
Contingency Tables

Bret Hanlon and Bret Larget

Department of Statistics
University of Wisconsin—Madison

October 4–6, 2011

Contingency Tables 1 / 56

Case Study

Case Study

Example 9.3 beginning on page 213 of the text describes an experiment
in which fish are placed in a large tank for a period of time and some
are eaten by large birds of prey. The fish are categorized by their level of
parasitic infection, either uninfected, lightly infected, or highly infected. It
is to the parasites’ advantage to be in a fish that is eaten, as this provides
an opportunity to infect the bird in the parasites’ next stage of life. The
observed proportions of fish eaten are quite different among the categories.

Uninfected Lightly Infected Highly Infected Total

Eaten 1 10 37 48
Not eaten 49 35 9 93

Total 50 45 46 141

The proportions of eaten fish are, respectively, 1/50 = 0.02, 10/45 = 0.222,
and 37/46 = 0.804.
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Graphing Tabled Counts

A stacked bar graph shows:
I the sample sizes in each sample; and
I the number of observations of each type within each sample.

This plot makes it easy to compare sample sizes among samples and
counts within samples, but the comparison of estimates of conditional
probabilities among samples is less clear.
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Mosaic Plot

A mosaic plot replaces absolute frequencies (counts) with relative
frequencies within each sample.

This plot makes comparisons of estimated conditional probabilities
very clear.

The cost is that the sample size information is lost.
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Estimating Differences between Proportions

In the setting of the experiment, we observe a difference between the
proportions of eaten fish in the lightly and highly infected fish.

A point estimate of this difference is

37

46
− 10

45
= 0.804− 0.222 = 0.582

How can we quantify uncertainty in this estimate?
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Confidence Intervals

A confidence interval for a difference in proportions p1 − p2 is based
on the sampling distribution of the difference in sample proportions.

If the two samples are independent,

E(p̂1 − p̂2) = p1 − p2

Var(p̂1 − p̂2) =
p1(1− p1)

n1
+

p2(1− p2)

n2

If both samples are large enough (depending on how close the
proportions are to 0 or 1), this sampling distribution is approximately
normal.
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Confidence Interval

95%Confidence Interval for p1 − p2

A 95% confidence interval for p1 − p2 is

p̂1 − p̂2 − 1.96SE
(

p̂1 − p̂2

)
< p1 − p2 < p̂1 − p̂2 + 1.96SE

(
p̂1 − p̂2

)
where p̂i = xi/ni for i = 1, 2 and

SE
(

p̂1 − p̂2

)
=

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

This formula will be more accurate for large n1 and n2.

A rough rule of thumb is that each sample should have at least five
observations of each type.

Maybe this method can be improved by adding fake observations like
the one sample case?
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Application

For the infected fish case study, a confidence interval for the
difference in probabilities of being eaten between highly and lightly
infected fish is

0.415 < phigh − plight < 0.749

(Show calculations on the board.)

In the settings of the experiment, we are 95% confident that the
probability a highly infected fish is eaten is greater than the
corresponding probability for a lightly infected fish by an amount
between 0.415 and 0.749.
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Odds Ratios

Odds ratios are an alternative way to think about probabilities.

Definition

The odds in favor of an event with probability p are p/(1− p).

The odds ratio in favor of an event between two groups is the odds in
favor for the first group divided by the odds in favor for the second
group.

odds ratio =
p1/(1− p1)

p2/(1− p2)

Odds ratios are estimated by plugging in sample proportions.
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Sampling Distribution of the Odds Ratio

We explore the sampling distribution of the odds ratio when n1 = 46,
p1 = 0.8, n2 = 45, and p2 = 0.22 which are estimates from the case
study.

We simulate 100,000 odds ratios from independent samples and graph
the results.
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Graph of Log of Odds Ratio
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Comparison

The sampling distribution of the odds ratio is very skewed to the right.

The sampling distribution of the log odds ratio is fairly symmetric and
bell-shaped.

We will use the normal approximation for the log odds ratio and then
translate back.

