
Inference for one Population Mean

Bret Hanlon and Bret Larget

Department of Statistics
University of Wisconsin—Madison

October 12–14, 2010

One Population Mean 1 / 48

Body Temperature

Case Study

Body temperature varies within individuals over time (it can be higher when
one is ill with a fever, or during or after physical exertion). However, if we
measure the body temperature of a single healthy person when at rest, these
measurements vary little from day to day, and we can associate with each
person an individual resting body temperture. There is, however, variation
among individuals of resting body temperture. A sample of n = 130 individ-
uals had an average resting body temperature of 98.25 degrees Fahrenheit
and a standard deviation of 0.68 degrees Fahrenheit.
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Case Study: Questions

Example

How can we use the sample data to estimate with confidence the
mean resting body temperture in a population?

How would we test the null hypothesis that the mean resting body
temperture in the population is, in fact, equal to the well-known 98.6
degrees Fahrenheit?

How robust are the methods of inference to nonnormality in the
underlying population?

How large of a sample is needed to ensure that a confidence interval
is no larger than some specified amount?
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Sockeye Salmon

Case Study

Page 31 of the text describes sockeye salmon Oncorhynchus nerka, a
fish that spends most of its adult life in the Pacific, but returns to
rivers to reproduce and then die.

During a single breeding season in a given year in a given river, there
may be adult salmon of varying size due to age differences.

The distribution of masses of 228 females sampled in 1996 from Pick
Creek in Alaska is not normal (picture shown later).

How do we estimate the average mass of a female adult sockeye
salmon from the population of such fish (in a given time and river)
while accounting for a lack of normality in the population?
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The Big Picture

Many inference problems with a single quantitative, continuous
variable may be modeled as a large population (bucket) of individual
numbers with a mean µ and standard deviation σ.

A random sample of size n has a sample mean x̄ and sample standard
deviation s.

Inference about µ based on sample data assumes that the sampling
distribution of x̄ is approximately normal with E(x̄) = µ and
SD(x̄) = σ/

√
n.

Such inferences are robust to nonnormality in the population,
provided the sample sizes are sufficiently large.
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Graphs for Single Samples

There are multiple ways to display single samples of data. These
include:

I Histograms;
I Density Plots;
I Box-and-Whisker Plots; and
I Dot Plots.
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Histograms

Histograms are bar plots that show the counts or relative frequencies
of counts in intervals.

Areas of bars are proportional to the quantities within.

Unless there is a compelling reason not to, each interval should have
the same width (so quantities are also proportional to height).

Bars are drawn over the entire width of the interval, so there are no
gaps.

Intervals partition a continuum of numbers; a bar plot over levels of a
categorical variable is not a histogram.
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Comments

Note that distribution of sampled body temperatures is bell-shaped
and fairly symmetric.

Here there are 130 total observations.

There is no single best choice for the width of a histogram of a given
data set, but there are bad choices: see the next two plots.
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Body Temperature: too few intervals

Body Temperature

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

96 97 98 99 100

One Population Mean Graphics Histograms 10 / 48



Body Temperature: too many intervals
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Salmon Mass Example

Note the bimodal distribution of salmon masses in the sample of 228
adult sockeye salmon in the next slide.
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Salmon Mass
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Density Plots

Histograms do a good job of displaying distributions.

However, the display can be affected substantially by minor choices of
interval size and end points for intervals.

Density plots are an alternative to histograms.

A density plot represents sampled data with a curve instead of a series
of blocks.

A density plot can be thought of as an average of many histograms of
the same data, differing by slight adjustments in the choice of
endpoints.

Density plots are preferable to histograms comparing more than one
distribution, as the display of multiple curves on one plot can be
informative, but multiple histograms on one plot are often busy.

Density plots are hard to do by hand, but are just as easy as
histograms with the computer.

One can argue that density plots are generally more informative
displays of data than histograms are.
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Density Plot of Body Temperature
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Density Plot of Salmon Mass
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Box-and-Whisker Plots

Box-and-Whisker Plots display the five number summary of
distributions.

