
 1

The Friendly Beginners’ R Course

written by Toby Marthews at the BCI Research Centre, Panama (http://www.stri.org)

 This course is only 14 pages long (inc. pictures) and you work through it in your own

time so it’s probably the least painful introduction to R currently around. Make sure you have

the example files that accompany this text (“first.r”, “mystery.r”, “quadrats.r” and

“quadratdata”) otherwise many things won’t make sense. Start reading below the line of stars

and all should be self-explanatory including how to install R in the first place (if necessary).

Toby, August 2005 (last updated April 2010)

 SO - you’ve decided you want to learn to use the R language and environment? Well,

hmmmmm ... would it perhaps be more accurate to say that either a) your boss/ supervisor/

advisor has told you that you have to and you have a very bad feeling about the whole idea, b)

you have some analysis to do and a friend has promised - against all your common sense -

that R is easy to use and can help you, c) you have tried reading statistics or modelling books,

have given up and are desperately hoping that R is a way around them or d) you’ve just

decided to increase your egg-head rating and impress people?

 Whatever your reasons, I think learning to use R is a good idea - if only to be aware of

what a package like this can do. R does a lot of very clever things and can make your life

easier if you have to analyse data a lot. The egg-head bit is also a good point: since I put it on

my CV everyone believes I’m much cleverer than I really am.

 Some comments for those who think R is ‘just another’ statistics package: Well, R is

both a programming language and a means to do statistical analysis and this is partly why I

think it’s a step ahead of anything else around at the moment: by learning R you will acquire

programming skills (these skills are 70-80% of what people learn (or should learn) in

modelling courses) and the ability to do statistics on a computer. So, by learning both

together, you can gain two sets of skills for the price of one (I wrote this paragraph in 2005

but I noticed in a 2009 article “Shock and Awe by Statistical Software - Why R?” by Owen

Petchey, Andrew Beckerman and Dylan Childs in Bulletin of the British Ecological Society

40 they made similar comments and suggested that R on its own could replace all of

Sigmaplot, MS Excel, SAS, Genstat and Mathematica !).

 DON’T BUY AN R TEXTBOOK (at least before you finish these pages): firstly

because there is a 2300 page R manual downloadable for free from the R website

http://www.R-project.org and secondly because R is not ‘new statistics’ but a way of doing

standard statistics more quickly, so you can and should use a STANDARD textbook, just

adding notes to it as required. R is similar to (and is a freeware alternative to) MATLAB

(http://www.mathworks.com/products/matlab; for a comparison of the two you can look at

http://germain.umemat.maine.edu/faculty/hiebeler/comp/matlabR.pdf). For users of SAS,

SPSS, Stata or Systat, “Quick-R” (http://www.statmethods.net/index.html) explains why R

can be useful to you too and

http://www.stat.columbia.edu/~cook/movabletype/archives/2009/01/r-in-the-news.html is a

discussion from 2009 about the relative merits of R, SAS, Stata and several other packages.

 2

 I’ve used R only since 2005, which means I really don’t know the ins and outs of it,

but in the following few pages I should be able to give you a kick-start and that should be

enough for you to be able to write your own R scripts, use some R functions, draw some nice

graphs and generally get familiar with it. This guide is written for someone who’s used a

computer before but has NO PROGRAMMING EXPERIENCE (if you do have some

experience, you’ll know which sections to skip below).

 I can’t say how long this text will take to work through (everybody’s different), but

there are only 6 challenges so hopefully not too long. Set yourself up with a computer, a

printout of this text, a strong coffee (or alternative stimulant) and go through the sections one-

by-one starting with

Installing R & Running an R Program

You need a bit of general knowledge of computers and how they work first. If you already

know about computer languages and workspace directories and have R installed on your

computer then go on to the next section.

 Computer programs are always written in some kind of computer language. Computer

languages are either script ones (e.g. BASIC, JavaScript, R) or compiled ones (e.g.

FORTRAN, PASCAL, C, C++, Java) and whichever one a programmer is using, it all has to

be translated into machine code (which is a stream of 1s and 0s) before the computer can

actually ‘execute’ or ‘run’ it (= do it). Here’s where the difference lies: with script languages

the computer goes through the program line-by-line and translates and executes each before

going on to the next line; with compiled languages the computer translates the whole program

in one go, saves the machine code as an ‘executable’ on disk (in Windows usually with a

“.exe” extension) and then runs the executable directly.