The standard error of the odds ratio can be estimated as

SE
(

ln(odds ratio)
)

=

√
1

x1
+

1

n1 − x1
+

1

x2
+

1

n2 − x2
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Confidence Interval for Odds Ratio

95%Confidence Interval for
p1/(1− p1)

p2/(1− p2)

A 95% confidence interval for the odds ratio is

exp
(

ln ÔR− 1.96SE
)
<

p1/(1− p1)

p2/(1− p2)
< exp

(
ln ÔR + 1.96SE

)
where ÔR = p̂1/(1−p̂1)

p̂2/(1−p̂2)
and

SE =

√
1

x1
+

1

n1 − x1
+

1

x2
+

1

n2 − x2

is the estimated standard error of the log odds ratio. Note the equivalent
expression:

ÔR exp
(
− 1.96SE

)
<

p1/(1− p1)

p2/(1− p2)
< ÔR exp

(
+ 1.96SE

)
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Application to the Case Study

Example

The estimated odds for being eaten in the highly infected group is
37/9 = 4.111.

The estimated odds for being eaten in the lightly infected group is
10/35 = 0.286.

The estimated odds ratio is 14.389 and its natural logarithm is 2.666.

The estimated SE of the log odds ratio is√
1

37
+

1

9
+

1

10
+

1

35
= 0.516

e2.666−1.96(0.516) .= 5.23 and e2.666+1.96(0.516) .= 39.6.

The 95% confidence interval is 5.23 < OR < 39.6.
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Interpretation

In the experimental setting of the infected fish case study, we are
95% confident that the odds of being eaten in the highly infected
group are between 5.2 and 39.6 times higher than in the lightly
infected group.
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A Second Case Study

Case Study

Example 9.4 on page 220 describes an experiment. In Costa Rica, the
vampire bat Desmodus rotundus feeds on the blood of domestic cattle. If
the bats respond to a hormonal signal, cows in estrous (in heat) may be
bitten with a different probability than cows not in estrous. (The researcher
could tell the difference by harnessing painted sponges to the undersides of
bulls who would leave their mark during the night.)

In estrous Not in estrous Total

Bitten by a bat 15 6 21
Not bitten by a bat 7 322 329

Total 22 328 350

The proportion of bitten cows among those in estrous is 15/22 = 0.682 while
the proportion of bitten cows among those not in estrous is 6/328 = 0.018.
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Estimating Differences in Proportions

Example

Find a 95% confidence interval for the difference in probabilities of
being bitten by a vampire bat between cows in estrous and those not.

0.682− 0.018± 1.96

√
0.682(1− 0.682)

22
+

0.018(1− 0.018)

328

0.468 < p1 − p2 < 0.859

In the study setting in Costa Rica, we are 95% confident that the
probability that a cow in estrous is bitten by a vampire bat is
larger than the probability of cow not in estrous being bitten by
an amount between 0.468 and 0.859.
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Odds Ratio for Vampire Bats

Example

The estimated odds for being bitten for a cow in estrous are
15/7 = 2.143.

The estimated odds for being bitten for a cow not in estrous are
6/322 = 0.019.

The estimated odds ratio is 115 and its natural logarithm is 4.745.

The estimated SE of the log odds ratio is√
1

15
+

1

7
+

1

6
+

1

322
= 0.616

e4.745−1.96(0.616) .= 34 and e4.745+1.96(0.616) .= 385.

The 95% confidence interval is 34 < OR < 385.
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Odds Ratio for Vampire Bats (cont.)

Interpretation:

Under the study conditions in Costa Rica, we are 95% confident
that the odds that a cow in estrous is bitten by a vampire bat are
between 34 and 385 times higher than for cows not in estrous.
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Hypothesis Tests

Chapter 9 describes three methods for testing independence between
two categorical variables.

I χ2 test of independence;
I G-test;
I Fisher’s Exact Test.

If we think of one of these variable as grouping observations into
populations and the other as a response, then each test is equivalent
to a test with the null hypothesis that all population proportions (or
conditional probabilities) are equal.

For example,

H0 : infection level and being eaten are independent

is equivalent to
H0 : p1 = p2 = p3

where p1, p2, and p3 are probabilities of being eaten for the three
groups.
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Comparisons Among Tests

The χ2 test of independence and G-test can be applied to tables of
any size.

Fisher’s Exact Test is only defined for 2× 2 tables.

The χ2 test of independence and G-test compute test statistics for
which the true sampling distributions are approximated by χ2

distributions.

Fisher’s Exact Test computes p-values on the basis of sampling
without replacement and the p-value is exact.

The χ2 test of independence and G-test p-value calculations are only
accurate if sample sizes are large enough (due to the approximation).