The box represents the middle half of the data: the ends of the box
are the lower and upper quartiles (25th and 75th percentiles).

The box is split with a line or dot at the median.

Whiskers extend from the box to extreme values, usually the
minimum and maximum.

Some box-and-whisker plots indicate potential outliers as separate
points and draw whiskers to the most extreme points within a given
distance of the box (usually the most extreme point no more than 1.5
IQR units from the box, where IQR is inter-quartile range, and is the
distance between the upper and lower quartiles which is the length of
the box).

Box-and-whisker plots hide many features of the data, but can be
useful when comparing many distributions.

Boxes can be vertical or horizontal.
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Box-and-whisker Plot of Body Temperature
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Box-and-whisker Plot of Salmon Mass
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Dot Plots

Dot plots simply indicate each observation with a dot.

It is helpful to jitter the points (add a little random noise in the
unused dimension) so points representing ties do not coincide.

Dot plots are very helpful for small and moderately large data sets.

Dot plots are hard to see when there are too many points.

Axes can be horizontal or vertical.

Dot plots are also good for comparing samples side by side.
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Dot Plot of Body Temperature

Resting Body Temperature (F)
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Dot Plot of Salmon Mass

Body Mass (kg)
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Point Estimates

Definition

For a sample of n quantitative values Y1, . . . ,Yn, the sample mean is

Ȳ =

∑n
i=1 Yi

n

and the sample standard deviation is

s =

√∑n
i=1(Yi − Ȳ )2

n − 1

If the samples are drawn at random from a population with mean µ
and variance σ2, then E(Ȳ ) = µ and E(s2) = σ2, so these estimates
are unbiased.

Note that s, however, is not an unbiased estimate of σ.

One Population Mean Estimation Point Estimates 23 / 48

Maximum Likelihood Estimates

Ȳ is also the maximum likelihood estimate of µ.

However, the maximum likelihood estimate of σ is

σ̂ =

√∑n
i=1(Yi − Ȳ )2

n

where the denominator is n and not n − 1.

For describing samples or for inference, there is little difference
between the s and σ̂, but some methods assume one formula or the
other.
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Sampling Distribution of Sample Mean

Sampling Distribution of Ȳ

If Y1, . . . ,Yn are a random sample from a distribution with mean µ
and standard deviation σ, then

E(Ȳ ) = µ and σȲ =
σ2

n

Furthermore, if the distribution of Yi is normal, then the distibution
of Ȳ is also normal.

By the Central Limit Theorem, even if the distribution of Yi is not
normal, the distibution of Ȳ is approximately normal when n is large
enough.
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Sampling Distribution of t-Statistic

When the population is normal, and the exact standard deviation is
used,

Z =
Ȳ − µ
σ/
√

n

has a standard normal distribution.

However, when we replace the exact standard deviation σȲ with the
estimate s/

√
n, the resulting statistic has more variance than a

standard normal curve.

T =
Ȳ − µ
s/
√

n

has a t distribution with n − 1 degrees of freedom.
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Confidence Interval for µ

Confidence Interval for µ

A P% confidence interval for µ has the form

Ȳ − t∗
s√
n
< µ < Ȳ + t∗

s√
n

where t∗ is the critical value such that the area between −t∗ and t∗ under
a t-density with n − 1 degrees of freedom is P/100, where n is the sample
size.

Critical values can be found in Statistical Table C on pages 674–676.

Critical values are also found using the R function qt().
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Body Temperature Example

Example

Find 95% and 99% confidence intervals for the mean body
temperature.

The sample mean and standard deviation from the n = 130
observations are ȳ = 98.25 and s = 0.68.

(Statistics here were rounded to one more place of precision than the
original measurements; this is a good rule of thumb for choosing
precision to round.)

There are 129 degrees of freedom; Table C does not have this value,
but we can use 120 conservatively.

The critical value for a 95% confidence interval is 1.98; this should
always be at least 1.96 for any n.

The critical value for a 99% confidence interval is 2.62; this should
always be at least 2.57 for any n.
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Calculations

Example

The margin of error for the 95% confidence interval is
1.98× 0.68/

√
130

.
= 0.12.