 Generally speaking, script languages are slow but more user-friendly (esp. error-

reporting) and compiled languages are much faster but are much less straight-forward to use.

So, if you write a program in R then it’ll run a lot slower than an equivalent program written

in C or FORTRAN - and you should be aware of this - but a) the difference will only be

noticeable to you if you’re doing really lots of calculations, b) if you’ve never used a

computer language before then you’ll be pulling your hair out if you start with something like

FORTRAN, c) in the case of R there are all these extra features like graph-plotting and

statistical functions that can make your life a lot easier (and FORTRAN, for example, can’t do

those without special add-ons like IDL) and d) if you learn how to program using a language

like R then you’ll find it really easy to pick up any other computer language afterwards

because all languages have similar structures (repeat loops, for loops, if statements, etc.).

 That’s all just to set the scene: let’s actually do something. Here’s how to install R on

your computer. I’ve done instructions here for WINDOWS and for LINUX (I don’t know

anything about Apple Macs although R is available for that too) that work at the time of

writing for my machine and therefore should work fine for you too. IF USING WINDOWS

PLEASE MAKE SURE YOU DO STEPS 2-3 BELOW EVEN IF YOU HAVE ALREADY

INSTALLED R.

 3

INSTALLATION FOR WINDOWS:

 1. Go to the R website http://www.R-project.org, click on Download/CRAN on the

left and choose a mirror site geographically near to you (to reduce download time). Choose

Windows and click on “base”, download the Setup Executable (click on “Download R x.x.x

for Windows”, where the “x”s are numbers) and save it on the Desktop (an “.exe” file).

Double-click on this to run the installation (make sure you tick the options to get all the on-

line PDF manuals and accept the default startup options). YES to a Start Menu folder and

YES to a desktop icon but NO to a Quick launch icon (see Step 3). R is now on your

computer (and you can delete the “R-x.x.x-win32.exe” file on the Desktop).

 2. Create a workspace directory on the Desktop (or elsewhere if you prefer) for using

R (right-click on the Desktop background, choose New -> Folder and give it a name) and

copy “first.r” (accompanying this text) into it. This directory is used by R for storing variables

and function definitions (in a file called “.RData”) so you have to have one (oh, and “A -> B”

is my way of saying “go to menu A and select B from it”). WATCH OUT: in a particularly

annoying way, some windows systems automatically rename email attachments called “xxx.r”

as “xxx.r.txt” or “XXX.R.TXT” when you save them and you need to keep renaming them

back to “xxx.r”.

 3. Right-click on the desktop shortcut that should have appeared during installation,

and choose “Properties”. Leave the “Target” as it is, but modify the “Start in” box so that it

has the location of the workspace directory you created in step 2 and click “Apply”. Next,

open the “RGui” by double-clicking on the desktop shortcut (“Gui” = “Graphical User

Interface”). By looking at File -> Source R code..., check that R opens in the right workspace

directory (the window that appears should be the directory from step 2: if it is, just cancel

without sourcing any files, but if not go back to step 2). If you want a Quick launch icon on

the task bar as well, use the mouse to drag the desktop shortcut on to the task bar (normally

just to the right of where the “start” of the Start Menu is).

 4. Now start up R. Test whether R can run a simple program: use File -> Source R

code... in the File menu, find first.r in the workspace directory and open it. R will run the

program and you should get a welcome message (the file first.r is just a text file, by the way,

as you can see if you open it in any text editor).

 5. Not quite finished yet: go to File -> Open script... and choose first.r. An R Editor

window should open up to allow you to change the program (I need to check you can do this

too). Find the “5” on line 6 and change it to a “10”. Save it by going File -> Save as... and

save it under the name “first2.r” (then close the editor window).

 6. Now run first2.r in the same way as in Step 4. If you got 10 stars then you’re doing

well and you deserve them!

 7. You can exit R by clicking on the red “X” or by typing “q()”. For now, you don’t

need to save the workspace image (in fact, throughout this Beginners’ course, you can always

say NO to saving the workspace).

 4

INSTALLATION FOR LINUX:

 1. Go to the R website http://www.R-project.org, click on Download/CRAN on the

left and choose a mirror site geographically near to you (to reduce download time).

 2. Choose Linux and find the right download file for your version of Linux and then

install it in the way your version of Linux expects (you should know what way - probably

either with a double-click or through something like YAST - see http://cran.r-

project.org/doc/manuals/R-admin.pdf for details).