The G-test is based on likelihood ratios and may be more accurate
than the χ2 test which approximates likelihood ratios.
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The χ2 Test of Independence

The χ2 test of independence compares the observed counts in the
table with the expected values of those counts under the null
distribution.

The test statistic measures discrepancy between observed and
expected counts.

If the discrepancy is larger than expected (from a random chance
model), then there is evidence against the null hypothesis of
independence.
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The Test Statistic

Test Statistic for χ2 Test of Independence

X 2 =
∑

i∈rows

∑
j∈columns

(Oij − Eij)
2

Eij

where

Oij is the observed count in row i and column j ;

Eij = (row sum i)(column sum j)
(table sum) is the expected count in row i and

column j ;
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Expected Counts

Uninfected Lightly Infected Highly Infected Total

Eaten 1 10 37 48
Not eaten 49 35 9 93

Total 50 45 46 141

Explain expected counts in reference to the example:

Calculations and estimates assume independence (the null
hypothesis).

The observed proportion getting eaten is 48/141.

The observed proportion that are uninfected is 50/141.

Probabilities of these events are estimated by their observed
proportions.

Under independence,

P(eaten ∩ uninfected) = P(eaten)P(uninfected)
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Expected Counts (cont.)

Plugging in observed proportions as estimates, this is

P(eaten ∩ uninfected) ≈ 48

141
× 50

141

Under the null hypothesis, the observed count in each cell is a
binomial random variable with n = 141 and p estimated as above as a
product of marginal proportions.

Oij ∼ Binomial(n, pij)

where n is the total number of observations in the table and pij is the
estimated probability for cell in row r and column c.

The expected value of this random variable is Eij = npij , or

Eij = 141× 48

141
× 50

141
=

48× 50

141

In general,

Eij =
(row sum i)(column sum j)

(table sum)
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Expected Counts in Example

Example

Observed Counts:

Uninfected Lightly Infected Highly Infected Total

Eaten 1 10 37 48
Not eaten 49 35 9 93

Total 50 45 46 141

Expected Counts:

Uninfected Lightly Infected Highly Infected Total

Eaten 17 15.3 15.7 48
Not eaten 33 29.7 30.3 93

Total 50 45 46 141
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Calculating the test statistic

X 2 =
∑

i∈rows

∑
j∈columns

(Oij − Eij)
2

Eij

=
(1− 17)2

17
+ · · ·+ (9− 30.3)2

30.3
= 69.8

The sum is over all cells in the table.

If there are some cells where the observed counts and expected counts
differ by a lot, the test statistic will be large.

If all observed counts are close to expected counts, then the test
statistic will be small.
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Sampling Distribution

The sampling distribution of the test statistic under the null
hypothesis of independence can be estimated using simulation.

For large enough samples (no more than 20% of expected counts <
5), the χ2 distribution with (r − 1)(c − 1) degrees of freedom is a
good approximation.

This is the distribution of a sum of (r − 1)(c − 1) squared independent
standard normal random variables (which we will see next week).

The expected value of the test statistic is (r − 1)(c − 1).

The p-value is the area to the right of the test statistic under a χ2

distribution with (r − 1)(c − 1) degrees of freedom.
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Application to Example

In the example, r = 2 and c = 3 so there are (2− 1)(3− 1) = 2
degrees of freedom.

The test statistic of 69.8 is much larger than 2.

The p-value is about 6.6× 10−16.
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Interpretation

There is overwhelming evidence (X 2 = 69.8, n = 141,
df = 2,p < 10−15, χ2 test of independence) that infection status
is not independent of the probability of being eaten for fish under
these experimental conditions.
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The G-test

The G-test is nearly identical to the χ2 test in that the test statistic is
compared to a χ2 distribution.

The difference is that the test statistic is computed on the basis of
likelihood.

The G-test is an example of a likelihood ratio test.

