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Computations of Adaptive LASSO

» Adaptive LASSO estimates can be solved by the LARS
algorithm (Efron et al., 2004). The entire solution path can
be computed at the same order of computation of a single
OLS fit.

» Tuning: If we use (3(ols), then use 2-dimensional CV to find
an optimal pair of (7, Ap). Or use 3-dimensional CV to find

an optimal triple (B,fy, A).

N

» ((ridge) may be used from the best ridge regression fit when
collinearity is a concern.

Presented by Dongjun Chung The Adaptive Lasso and Its Oracle Properties Hui Zou (2006),



Definition
Oracle Properties
Adaptive LASSO Computations
Relationship: Nonnegative Garrote
Extensions: GLM

Definition of Nonnegative Garrote (Breiman, 1995)

ﬂAj (garrote) = cjﬁAj (ols) , where a set of nonnegative scaling factor
{cj} is to minimize

p o 2 p
Hy - Zj=1 xj/%; (ols) CjH +An ijl >

subject to ¢; > 0,V).

> A sufficiently large A\, shrinks some ¢; to exact 0, i.e.
Bj (garrote) = 0.

» Yuan and Lin (2007) also studied the consistency of the
nonnegative garrote.
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Garrote: Adaptive LASSO Formulation and Consistency

Adaptive LASSO Formulation

N

: P 2 P
0 (garrote) = arg mﬂln Hy — ijl Xjﬁj” + An ijl w; | 5]

subject to (3;3j (ols) > 0,V), where y =1, w =1/ ’B(ols)).

Corollary 2: Consistency of Nonnegative Garrote

If we choose a A, such that A\,/v/n — 0 and A\, — oo, then
nonnegative garrote is consistent for variable selection.
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Adaptive LASSO for GLM

M (gim) = arg mﬁin Z (—y,- (X,-Tﬁ) +¢(x ( )) + An Z IR

> weight vector w =1/ ’B(mle)‘W for some v > 0.
> £ (yIx,0) = h(y)exp (y0 — 6(0)), where 0 = xT 3.

» The Fisher information matrix /(5*) = [ i he ] , where
b1 b
l11 is a pg X pp matrix. Then /i1 is the Fisher information

matrix with the true submodel known.
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Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4
Let A% = {j : ﬁf(") (glm) # O}. Suppose that A\,/y/n — 0 and

An(r=1/2 _, 56, Then, under some mild regularity conditions, the
adaptive LASSO estimate 3*(") (glm) must satisfy the following:

1. Consistency in variable selection: lim, P (A}, = A) = 1.

2. Asymptotic normality: \/n (BA:\(")(g/m) — 5;) —g N (0, /1_11).
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Numerical Experiments and Discussion

Experiments for Inconsistency of LASSO

Setting

We let y = x" 3 + N(0, 02), where the true regression coefficients
are = (5.6,5.6,5.6,0). The predictors x;(i =1,---,n) are i.i.d.
N(0, C), where C is the C matrix in Corollary 1 with p; = —.39
and po = .23 (red point).
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Numerical Experiments and Discussion

Experiments for Inconsistency of LASSO

Table 1. Simulation Model 0: The Probability of Containing
the True Model in the Solution Path

n=60,0=9 n=120,0=5 n=300,0=3

lasso .55 .51 .53
adalasso(y = .5) .59 .68 .93
adalasso(y = 1) .67 .89 1
adalasso(y =2) .73 .97 1
adalasso(y by cv) .67 91 1

NOTE: In this table “adalasso” is the adaptive lasso, and “y by cv” means that y was selected
by five-fold cross-validation from three choices: y =.5, y =1,and y =2.
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Numerical Experiments and Discussion

General Observations

» Comparison: LASSO, Adaptive LASSO, SCAD, and
nonnegative garrote.

» p=28and pp = 3. Consider a few large effects (n = 20, 60)
and many small effects (n = 40, 80).

» LASSO performs best when the SNR is low.

» Adaptive LASSO, SCAD, and and nonnegative garrote
outperforms LASSO with a medium or low level of SNR.

» Adaptive LASSO tends to be more stable than SCAD.

» LASSO tends to select noise variables more often than other
methods.
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Proofs

Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2
Suppose that \,//n — 0 and A\,n(0~1/2 — o0, Then the
adaptive LASSO must satisfy the following:

1. Consistency in variable selection: lim, P (A}, = A) = 1.

2. Asymptotic normality: \/n <BA:\(") - ﬂ;) —a N (0,02CY).
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Proof of Theorem 2: Asymptotic Normality

Let 3 = 8* + u/+/n and

Let &(") = argmin W, (u); then &(" = \/n <B*(”) - ﬂ*),
W, () — W, (0) = V{7 (u), where

Vin) (v)=uT (AXTX)u-— 25\T/§u

\fz WJ\[<

B+
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Proof of Theorem 2: Asymptotic Normality (conti.)

Then, V}") (u) =4 Va (u) for every u, where

Va (u) = { uz\—ClluA — 2UZWA if u = 0,Vj ¢ A
00 otherwise

and Wa = N (0,0%Cyy). sz") is convex, and the unique minimum
of Vy is (Cﬂl Wa, 0) 7 Following the epi-convergence results of

Geyer (1994), we have ﬁi‘n) —q C;1* W, and ﬁi\"c) —4 0. Hence, we
prove the asymptotic normality part.
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Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Proof of Theorem 2: Consistency

The asymptotic normality result indicates that Vj € A,
B}‘(”) —p B thus P (j € A}) — 1. Then it suffices to show that
Vj' ¢ A, P(j’ € A) — 0. Consider the event j € A%. By the KKT

optimality conditions, 2x;/ (y — XB*(")> = AnWj.