 3. Create a workspace directory on the Desktop (or elsewhere if you prefer) for using

R and copy “first.r” (accompanying this text) into it. This directory is used by R for storing

variables and function definitions (in a file called “.RData”) so you have to have one.

 4. Open a terminal, change directory into your workspace directory using cd and type

“R” to go into the R language (the prompt will change to “>“).

 5. Test R can run a simple program: type “source(“first.r”)”. R will run the program

and you should get a welcome message (the file first.r is just a text file, by the way, as you

can see if you open it in a text editor like GNUemacs, kate, gedit, ue, pico, vi, etc.).

 6. Not quite finished yet: open first.r in a text editor (NOT using the terminal - leave

that open at the same time and do this in a different window) so that you can change the

program (I need to check you can do this too). Find the “5” on line 6 and change it to a “10”.

Save it under the name “first2.r” (then close the editor window).

 7. Now run first2.r in the same way as in Step 5. If you got 10 stars then you’re doing

well and you deserve them!

 8. You can exit R by typing “q()”. For now, you don’t need to save the workspace

image (in fact, throughout this Beginners’ course, you can always say NO to saving the

workspace).

 5

Two Windows: Console & Editor

With the heady feeling of success from having run your first R script, I’m sure you’ll be

wanting more, more, more! Well, just to get you used to what we’ve done up to now, please

could you open up the original first.r into your editor again. See if you can manage to do the

following two:

 Q1. Can you make the FOR loop count down from 5 to 1 instead of up from 1 to 5?

 Q2. Can you make it count up and then down (which is easiest to do using two FOR

loops one after the other)?

If you try those two questions (I know they’re tedious: you’ve got to learn to walk before you

can run) then you’ll have to get used to the way R programmers keep two windows open at

once: you edit the program in an “editor” window, then save it, flip to the “console” window

(aka. “terminal”) and run the program from there (Windows version only: note the different

“File” menus depending on which window is active). This is the way programming is done in

a lot of languages, by the way, and many people resize and move the two windows so they are

as large as possible without overlapping.

 The R in-built text editor (the “editor” window) is very basic and I don’t recommend

you use it: there are many much better editors that are free to install (some people end up

using MS NotePad and MS WordPad, but these are really not much better for text editing
1
). I

1
 If you do end up having to use WordPad, be careful to turn off the “smart quotes” facility: copying

cat(“Hello\n”) into the Console window will give an error: you need to copy in cat("Hello\n"). Also, be aware

 6

use and recommend “Notepad++” (a free download from http://notepad-

plus.sourceforge.net/uk/site.htm
2
), which is just great

3
. Please believe me that to do

programming without a proper text editor is making life unnecessarily hard for yourself!

 Please don’t skip Q1 and Q2: they’re there to force you to check that the editing-

saving-running process works OK on your version of R and you need this to be working for

what follows. If it doesn’t work then please re-check what you’ve done so far and/or panic

and call for help (try the FAQs about installation on http://www.R-project.org). A “syntax

error”, by the way, means there’s something wrong in the code you’re editing: check for

typos, unclosed brackets and other things like that.

 By the way, I think I ought to mention at this point that when you installed R, it also

installed a set of Beginners’ documentation and Frequently Asked Questions (FAQs) on your

machine. You can have a look at these at any time by typing

help.start()

into the Console window. There’s hundreds of pages of information there, but you don’t need

any of it just now because you are already reading this Beginners’ course which will tell you

everything you need to know (!). I feel I ought to mention it because it’s there and if you really

can’t get through my short Beginners’ course then that’s the place to look, but since you’re

already a fair way into this course, why not stick it out to the end and find out what all those

stars are for?

that when you save in .txt format these programs use Windows-format textfiles rather than normal textfiles (see

http://en.wikipedia.org/wiki/Text_files#Standard_Windows_.txt_files), which may cause you problems if you’re

doing something complicated (e.g. UNIX scripting), but for now you should be OK.
2
 To get the defaults I use on Notepad++, go to Settings->Preferences, make sure “Display line number margin”

in the “Editing” tab is ON, click OFF “Auto-indent” in the MISC tab and also “Don't check at launch time”, go

to the “New Document/Default Directory” tab and make sure the format is “Unix” (rather than “Windows”) and

check “Multi-Line” and “Show close button on each tab” in the “General tab” too. Then go to the Encoding

menu and check the encoding there is “UTF-8 without BOM”. Then go to the View menu and click ON “Word

wrap” and “Show Symbol”->“Show White Space and TAB” and “Show wrap symbol”. Additionally, I strongly

recommend installing NppToR (http://npptor.sourceforge.net/) along with Notepad++, which will give you

syntax highlighting for R.
3
 I’m aware of other R users who use “ConTEXT” (http://www.contexteditor.org), “TextPad”

