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Example

Case Study

The proportion of blackness in a male lion’s nose increases as the lion
ages.

This proportion can be used to predict the age of a lion with unknown
age.

To find a predictive equation, researchers determined the proportion
of blackness in 32 male lions of known age.

The data is displayed in a scatter plot, and a good-fitting line is found
for the data.

(age in years) = a + b × (proportion of blackness in the nose)

The line may be interpreted as a conditional expectation: the
expected age of a lion given a proportion of blackness in its nose.
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The Data

age is the age of a male lion in years;

proportion.black is the proportion of a lion’s nose that is black.

age proportion.black
1.1 0.21
1.5 0.14
1.9 0.11
2.2 0.13
2.6 0.12
3.2 0.13
3.2 0.12
...

Regression Case Study Lion Ages 3 / 55

Lion Data Scatter Plot

Proportion Black in Nose
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Observations

We see that age and blackness in the nose are positively associated.

The points do not fall exactly on a line.

How do we find a good-fitting line?

How do we decide if a line is a sufficient summary of the relationship
between the variables?
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Simple Linear Regression

Definition

Simple linear regression is the statistical procedure for describing the
relationship between an quantitative explanatory variable X and a
quantitative response variable Y with a straight line;

Y = a + bX

The value a is the Y -intercept of the estimated line.

It is the location where the line crosses the Y -axis, and may be
interpreted as an estimate of E(Y |X = 0), the expected value of Y
given X is zero, which may or may not be meaningful in the context.

The slope b is the estimated change in Y per unit change in X .
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A Model

The simple linear regression model for the data is

Yi = α + βXi + εi

where
I i varies from 1 to n, the sample size;
I α and β are fixed population parameters;
I εi is the random vertical deviation between the line and the ith

observed data point; and
I the deviations are assumed to be independent and normally distributed

with standard deviation σ.

εi ∼ i.i.d N(0, σ2)

Notice that in this model, there is a common variance for all
observations.

This means that we should expect the size of a typical deviation from
the line to be the same size at all locations.
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Fitted Values and Residuals

The estimated regression line takes the form

Y = a + bX

where a is an estimate of α and b is an estimate of β.

The height of the point on the line at X = Xi is called the ith fitted
value or predicted value.

Ŷi = a + bXi

The difference between the ith data point Yi and the ith predicted
value is called the ith residual, Yi − Ŷi .

Regression Simple Linear Regression Estimation 8 / 55



Estimation

The parameters of the model may be estimated either by the criteria
of least squares, which minimizes the sum of squared residuals.

The parameters may also be estimated by maximum likelihood, which
makes the probability density of the observed data as large as possible.

In simple linear regression, the least squares and maximum likelihood
estimates of α and β are identical.

The maximum likelihood estimate of σ2 is

σ̂2 =
(sum of squared residuals)

n

is slightly different than the conventional unbiased estimate.

s2 =
(sum of squared residuals)

n − 2

Note that there are 2 parameters used to describe all means (α and
β) as two points determine a line, and so there are n − 2 remaining
pieces of information remaining to estimate variation around the line.
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Formulas for Estimation

It is an exercise in calculus (or inspired algebra) to show that

b =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2

is the least squares (and maximum likelihood) estimate of the slope.

There is a simple formula for the estimated intercept given the
estimated slope.

a = Ȳ − bX̄

The residual sum of squares is

RSS =
n∑

i=1

(
Yi − (a + bXi )

)2

is used to estimate σ2 by dividing by either n − 2 (for an unbiased
estimate) or n (for the maximum likelihood estimate).
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An alternative formulation

The estimated parameters may also be described in an alternative
manner based on the means and standard deviations of X and Y and
the correlation between them.

The formulas are based on this idea:

When X is z = X−X̄
sX

standard deviations above the mean,

(z < 0 when X is less than X̄ ), the predicted Y is rz
standard deviations above its mean, or

Ŷ = Ȳ + r

(
X − X̄

sX

)
sy =

(
Ȳ −

(
r

sy
sx

)
X̄

)
+

(
r

sy
sx

)
X

The slope is b = rsy/sx .

When X = X̄ , then z = 0 and Ŷ = Ȳ , so the regression line goes
through the point (X̄ , Ȳ ).

When X = X̄ + sX is one standard deviation above the mean, the
predicted value is Ŷ = Ȳ + rsY r standard deviations above the mean.
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Regression Toward the Mean

Heights of fathers and sons in human populations often have a
correlation close to r = 0.5.

If one uses the height of the father to predict the height of the son,
the average heights of all sons of fathers whose height is one standard
deviation above the mean is only about one half of a standard
deviation above the mean.