The details are technical and not of primary interest for this course;
slides that go over the details for the interested student are in an
appendix.
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The G-Test

The G-Test

The test statistic

G = 2

( r∑
i=1

c∑
j=1

Oij ln
(Oij

Eij

))
where

Oij is the observed count in row i and column j ;

Eij = (row sum i)(column sum j)
(table sum) is the expected count in row i and

column j ;

has an approximate χ2 distribution with (r − 1)(c − 1) degrees of freedom
when the null hypothesis is true and n is large enough.
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Expected Counts Again

Observed Counts:

Uninfected Lightly Infected Highly Infected Total

Eaten 1 10 37 48
Not eaten 49 35 9 93

Total 50 45 46 141

Expected Counts:

Uninfected Lightly Infected Highly Infected Total

Eaten 17 15.3 15.7 48
Not eaten 33 29.7 30.3 93

Total 50 45 46 141
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Case Study: G-Test

G = 2

( r∑
i=1

c∑
j=1

Oij ln
(Oij

Eij

))

= 2

(
O11 ln

(O11

E11

)
+ · · ·+ Orc ln

(Orc

Erc

))
= 77.9

The p-value is approximately 1.2× 10−17.

Compare G to the χ2 test of independence test statistic value of 69.8.
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Interpretation

There is overwhelming evidence (G = 77.9, n = 141,
df = 2,p < 10−16, G-test) that infection status and is not
independent of the probability of being eaten for fish under these
experimental conditions.
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Fisher’s Exact Test

Fisher’s exact test is based on an alternative probability model for
2× 2 tables.

Think of one factor as an outcome and the other as designating
groups.

Fisher’s exact test imagines the 2× 2 tables if the groups of the same
size had been randomly created with sampling without replacement
rather than using the factor to form the groups.

The p-value is the probability of selecting any table at least as
extreme as the actual table.

Sampling without replacement is described by the hypergeometric
distribution.
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The Hypergeometric Distribution

The hypergeometric distribution is similar to the binomial distribution
in that it counts the number of successes in a sample of size n, but
the sample is made without replacement from a finite population, and
so separate trials are not independent.

The p-value from Fisher’s exact test is computed by summing
hypergeometric probabilities.
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The Hypergeometric Distribution (cont.)

The Hypergeometric Distribution

A bucket contains r red balls and w white balls and n balls are
sampled without replacement.

X counts the number of red balls in the sample and we say that X
has a hypergeometric distribution with parameters r , w , and n
(notation varies by source and there is no general consensus).

P(X = k) =

(r
k

)( w
n−k

)(r+w
n

) , max{0, n − w} ≤ k ≤ min{r , n}

The numerator counts the number of samples with exactly k red balls
and n − k white balls and the denominator counts the number of
samples of n balls from the total r + w .
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Vampire Bats revisited

In estrous Not in estrous Total

Bitten by a bat 15 6 21
Not bitten by a bat 7 322 329

Total 22 328 350

Here are other tables with even more extreme differences in proportions of
being bitten, but with the same marginal totals.

16 5
6 323

17 4
5 324

18 3
4 325

19 2
3 326

20 1
2 327

21 0
1 328
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P-value Calculation

In estrous Not in estrous Total

Bitten by a bat X 21− X 21
Not bitten by a bat 22− X 307 + X 329

Total 22 328 350

The p-value calculation focuses on any single cell; here the top left.
Imagine the 21 bitten cows as red balls and the 329 cows not bitten
as white balls.
Sample 22 without replacement at random, and let X be the number
of red balls in the sample.
The probability of having exactly x red balls in the sample is(21

x

)( 329
22−x

)(350
22

)
as there are

(21
x

)
ways to pick which x red balls are sampled,

( 329
22−x

)
ways to pick which 22− x white balls are sampled, and

(350
22

)
total

ways to choose 22 balls from 350.
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P-value Calculation

The actual grouping of cows by estrous status has X = 15.

The p-value is the probability X ≥ 15.

P =
21∑

x=15

(21
x

)( 329
22−x

)(350
22

)
This calculation is tedious by hand, but can be done in R using the
dhyper() function.

> sum(dhyper(15:21, 21, 329, 22))

[1] 1.004713e-16
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Interpretation

There is overwhelming evidence (p
.

= 10−16, Fisher’s one-sided
exact test) that the probability a cow in estrous will be bitten by
a vampire bat is larger than that for a cow not in estrous in a
setting similar to the study in Costa Rica.

Contingency Tables Hypothesis Testing Fisher’s Exact Test 45 / 56

R for Fisher

Even easier, there is a built-in function fisher.test().

The following example shows how.

