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Case Study

Case Study

Body temperature varies within individuals over time (it can be higher when
one is ill with a fever, or during or after physical exertion). However, if we
measure the body temperature of a single healthy person when at rest, these
measurements vary little from day to day, and we can associate with each
person an individual resting body temperture. There is, however, variation
among individuals of resting body temperture. A sample of n = 130 individ-
uals had an average resting body temperature of 98.25 degrees Fahrenheit
and a standard deviation of 0.73 degrees Fahrenheit. The next slide shows
an estimated density plot from this sample.
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Density Plot
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Normal Distributions

The estimated density has these features:
I it is bell-shaped;
I it is nearly symmetric.

Many (but not all) biological variables have similar shapes.

One reason is a generalized the central limit theorem: random
variables that are formed by adding many random effects will be
approximately normally distributed.

Important for inference, even when underlying distributions are not
normal, the sampling distribution of the sample mean is
approximately normal.
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Example: Population

A population that is skewed.
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Example: Sampling Distribution

Sampling distribution of the sample mean when n = 130.

Sampling Distribution, n=130
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Case Study: Questions

Case Study

How can we use the sample data to estimate with confidence the
mean resting body temperture in a population?

How would we test the null hypothesis that the mean resting body
temperture in the population is, in fact, equal to the well-known 98.6
degrees Fahrenheit?

How robust are the methods of inference to nonnormality in the
underlying population?

How large of a sample is needed to ensure that a confidence interval
is no larger than some specified amount?
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The Big Picture

Many inference problems with a single quantitative, continuous
variable may be modeled as a large population (bucket) of individual
numbers with a mean µ and standard deviation σ.

A random sample of size n has a sample mean x̄ and sample standard
deviation s.

Inference about µ based on sample data assumes that the sampling
distribution of x̄ is approximately normal with E(x̄) = µ and
SD(x̄) = σ/

√
n.

To prepare to understand inference methods for single samples of
quantitative data, we need to understand:

I the normal and related distributions;
I the sampling distribution of x̄ .
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Continuous Distributions

A continuous random variable has possible values over a continuum.

The total probability of one is not in discrete chunks at specific
locations, but rather is ground up like a very fine dust and sprinkled
on the number line.

We cannot represent the distribution with a table of possible values
and the probability of each.

Instead, we represent the distribution with a probability density
function which measures the thickness of the probability dust.

Probability is measured over intervals as the area under the curve.

A legal probability density f :
I is never negative (f (x) ≥ 0 for −∞ < x <∞).
I has a total area under the curve of one (

∫∞
−∞ f (x)dx = 1).
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The Standard Normal Density
The standard normal density is a symmetric, bell-shaped probability
density with equation:

φ(z) =
1√
2π

e−
z2

2 , (−∞ < z <∞)
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Moments

The mean of the standard normal distribution is µ = 0.

This point is the center of the density and the point where the density
is highest.

The standard deviation of the standard normal distribution is σ = 1.

Notice that the points −1 and 1, which are respectively one standard
deviation below and above the mean, are at points of inflection of the
normal curve. (This is useful for roughly estimating the standard
deviation from a plotted density or histogram.)
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Benchmarks

The area between −1 and 1 under a standard normal curve is
approximately 68%.

The area between −2 and 2 under a standard normal curve is
approximately 95%.

More precisely, the area between −1.96 and 1.96
.

= 0.9500, which is
why we have used 1.96 for 95% confidence intervals for proportions.

Normal Standard Normal Distribution Probability Calculations 12 / 33



Standard Normal Density

Standard Normal Density

Possible Values
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Area within 2 = 0.95

Area within 3 = 0.997
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General Areas

There is no formula to calculate general areas under the standard
normal curve.

(The integral of the density has no closed form solution.)

We prefer to use R to find probabilities.

You also need to learn to use normal tables for exams.
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R

The function pnorm() calculates probabilities under the standard
normal curve by finding the area to the left.

For example, the area to the left of −1.57 is

> pnorm(-1.57)

[1] 0.05820756

and the area to the right of 2.12 is

> 1 - pnorm(2.12)

[1] 0.01700302
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Tables

The table on pages 672–673 displays right tail probabilities for z = 0
to z = 4.09.

A point on the axis rounded to two decimal places a.bc corresponds
to a row for a.b and a column for c.

The number in the table for this row and column is the area to the
right.

Symmetry of the normal curve and the fact that the total area is one
are needed.

The area to the left of −1.57 is the area to the right of 1.57 which is
0.05821 in the table.

The area to the right of 2.12 is 0.01711.

When using the table, it is best to draw a rough sketch of the curve
and shade in the desired area. This practice allows one to
approximate the correct probability and catch simple errors.

Find the area between z = −1.64 and z = 2.55 on the board.
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R

The function qnorm() is the inverse of pnorm() and finds a quantile,
or location where a given area is to the right.

For example, the 0.9 quantile of the standard normal curve is

> qnorm(0.9)

[1] 1.281552

and the number z so that the area between −z and z is 0.99 is

> qnorm(0.995)

[1] 2.575829

since the area to the left of −z and to the right of z must each be
(1− 0.99)/2 = 0.005 and 1− 0.005 = 0.995.

Draw a sketch!
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Tables

Finding quantiles from the normal table almost always requires some
round off error.

To find the number z so that the area between −z and z is 0.99
requires finding the probability 0.00500 in the middle of the table.

We see z = 2.57 has a right tail area of 0.00508 and z = 2.58 has a
right ail area of 0.00494, so the value of z we seek is between 2.57
and 2.58.

For exam purposes, it is okay to pick the closest, here 2.57.

Use the table to find the 0.03 quantile as accurately as possible.