(http://www.textpad.com; **NOT FREEWARE**), “Tinn-R” (http://www.sciviews.org/Tinn-R) or “Crimson

Editor” (http://www.crimsoneditor.com), but even though Tinn-R and Crimson Editor have syntax highlighting

for R, and TextPad offers it as an add-on (http://www.textpad.com/add-ons/files/syntax/r.zip), I still prefer the

combination of Notepad++ and NppToR. Other favourites are Eclipse+StatET

(http://www.walware.de/goto/statet), Emacs+ESS (http://en.wikipedia.org/wiki/Emacs_Speaks_Statistics) and

Vim (http://www.vim.org/). More options are on http://www.sciviews.org/_rgui/projects/Editors.html.

 7

The R Manual

While you’re concentrating on first.r to answer those questions, please make sure you can

understand what every line does. I haven’t explained everything in my comments there (the #

lines) because you need to get into the habit of using R’s very comprehensive manual system.

There are no annoying paperclips, funny dogs or wizards. Here’s how to use it:

 Imagine you are sent an R script and you open it in your text editor to try to figure out

how it works. Say the first line is:

a=seq(-2,4,length.out=5)

but you don’t know what this does yet. The command here is “seq” (the bracket afterwards

contains the arguments ‘passed’ to this command) so the first thing you would do is open up

the R manual page for seq by typing “?seq” into the Console window. The manual page will

then appear (in Windows it appears in a new window, in Linux in the same window: you

press “q” to go back to normal). These manual pages are generally written in a pretty

technical way (you’re going to get used to it, I’m afraid), but you don’t usually have to read

much of it: ignore the text and scroll down to the bottom to see the examples (the first one on

the seq page is “seq(0, 1, length.out=11)”. The examples are the best bit of the manual page to

start with because you can copy them into the Console window to see what they do (in

Windows mark the example you want with the mouse, do CTRL+c to copy, click on the

Console and do CTRL+v to paste; in Linux mark it and do Edit -> Copy, then q, then Edit ->

Paste). Do this with the first of the seq examples:

seq(0, 1, length.out=11)

 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

It doesn’t take a genius to work out from this that the “seq” command makes a sequence of

numbers, so that mysterious command in the program you were sent probably creates a

sequence of 5 numbers from -2 to 4 and stores it in a variable called “a”. You can confirm this

by typing:

> a

[1] -2.0 -0.5 1.0 2.5 4.0

Now try finding out about a different command:

 Q3 Copy and try out the “Discrete Distribution Plot” example at the end of the “plot”

manual page and the “setting row and column names” example from the “matrix” manual

page.

If there doesn’t appear to be a manual page for a particular command (e.g. typing “?for”

doesn’t work), there is a search facility you can use: type “help.search(“for”)” and top of the

results list is “Control(base)” which is a page you can bring up by typing “?Control” (note the

capital “C”). Perhaps a more user-friendly way of searching for help is to download the “R

Reference Index” from the “Manuals” part of the R website (http://www.R-project.org): this

is in PDF format and you can search for words in it using CTRL+f. If you really get stuck on

any issue like XXX, try typing “RSiteSearch("XXX")” into the Console window to search the

R website.

 8

 These search facilities are also very useful for finding out how to do things on R, e.g. a

standard kind of statistics plot is a box plot, but at the moment you don’t know how to do this

in R and if you type “?box” you don’t get the right manual page. Typing “help.search("box")”

or “??box” into the Console window, however, or searching for “box” in the reference index

will lead you to the keyword “boxplot” which is the right one to use (and both sources give

you examples to try too). Sometimes it’s not so clear how the examples work, but generally

they are very helpful (e.g. the examples at the end of the ?boxplot page use data sets called

“InsectSprays”, “OrchardSprays” and “ToothGrowth” that are pre-loaded whenever R starts

up: this doesn’t mean the examples won’t work if you copy them into the Console window,

but it’s not so clear where the numbers come from until you type the name of the data set into

the Console window to see what the data set contains).