Aniyr [/ = A0

X 3*(n) IX *_ gx(n 7/'
Qf(yﬁﬁ ):2J f(’i b )+2Xf—\/;andeachofthesetwo

terms converges to some normal distribution. Thus

p 00 and

P ey <P (2 (y =X ™) = iy ) —0.
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Theorem 4: Oracle Properties of Adaptive LASSO for GLM
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Corollary 2: Consistency of Nonnegative Garrote

Adaptive LASSO Formulation

N

: P 2 P
0 (garrote) = arg mﬂln Hy — ijl Xjﬁj” + An ijl w; | 5]

subject to (3;3j (ols) > 0,V), where y =1, w =1/ ’B(ols)).

Corollary 2: Consistency of Nonnegative Garrote

If we choose a A, such that A\,/v/n — 0 and A\, — oo, then
nonnegative garrote is consistent for variable selection.
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Theorem 2: Oracle Properties of Adaptive LASSO
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Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Proofs

Proof of Corollary 2

Let 3*(" be the adaptive LASSO estimates. By Theorem 2, 3*(")
is an oracle estimator if A,//n — 0 and A, — oo. To show the
consistency, it suffices to show that (3*(n) satisfies the sign
constraint with probability tending to 1. Pick any j. If j € A, then

A R 2
B0 (7 = 1); B (0ls); —p (87)" > 0. 1fj & A, then

P (B (v =1);B(0ls); = 0) = P (3™ (y=1);=0) = 1. In
either case, P <B*(”) (v= 1)j3 (ols); > 0) — 1 for any

_j: 1727'” > P-
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4
Let AY = {j ; ﬂ;(") (glm) # 0}. Suppose that A\,/y/n — 0 and

An(=1/2 _ 56, Then, under some mild regularity conditions, the
adaptive LASSO estimate 3*(") (glm) must satisfy the following:

1. Consistency in variable selection: lim, P (A} = A) = 1.

2. Asymptotic normality:

f( 50 (gim) — Bj‘) —a N (0,0%157).

> f(y|x,0) = h(y)exp(y8 — ¢ (), where 6 = xT3*.
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Theorem 4: Regularity Conditions

1. The Fisher information matrix is finite and positive definite,
I(ﬂ*) — E |:¢// (XT,8*> XXT] .

2. There is a sufficiently large enough open set O that contains
(3* such that V3 € O,

‘w (xTﬁ)( < M (x) < 00

and
E [M (x) |xjxikexi]] < o0

forall 1 <j, k,I <p.
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Proof of Theorem 4: Asymptotic Normality

Let 8 = 3* + u/+/n. Define
Co (u) = Xy {=yi (67 (8" + 0/ V) + 6 (7 (5" + u/v/n)) }

A0 187+ i/l

Let a(" = argmin, I, (u); then (") = \/n (3*(") (glm) — 3*).
Using the Taylor expansion, we have ', (u) — T, (0) = H(" (u),
where H() (u) = A1 4+ AL + AY) + AL, with

A = =S i — ¢ (x Tﬁ*)}x 3
(’7) Z? 1 é¢//( Tﬁ*) TXrX u,

A(”) \fn W/f ( /3*

)
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Proof of Theorem 4: Asymptotic Normality (conti.)

and AY) = p=3/2370 Ly <x,-T5*> (xTu)®, where 3* is between
B* and 3* + u/\/n. Then, by the regularity condition 1 and 2,
H")(4) —4 H(u) for every u, where

H(u) _ UZ’II”A - 2U,ZWA if uj :.O,Vj ¢ A
00 otherwise

and Wy = N (0, h1). H(" is convex, and the unique minimum of
His (Il_l1 Wa, O)T Following the epi-convergence results of Geyer

(1994), we have ui\) —qd /11 Wy and u( ) —4 0, and the
asymptotic normality part is proven.
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Proof of Theorem 4: Consistency

The asymptotic normality result indicates that
j € A P(j € A;) — 1. Then it suffices to show that
J ¢ A P(j € A%) — 0. Consider the event j' € A%. By the KKT

optimality conditions,
S (v = ¢! (B0 (gim) ) ) = Ay
S (o (<7370 () ) 1 = B9+ 87+ 659
with
B{" =Sy xi (vi — @' (x787)) /v/n,
BY = (3 Sy (7 67) xT) v/ (8 = B0 (gim))
B = (A5 xpd” (5 Be)) (v (5 = 50 (gim) ) /v

O c
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Theorem 2: Oracle Properties of Adaptive LASSO

Corollary 2: Consistency of Nonnegative Garrote

Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Proofs

Proof of Theorem 4: Consistency (conti.)

Bf") and Bé") converge to some normal distributions and
B{" = Op(1/v/).
Aniy [/ = A0 Uz/‘fﬁ g/m)‘ » 00. Thus

P eA) < PO i (vi— ¢! (5750 (ghm) ) = Aity) — 0.

and this completes the proof.
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