The margin of error for the 95% confidence interval is
2.62× 0.68/

√
130

.
= 0.16.

The 95% confidence interval is 98.13 < µ < 98.37.

The 99% confidence interval is 98.09 < µ < 98.41.

We summarize the 99% confidence interval in context.

We are 99% confident that the mean resting body temperature
of healthy adults is between 98.09 and 98.41 degrees Fahrenheit.

It is noteworthy that 98.6 is not in this interval.
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R calculations

Use the functions mean(), sd(), and qt() for the data in temp.

> temp.mean = mean(temp)

> temp.sd = sd(temp)

> temp.n = length(temp)

> t.crit95 = qt(0.975, temp.n - 1)

> t.crit99 = qt(0.995, temp.n - 1)

> t.crit95

[1] 1.978524

> t.crit99

[1] 2.614479

> temp.mean + c(-1, 1) * t.crit95 * temp.sd/sqrt(temp.n)

[1] 98.12745 98.36486

> temp.mean + c(-1, 1) * t.crit99 * temp.sd/sqrt(temp.n)

[1] 98.08930 98.40301
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R

Even easier is the function t.test(). (Ignore the hypothesis testing
output for now.)

> t.test(temp)

One Sample t-test

data: temp
t = 1637.557, df = 129, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
98.12745 98.36486
sample estimates:
mean of x
98.24615
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R

Now for 99%.

> t.test(temp, conf = 0.99)

One Sample t-test

data: temp
t = 1637.557, df = 129, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
98.08930 98.40301
sample estimates:
mean of x
98.24615
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Salmon Size Example

The sample size is n = 228.

The sample mean is 2.028 and the sd is 0.539.

The critical values are 1.97 and 2.60 for 95% and 99% (using 200
degrees of freedom from the table; R says

> qt(0.975, 227)

[1] 1.970470

> qt(0.995, 227)

[1] 2.597661

Put this all together to find a 95% confidence interval of
1.96 < µ < 2.1 and a 99% confidence interval of 1.93 < µ < 2.12.
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Interpretation

We are 95% confident that the mean mass of adult female
sockeye salmon in the Pick Creek population in 1996 was
between 1.96 and 2.1 kilograms.
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Cautions and Concerns

The methods assume random sampling; in both case studies, the
samples are not controlled random samples:

I Body temperatures were from volunteers, all health care workers at one
site.

I The fish were captured in a biological survey.

However, it may be perfectly reasonable to make inferences as if the
samples were random.

The t method for confidence intervals assumes normal populations.

Even when the populations are not normal, the method is still
approximately right because:

I the CLT says the sample mean is approximately normal;
I the sample mean and the sample standard deviation are only weakly

dependent for large enough n.
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The Bootstrap

What if we are worried that the distribution of the salmon masses are
so far from normal that the t distribution confidence interval is
inaccurate?

The bootstrap offers an alternative method. (See Chapter 19, and
page 555 in particular.)

The basic idea is the following:
I We could find the true distribution of Ȳ by taking many samples of

size n = 228 from the population.
I Since we cannot do this, we can use the existing sample as a proxy for

the unknown population.
I We take many samples of size n = 228 from the sample, with

replacement and compute the sample mean of each.
I The middle 95% of this distribution is an approximate 95% confidence

interval for µ.
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Density Plot of 10,000 Bootstrap Means
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Comments

The approximate 95% confidence interval from the quantiles of the
bootstrap distribution is 1.96 < µ < 2.1.

Compare to the t interval: 1.96 < µ < 2.1.

The approximate 99% confidence interval from the quantiles of the
bootstrap distribution is 1.94 < µ < 2.12.

Compare to the t interval: 1.93 < µ < 2.12.

The intervals here are nearly identical because the sample size
n = 228 is large enough to compensate for the lack of normality in
the population.

Note that the previous plot looks bell-shaped and symmetric.
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Hypothesis Tests

The framework for hypothesis testing for the mean of a single
population is very similar to that for a proportion.

The only difference is that the formula for the test statistic and the
corresponding sampling distribution are different.