Draw a sketch!
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General Normal Density

The general normal density with mean µ and standard deviation σ is
a symmetric, bell-shaped probability density with equation:

f (x) =
1√
2πσ

e
− 1

2

(
x−µ

σ

)2

, (−∞ < x <∞)

Sketches of general normal curves have the same shape as standard
normal curves, but have rescaled axes.
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General Normal Density

Normal Density

Possible Values
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Area within 1 SD = 0.68

Area within 2 SD = 0.95

Area within 3 SD = 0.997
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All Normal Curves Have the Same Shape

All normal curves have the same shape, and are simply rescaled
versions of the standard normal density.

Consequently, every area under a general normal curve corresponds to
an area under the standard normal curve.

The key standardization formula is

z =
x − µ
σ

Solving for x yields
x = µ+ zσ

which says algebraically that x is z standard deviations above the
mean.
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Normal Tail Probability

Example

If X ∼ N(100, 2), find P(X > 97.5).

Solution:

P(X > 97.5) = P

(
X − 100

2
>

97.5− 100

2

)
= P(Z > −1.25)

= 1− P(Z > 1.25)

= 0.8944
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Normal Quantiles

Example

If X ∼ N(100, 2), find the cutoff values for the middle 70% of the
distribution.

Solution: The cutoff points will be the 0.15 and 0.85 quantiles.

From the table, 1.03 < z < 1.04 and z = 1.04 is closest.

Thus, the cutoff points are the mean plus or minus 1.04 standard
deviations.

100− 1.04(2) = 97.92, 100 + 1.04(2) = 102.08

In R, a single call to qnorm() finds these cutoffs.

> qnorm(c(0.15, 0.85), 100, 2)

[1] 97.92713 102.07287
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Case Study

Example

In a population, suppose that:

the mean resting body temperature is 98.25 degrees Fahrenheit;

the standard deviation is 0.73 degrees Fahrenheit;

resting body temperatures are normally distributed.

Let X be the resting body temperature of a randomly chosen individual.
Find:

1 P(X < 98), the proportion of individuals with temperature less than
98.

2 P(98 < X < 100), the proportion of individuals with temperature
between 98 and 100.

3 The 0.90 quantile of the distribution.

4 The cutoff values for the middle 50% of the distribution.
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Answers (with R, table will be close)

1 0.366

2 0.6257

3 99.19

4 97.76 and 98.74
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The χ2 Distribution

The χ2 distribution is used to find p-values for the test of
independence and the G-test we saw earlier for contingency tables.

Now that the normal distribution has been introduced, we can better
motivate the χ2 distribution.

Definition

If Z1, . . . ,Zk are independent standard normal random variables, then

X 2 = Z 2
1 + · · ·+ Z 2

k

has a χ2 distribution with k degrees of freedom.
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The χ2 Distribution

The functions pchisq() and qchisq() find probabilities and
quantiles, respectively, from the χ2 distributions.

The table on pages 669–671 has the same information for limited
numbers of quantiles for each χ2 distribution with 100 or fewer
degrees of freedom.

Unlike the normal distributions where all normal curves are just
rescalings of the standard normal curve, each χ2 distribution is
different.
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t Distribution

Definition

If Z is a standard normal random variable and if X 2 is a χ2 random
variable with k degrees of freedom, then

T =
Z√

X 2/k

has a t distribution with k degrees of freedom.

t densities are symmetric, bell-shaped, and centered at 0 just like the
standard normal density, but are more spread out (higher variance).

As the degrees of freedom increases, the t distributions converge to
the standard normal.

t distributions will be useful for statistical inference for one or more
populations of quantitative variables.
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The Central Limit Theorem

The Central Limit Theorem

If X1, . . . ,Xn are an independent sample from a common distribution F
with mean E(Xi ) = µ and variance Var(Xi ) = σ2, (which need not be
normal), then

X̄ =

∑n
i=1 Xi

n

is approximately normal with E(X̄ ) = µ and Var(X̄ ) = σ2

n if the sample
size n is sufficiently large.

The central limit theorem (and its cousins) justifies almost all
inference methods the rest of the semester.
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Mean of the Sampling Distribution of X̄

The mean of the sampling distribution of X̄ is found using the
linearity properties of expectation.

E(X̄ ) = E
(∑n

i=1 Xi

n

)
=

(1

n

)
E(X1 + · · ·+ Xn)

=
(1

n

)(
E(X1) + · · ·+ E(Xn)

)
=

(1

n

)
nµ

= µ
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Variance of the Sampling Distribution of X̄

The variance of the sampling distribution of X̄ is found using the
properties of variances of sums.

Var(X̄ ) = Var
(∑n

i=1 Xi

n

)
=

(1

n

)2
Var(X1 + · · ·+ Xn)

=
(1

n

)2(
Var(X1) + · · ·+ Var(Xn)

)
=

(1

n

)2
nσ2

=
σ2

n

Also, SE(X̄ ) = σ√
n

.

Normal The Central Limit Theorem 31 / 33

Case Study

Example

In a population, suppose that:

the mean resting body temperature is 98.25 degrees Fahrenheit;

the standard deviation is 0.73 degrees Fahrenheit;

resting body temperatures are normally distributed.

Let X1, . . . ,X40 be the resting body temperatures of 40 randomly chosen
individuals from the population. Find:

1 P(X̄ < 98), the probability that the sample mean is less than 98.

2 P(98 < X̄ < 100), the probability that the sample mean is between
98 and 100.

3 the 0.90 quantile of the sampling distribution of X̄ .

4 The cutoff values for the middle 50% of the sampling distribution of
X̄ .
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Answers (with R, table will be close)

1 0.0152

2 0.9848

3 98.4

4 98.17 and 98.33
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