Similarly, the heights of sons of fathers that are one standard
deviation below the mean are expected to be only half a standard
deviation below the mean.

This general phenomenon is called regression toward the mean.
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Scatter Plot to Illustrate Regression Toward the Mean
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The solid blue line is the
regression line with slope
rsY /sx .

The dashed line has slope sy/sx
and passes through the principal
axis of the data.

Notice that the average Y value
of points in the narrow bands is
much closer to the regression
line than the other.

The regression line is flatter
than the red dashed line.

If we exchanged X and Y , the
red dashed line would just flip,
but the regression line would be
different.
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Reconsider the Lion Data

Reconsider the lion data

Use the function lm() to fit the regression model and summary() to
display the results.

Here is R code to read the data and fit the model.

> lions = read.csv("lions.csv")

> str(lions)

'data.frame': 32 obs. of 2 variables:

$ age : num 1.1 1.5 1.9 2.2 2.6 3.2 3.2 2.9 2.4 2.1 ...

$ proportion.black: num 0.21 0.14 0.11 0.13 0.12 0.13 0.12 0.18 0.23 0.22 ...

> lions.lm = lm(age ~ proportion.black, data = lions)
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Lion Data Scatter Plot

Proportion Black in Nose
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Summary

> summary(lions.lm)

Call:

lm(formula = age ~ proportion.black, data = lions)

Residuals:

Min 1Q Median 3Q Max

-2.5449 -1.1117 -0.5285 0.9635 4.3421

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8790 0.5688 1.545 0.133

proportion.black 10.6471 1.5095 7.053 7.68e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.669 on 30 degrees of freedom

Multiple R-squared: 0.6238, Adjusted R-squared: 0.6113

F-statistic: 49.75 on 1 and 30 DF, p-value: 7.677e-08
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Interpretation

The estimated intercept is a = 0.879 years.

This means that a lion with no black on its nose is expected to be
about 10 or 11 months old. (This interpretation may not be very
reliable as it extrapolates beyond the range of the data).

The slope is b = 10.65 years per proportion black. This means (using
more practical numbers) that if the proportion of black increases by
0.1, the age is expected to increase by about 10.65/10

.
= 1.07 years.

The standard errors may be used to find confidence intervals.

The hypothesis test β = 0 has very strong evidence against it
(two-sided t-test, p < 10−7, t = 7.05, df = 30).
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Verifying Textbook Formulas

> x = with(lions, proportion.black)

> y = with(lions, age)

> c(mean(x), sd(x), mean(y), sd(y), cor(x, y))

[1] 0.3221875 0.1985550 4.3093750 2.6765842 0.7898272

> b.text = sum((x - mean(x)) * (y - mean(y)))/sum((x - mean(x))^2)

> b.text

[1] 10.64712

> b.cor = cor(x, y) * sd(y)/sd(x)

> b.cor

[1] 10.64712

> a = mean(y) - b.text * mean(x)

> a

[1] 0.8790062

> sigma.hat = sqrt(sum(residuals(lions.lm)^2)/(nrow(lions) - 2))

> sigma.hat

[1] 1.668764
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Assumptions

In addition to random sampling from a population of interest, simple
linear regression makes these assumptions:

1 Linearity: there is a linear relationship between X and E(Y |X ).
2 Independence: observations are independent of each other.
3 Constant Variance: the random deviations of the observed values

from the true regression line have the same standard deviation for all
observations.

4 Normality: the random deviations of the observed values from the true
regression line are normally distributed.

It is good statistical practice to check these assumptions.

Regression is robust to modest deviations from normality and
constant variance.

Violations of independence should be dealt with by using more
complex models.
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Residual Plots

A residual plot might plot residuals versus X or versus fitted values.

(Plots versus X are easy to interpret in simple linear regression
models with one explanatory variable; in models with more than one
explanatory variable, plots versus fitted values are feasible.)

Examine the residual plot for deviations from linearity: Is there an
up-down pattern to the residuals?

Examine the residual plot for deviations from constant variance: Does
the size of residuals change depending on X (or fitted values)?

Examine the residual plot for deviations from normality: Are there
obvious signs of skewness or outliers?
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Lion Data Residual Plot
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There is no strong apparent
nonlinearity.

Residual size might increase
slightly as X increases, but not
too much to be worried about.

There are no extreme outliers or
strong skewness.
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Normal Quantile Plot of Residuals
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The line is curved a up bit,
which indicates residual
distribution is skewed slightly to
the right.