> x = matrix(c(15, 7, 6, 322), nrow = 2, ncol = 2)

> fisher.test(x, alternative = "greater")

Fisher's Exact Test for Count Data

data: x
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
35.49817 Inf
sample estimates:
odds ratio
108.3894
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What you should know

You should know:

how to find a confidence interval for a difference in proportions;

how to find a confidence interval for an odds ratio;

how to test for independence in contingency tables using:
I the χ2 test of independence;
I the G-test;
I Fisher’s exact test

how to determine which tests are appropriate in which situations.
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R Details

The R function chisq.test() can be used to automate calculations
for the χ2 test of independence.

The R function fisher.test() can be used to automate calculations
for Fisher’s exact test.

There is no built-in function in R for the G-test, but the file gtest.R
contains code for a function g.test() for this purpose. Source this
code into R before use (see the file for details).

There is also a file mosaic.R with code for producing mosaic plots.
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Appendix

The remaining slides contain details about the G-test that will
not be included for homework or exam.
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Likelihood Ratio Tests

Definition

In a likelihood ratio test, the null hypothesis assumes a likelihood model
with k0 free parameters which is a special case of the alternative
hypothesis likelihood model with k1 free parameters. The two likelihood
models are maximized with likelihoods L0 and L1 respectively. The test
statistic is G = 2(ln L1 − ln L0) which, for large enough samples, has
approximately a χ2(k1 − k0) distribution when the null hypothesis is true.
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The Multinomial Distribution

Definition

The multinomial distribution is a generalization of the binomial distribution
where there is an independent sample of size n and each outcome is in one
of k categories with probabilities pi for the ith category (

∑k
i=1 pi = 1).

The probability that there are xi outcomes of type i for i = 1, 2, . . . , k is(
n

x1, . . . , xk

)(
px1
1 · · · p

xk
k

)
where (

n

x1, . . . , xk

)
=

n!

x1! · · · xk !

is called a multinomial coefficient and x1 + · · ·+ xk = n.
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Likelihood for Multinomial Distribution

In the binomial distribution, we can rethink the parameters for fixed n
with probabilities p1 and p2 for the two categories with p1 + p2 = 1, so
there is only one free parameter. (If you know p1, you also know p2.)

The maximum likelihood estimates are p̂1 = x1/n and
p̂2 = x2/n = 1− p̂1 = (n − x1)/n.

For more categories, the maximum likelihood estimates are p̂i = xi/n
for i = 1, . . . , k.

The maximum likelihood is then

L =

(
n

x1, . . . , xk

)((x1

n

)x1 × · · · ×
(xk

n

)xk
)

and the maximum log-likelihood is

ln L = ln

(
n

x1, . . . , xk

)
+

k∑
i=1

xi ln
(xi

n

)
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Contingency Tables

The observed outcomes {Oij} in a contingency table with r rows and
c columns are jointly are modeled with a multinomial distribution
with parameters {pij} for i = 1, . . . , r and j = 1, . . . , c.

There are rc probabilities.
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Contingency Tables: Alternative Model

Under the alternative hypothesis of no independence, the only
restriction on the probabilities is that they sum to one, so there are
k1 = rc − 1 free parameters.

The maximum likelihood estimates are

pij =
Oij

n

The maximum log-likelihood is

ln L1 = ln

(
n

O11, . . . ,Orc

)
+

r∑
i=1

c∑
j=1

Oij ln
(Oij

n

)
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Contingency Tables: Null Model

Under the null hypothesis of independence, pij = pi · × p·j for all i and
j where there are r − 1 free parameters for the row factor and c − 1
free parameters for the column factor, for a total of k0 = r + c − 2.

The maximum likelihood estimates are

p̂i · =
sum of observations in row i

n

for the row probabilities and

p̂·j =
sum of observations in column j

n

for the column probabilities.

The maximum likelihood estimate for pij is p̂ij = p̂i ·p̂·j =
Eij

n .

The maximum log-likelihood is

ln L0 = ln

(
n

O11, . . . ,Orc

)
+

r∑
i=1

c∑
j=1

Oij ln
(Eij

n

)
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Test Statistic

The test statistic is
G = 2(ln L1 − ln L0)

which equals

G = 2

( r∑
i=1

c∑
j=1

Oij

(
ln
(Oij

n

)
− ln

(Eij

n

)))
which can be simplified to

G = 2

( r∑
i=1

c∑
j=1

Oij ln
(Oij

Eij

))
The difference in the number of free parameters is(

rc − 1
)
−
(
r + c − 2

)
= rc − r − c + 1 = (r − 1)(c − 1)
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