The steps are the following:
1 State null and alternative hypotheses;
2 Compute a test statistic;
3 Determine the null distribution of the test statistic;
4 Compute a p-value;
5 Interpret and report the results.
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Example

Example

Is the average resting body temperature of healthy adults 98.6 degrees
Fahrenheit? In a sample of 130 healthy adults, the mean temperature was
98.25 and the standard deviation was 0.68. Is this difference consistent
with random sampling error, or is it large enough to provide strong
evidence that the mean temperature is different than 98.6?
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The One-Sample t-Test

Definition

If Y1, . . . ,Yn are randomly sampled from a distribution where the null
hypothesis µ = µ0 is true, then

T =
Ȳ − µ0

s/
√

n

will have a t-distribution with n − 1 degrees of freedom.
The p-value for a two-sided alternative hypothesis is the area further from
0 (in either direction) than T under a t density with n − 1 degrees of
freedom.
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State Hypotheses

Hypotheses are statements about the population.

Let µ represent the mean body temperature of healthy adults.

The null hypothesis is that µ equals 98,6.

The alternative hypothesis is that µ is not 98.6.

We denote these hypotheses as

H0 : µ = 98.6

HA : µ 6= 98.6
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Calculate the Test Statistic

The test statistic is

t =
Ȳ − µ0

s/
√

n

.
=

98.25− 98.6

0.68/
√

130

.
=
−0.35

0.06
.

= −5.9

Note that the standard error

SE(Ȳ ) =
s√
n

.
= 0.06

is the size of a typical distance between Ȳ and µ.

This is much smaller than s = 0.68 which is the standard deviation of
the original data and the size of the typical deviation between an
individual observation and µ.

The test statistic t is the number of standard errors that the sample
mean is from the null population mean.
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P-value

The P-value is the area to the left of t = −5.9 plus the area to the
right of t = 5.9 under a t density with 129 degrees of freedom which
is just twice the area to the left of t = −5.9.

Table C on pages 674–676 only lets us approximate the p-value. Using
120 degrees of freedom, we see that t = 5.9 is greater than 4.03 with
the header α(2) = 0.0001, so the p-value is less than 0.0001.

With R, we use the pt() function.

> 2 * pt(-5.9, 129)

[1] 3.010731e-08
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Interpretation

There is very strong evidence that the mean resting body
temperature of healthy adults is less than the conventional value
of 98.6 degrees of Fahrenheit (t = −5.9, p = 3× 10−8,
two-sided one-sample t-test, df = 129).
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Comparison with Confidence Interval
The inferences from the hypothesis test and the confidence interval
are consistent with each other.
If we are 99% confident that 98.1 < µ < 98.4, then the two-sided
p-value for the null hypothesis µ = 98.6 must be less than 0.01, and
it is.
The hypothesis test quantifies evidence against a null hypothesis with
a probability (of observing a result at least as extreme as that
observed, assuming the null hypothesis is true), on a scale from 0 to 1.
A confidence interval quantifies uncertainty on the scale of the
measurements of the data.
Thus, confidence intervals provide information in the context of the
problem, and thus are more informative to the reader with
background knowledge.
A confidence interval allows the reader to ascertain the practical
importance of the inference.
Strong fevers are several degrees above normal: if normal is off by a
few tenths, this does not much matter practically.
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R using t.test()

The easy way in R to carry out a t test is with the function t.test().

> t.test(temp, mu = 98.6)

One Sample t-test

data: temp
t = -5.8979, df = 129, p-value = 3.041e-08
alternative hypothesis: true mean is not equal to 98.6
95 percent confidence interval:
98.12745 98.36486
sample estimates:
mean of x
98.24615
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What you should know

You should know:

How to graph quantitative data from a single sample with histograms,
density plots, box-and-whisker plots, and dot plots;

How to interpret plots of data;

How to construct confidence intervals for µ;

How to use both R and the t table to find critical values;

How to carry out a hypothesis test;

How to find a p-value using R (or approximate it using a table);

How to interpret results of an inference in the context of a problem.
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