The data is not perfectly
normal, but nonnormality is not
too severe, and inferences based
on normality are probably okay.
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Riley Larget

Riley Larget is Professor Larget’s oldest child. He is currently a
freshman at Carnegie Mellon University.

As I am sure almost almost all of your parents have done for you and
any siblings, there is a special place in the Larget household where
children height is tracked with carefully measured pencil marks.

Below is a plot of his height versus his age, from ages 2 to 10 years.
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Linear Fit

The previous scatter plot shows a pretty good fit to a linear model for
height versus age in this age range.

Examine a the data and a fitted linear regression model.

age height
...
24 36
36 39.5
40 40
42 40.75
44 41.125
48 42.25
...

> riley = read.table("riley.txt", header = T)

> age.2.10 = with(riley, (age > 23) & (age < 121))

> riley.lm = lm(height ~ age, data = riley, subset = age.2.10)
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Summary

> summary(riley.lm)

Call:

lm(formula = height ~ age, data = riley, subset = age.2.10)

Residuals:

Min 1Q Median 3Q Max

-1.0290 -0.3247 -0.0580 0.3588 0.8860

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.106153 0.332111 93.66 <2e-16 ***

age 0.234774 0.004218 55.66 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.549 on 19 degrees of freedom

Multiple R-squared: 0.9939, Adjusted R-squared: 0.9936

F-statistic: 3097 on 1 and 19 DF, p-value: < 2.2e-16
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Interpretation

The intercept of 31.11 inches can be interpreted as Riley’s height at
age 0 (or birth). Is this a reasonable estimate?

The slope of 0.235 inches per month can be interpreted as Riley’s rate
of growth.

This is just under 3 inches per year. Is this a reasonable estimate?
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Plot of Data from Birth to 17.5 years
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Extrapolation

The previous plot shows Riley’s height from age birth to 17.5 years.

Blue points were used to fit the first regression model.

Red points were not used for the model.

We see that the estimated intercept of 31.1 inches is much larger
than the actual value of 22.5 inches.

This estimate is an extrapolation, or the use of a regression model to
make predictions outside the range of data for which the model was
estimated.

Extrapolations are very susceptible to non-linearity.

A linear model may be reasonable within the range of some of the
data, but it may not necessarily extend past the range of observed
data.

Similarly, while the linear model captures well the growth up to age
about 12 (144 months), it misses a growth spurt in the early teens and
misses Riley’s eventual plateau at his current height of 72.5 inches.

Regression Riley Extrapolation 28 / 55



Fitting a Curve

Multivariate regression is an extension of simple linear regression in
which there are more than one explanatory variables.

These explanatory variables need not be independent.

In fact, if we use X and X 2 as two explanatory variables for Y , we fit
a curve (specifically, a parabola or degree 2 polynomial) to data.

Let’s reexamine the Riley’s height data to see if a curve fits much
better than a straight line.
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Riley’s Height, age 2-10 years
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Residual Plot
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Notice the pattern in the
residual plot where residuals
tend to be negative, then
positive, and then negative
again.

This in an indication that a
curve may fit better than a
straight line.

Note that the correlation
between height and age (for
ages from 2–10 years) is 0.997,
but despite this very high value,
a curve may still be significantly
better.
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Fitting a Quadratic Model

The quadratic model is

Yi = β0 + β1Xi + β2X 2
i + εi

where εi ∼ N(0, σ2) and the parameters again are estimated by least
squares or maximum likelihood (which again is identical except for
σ2).

Even though we do not fit a straight line, this model is still in the
class of linear models because the model for the mean is a sum of
terms, each of which is a parameter times a predictor variable.

When specifying the formula in a linear model in R, the symbols *
and ^ mean something other than multiplication and exponentiation.

The command I() is necessary in the formula below so that R
interprets the symbol ^ as exponentiation.

> riley.lm2 = lm(height ~ age + I(age^2), data = riley, subset = age.2.10)
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Summary

> summary(riley.lm2)

Call:

lm(formula = height ~ age + I(age^2), data = riley, subset = age.2.10)

Residuals:

Min 1Q Median 3Q Max

-0.53103 -0.24210 -0.02807 0.21074 0.73646

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.827e+01 4.821e-01 58.644 < 2e-16 ***

age 3.241e-01 1.417e-02 22.866 9.43e-15 ***

I(age^2) -6.002e-04 9.391e-05 -6.392 5.10e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3119 on 18 degrees of freedom

Multiple R-squared: 0.9981, Adjusted R-squared: 0.9979

F-statistic: 4818 on 2 and 18 DF, p-value: < 2.2e-16
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Observations

The summary indicates that the parameter for the quadratic term
improves the fit significantly.

The residual plot now shows an up/down/up/down pattern.
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Fitting a Cubic Model

The cubic model is

Yi = β0 + β1Xi + β2X 2
i + β3X 3

i + εi

where εi ∼ N(0, σ2).

> riley.lm3 = lm(height ~ age + I(age^2) + I(age^3), data = riley,

+ subset = age.2.10)
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Summary
> summary(riley.lm3)

Call:

lm(formula = height ~ age + I(age^2) + I(age^3), data = riley,

subset = age.2.10)

Residuals:

Min 1Q Median 3Q Max

-0.48304 -0.12357 -0.01843 0.08316 0.56923

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.043e+01 9.978e-01 30.500 2.77e-16 ***

age 2.145e-01 4.733e-02 4.533 0.000294 ***

I(age^2) 1.037e-03 6.870e-04 1.509 0.149579

I(age^3) -7.423e-06 3.092e-06 -2.401 0.028080 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2774 on 17 degrees of freedom

Multiple R-squared: 0.9986, Adjusted R-squared: 0.9984

F-statistic: 4064 on 3 and 17 DF, p-value: < 2.2e-16
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Observations
The summary indicates that the parameter for the cubic term also
improves the fit significantly.
When leaving in a term for a higher power, you should also leave in
terms for all lesser powers.
The residual plot does not show a pattern now.
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Fitting a Degree 4 Polynomial

Even though the residual plot does not show a pattern, we can see if
adding another term improves the fit.

The degree four model is

Yi = β0 + β1Xi + β2X 2
i + β3X 3

i + +β4X 4
i + εi

where εi ∼ N(0, σ2).

> riley.lm4 = lm(height ~ age + I(age^2) + I(age^3) + I(age^4),

+ data = riley, subset = age.2.10)
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Summary
> summary(riley.lm4)

Call:

lm(formula = height ~ age + I(age^2) + I(age^3) + I(age^4), data = riley,

subset = age.2.10)

Residuals:

Min 1Q Median 3Q Max

-0.47258 -0.13139 -0.01963 0.08789 0.55926

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.015e+01 2.339e+00 12.889 7.26e-10 ***

age 2.355e-01 1.618e-01 1.456 0.165

I(age^2) 5.179e-04 3.884e-03 0.133 0.896

I(age^3) -2.211e-06 3.847e-05 -0.057 0.955

I(age^4) -1.821e-08 1.340e-07 -0.136 0.894

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2857 on 16 degrees of freedom

Multiple R-squared: 0.9986, Adjusted R-squared: 0.9983

F-statistic: 2872 on 4 and 16 DF, p-value: < 2.2e-16Regression Fitting a Curve 39 / 55

Observations

The summary indicates that the parameter for the degree 4 term is
not significant.

The anova() function in R can also be used to summarize a nested
sequence of models, from simpler to more complex.

The table shows residual degrees of freedom, RSS, changes in RSS,
and an inference on the significance of the change.

Each F statistic is the change in RSS from the previous model divided
by the estimate of σ2 from the last model (1.3063/16) and degrees of
freedom are change in df and df for the last model.

> anova(riley.lm, riley.lm2, riley.lm3, riley.lm4)

Analysis of Variance Table

Model 1: height ~ age

Model 2: height ~ age + I(age^2)

Model 3: height ~ age + I(age^2) + I(age^3)

Model 4: height ~ age + I(age^2) + I(age^3) + I(age^4)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 5.7265

2 18 1.7513 1 3.9752 48.6887 3.115e-06 ***

3 17 1.3078 1 0.4434 5.4312 0.03319 *

4 16 1.3063 1 0.0015 0.0185 0.89357

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Plots of Three Fits
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Plots of Three Fits Over Full Range
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Observations

While the quadratic and cubic models are significantly better than the
linear model (in the region form 2 to 10 years), the actual differences
in predicted heights within this range are not so different.

None of the models do well when extrapolated beyond the range of
the data.

To find a good model for the entire data range (fit using all of the
data), some sort of nonlinear regression would be necessary.

In particular, we would want a model where the function eventually
flattens to a horizontal asymptote.
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Confidence and Prediction Intervals

The summaries of regression models include inferences about model
parameters.

We may also wish to make inferences about conditional means and
predictions about new individual observations.

For example, how can we find a 95% confidence interval for the
average age of a male lion whose nose is 20 percent black?

In addition, how can we find a 95% prediction interval for the age of a
single male lion whose nose is 20 percent black?

The first type of interval will be much smaller than the second,
because the first is only about uncertainty about the location of the
regression line while the second incorporates both uncertainty about
the line and individual variation.
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Confidence Intervals

In simple linear regression, the estimate of E(Y |X ) has standard error

SE =

√
RSS

residual df

(
1

n
+

(X − X̄ )2∑n
i=1(Xi − X̄ )2

)
Notice that this interval gets wider as X moves away from X̄ .

Also note that as n becomes very large, both fraction under the
square root get small and the SE approaches zero.

A confidence interval for E(Y |X ) has the form

Ŷ − t∗SE < E(Y |X ) < Ŷ + t∗SE

where t∗ is a critical value from a t distribution with n − 2 degrees of
freedom.
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Example

While possible to use summary data to find these intervals, it is more
convenient to use the R function predict().

The first argument to predict() is a fitted model.

The second argument is a data frame with the desired explanatory
variables.

Here are 95% confidence intervals for the average age of lions with
either 0.2, 0.3, and 0.4 proportion black noses.

In the data set, the mean proportion is 0.32, so the confidence
interval is most narrow at 0.3.

> predict(lions.lm, data.frame(proportion.black = c(0.2, 0.3, 0.4)),

+ level = 0.95, interval = "confidence")

fit lwr upr

1 3.008430 2.297898 3.718962

2 4.073142 3.466804 4.679480

3 5.137854 4.489386 5.786322

Regression Confidence and Predictions 46 / 55



Prediction Intervals

In simple linear regression, the prediction of a single Y given X has
standard error

SE =

√
RSS

residual df

(
1 +

1

n
+

(X − X̄ )2∑n
i=1(Xi − X̄ )2

)
Notice that this interval gets wider a X moves away from X̄ .

Also note that as n becomes very large, both fractions under the
square root get small, but 1 does not, so the SE approach σ.

A prediction interval for a single observation Y given X has the form

Ŷ − t∗SE < Y < Ŷ + t∗SE

where t∗ is a critical value from a t distribution with n − 2 degrees of
freedom.
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Example

The R function predict() also can be used for prediction intervals.

The first argument to predict() is a fitted model.

The second argument is a data frame with the desired explanatory
variables.

The argument interval="prediction" specifies a prediction
interval.

Here are 95% intervals for the age of individual lions with either 0.2,
0.3, and 0.4 proportion black noses.

> predict(lions.lm, data.frame(proportion.black = c(0.2, 0.3, 0.4)),

+ level = 0.95, interval = "prediction")

fit lwr upr

1 3.008430 -0.4729207 6.489781

2 4.073142 0.6115538 7.534730

3 5.137854 1.6686382 8.607070

Regression Confidence and Predictions 48 / 55



Plot of Confidence Intervals
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Plot of Prediction Intervals
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A New Example

Case Study

FEV (forced expiratory volume) is a measure of lung capacity and
strength.

FEV increases as children grow larger.

The next page has two separate residual plots, one of the residuals
versus height from a fit of FEV versus height and one of the residuals
versus height from a fit of log(FEV) versus height.

Notice that the residuals in the first plot have a fan shape but those
in the second are more evenly spread out. Also, the first plot shows a
nonlinear trend that is not present in the second plot.

When a residual plot shows a fan-shaped pattern with larger residuals
for larger values, a log transformation of the reponse variable often
improves the fit of the data to assumptions of a linear model.
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Two Residual Plots
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Cautions and Concerns

Inferences to larger populations assume random sampling; be cautious
in interpretation when samples are not random.

Plotting both raw data and residuals after fitting models is essential.

Many response variables depend on multiple explanatory variables; be
aware of the potential of confounding if the model does not include
some important explanatory variables.

Extrapolating beyond the range of the data can be dangerous.

Do not confuse confidence and prediction intervals.

Sometimes transformations are useful to better align data with
regression assumptions.
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Extensions

Multiple regression includes multiple explanatory variables;

Nonlinear regression allows fitting more general curves;

Spline methods fit curves where the basic form of the curve can
change for different values of explanatory variables;

Linear models allow both quantitative and categorical explanatory
models;

Logistic regression is used for binomial or binary response variables;

Poisson regression is another example of a generalized linear model in
which the response variable is not modeled as normally distributed.
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Summary

Regression and ANOVA are among the most useful and widely used
applications of statistical methods in biology.

If you need to use these methods in your own research, it is advisable
to take at least one additional course that examines these models in
much greater depth over an entire semester.

Statistics 572 with Jun Zhu in Spring 2011 may be the right next
course for you.
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