 It’s worth pointing out, by the way, that all R commands work the same way: they

have heaps of options (the “Arguments” list on the corresponding man page) and you change

the options to get exactly the result you want. You might notice that some commands have

very many options, and this is why R is not menu-driven: it would simply be impossible to

make menus with that many options on them! Everyone would agree that command-line-

driven software like R isn’t as user-friendly as menu-driven software, but the alternative is to

have a much-restricted set of options and that means you simply can’t do what you want/need

to do.

Putting Commands Straight into the Console Window

I hope you like these short, easily-digestible sections by the way: I’m trying only to tell you

what you need to know to use R. Just to make sure everyone is following, I’d better give the

answers to Q1, Q2 & Q3: for Q1 just change the “1:5” to “5:1”, for Q2 you have two loops

with the first going up (1:5) and the second going down (4:1 to avoid having 5 counted twice),

for Q3 you should get a pretty graph (“rpois(100,lambda=5)” means 100 draws from a

Poi(lambda=5) distribution - we’ll get to this sort of thing later) and a 2x3 matrix with 1,2,3

on the top row and 11,12,13 on the bottom row. All those who got these answers get 10 stars

(are you keeping track of your stars?).

 Next, please click on the console window and type in “y=3” and ENTER. Now type

“y” and ENTER. Now type “x=5.6643” and “x”. Now “options(digits=2)” and “x”. Now type

“y=y*20” and “y” again. Do you see what’s going on? You can put commands in straight like

this. Now type “cat("Free love starts at",y,"\n")” and “for (i in -4:2) {“. The prompt has

changed from “>“ to “+”, which means R has found an incomplete command and you need to

type more in, so type “cat(i,"\n")” followed by “}”. You get the idea, I think. Type

“ages=c(13,41,49,0,42,1,40,20)” followed by “hist(ages)” to get a quick glimpse of R’s

statistical side. Also, there is a “history” function whereby you can press the up and down

arrows to find, modify and re-use a previous command: click back on the Console window

and press the up arrow a few times to get the first “cat” command in this section, change

“love” to “dental care” and press ENTER to get “Free dental care starts at 60” which is, of

course, what I meant to say really. Use CTRL+L to clear the console window (clearing up).

 This facility of being able to try out any command directly is really powerful and one

of the main reasons for using a script language (you can’t do it so easily with compiled

languages). If you’re given a program containing lots of incomprehensible command lines (as

may very well happen in the next section ...), you can try out the lines one-by-one by copying

them into the Console window and seeing what they do.

 9

A Mystery Program

Time for another challenge. Have a look at the program mystery.r (accompanying this text):

your task is to work out what it does.

 When trying to figure out what a program does, the first thing to do is to run it (save it

in the workspace, start R, use source(“...”) in the File menu, etc.). The second thing to do is to

open it in a text editor and see if you can figure out from the code and code-comments what

it’s trying to do. You’ll get another 15 stars if you can tell me:

 Q4 What does the program mystery.r calculate and put in the NND column of its

printout at the end?

At this point many people might be saying “whoa – what?” because we’ve suddenly jumped

to something with sin, cos, abs, sqrt and pi in it (maths), a couple of control loops (the for (

…) { … } bits) and arrays (the variables with something in [] after them). Don’t panic (yet)

– just find any commands you’re not familiar with, check the manual pages to see what the

keywords are supposed to do (type “?sqrt” and copy the example at the end into the Console

window to see what it does, etc.) and, if that doesn’t help, copy the whole line you’re not sure

about into the Console window to see if it works there too (most will), alright?

 10

 Q5 By inserting “f=jpeg(file="plot1.jpg")” just before the plot command and inserting

“dev.off()” just after the abline commands, the plot should appear in your workspace directory

as a .jpg graphics file instead of being plotted on the screen. Type “?jpeg” to find out how to

export as a .bmp or .png file too. This is very useful because it allows you to save plots for

use in other programs. Another 5 stars if you manage this too. If you’re super sharp and have

noticed that you can right-click on the plot window and cut & paste it into e.g. MS Word

without fiddling with that jpeg command then I’m afraid no stars for you!: go back and do it

with the command like I said because it’s good to know how to do it that way too! Jeepers -

people can be a bit too clever sometimes ... (:-9).

So, how are you feeling about this gentle art of programming? Dead hard or insultingly easy?

Keep count of your stars and pat yourself on the back if you got this far. Take off a star for

every bit of help you got from someone else, by the way: I’m watching you.

 The answer to Q4 is at the end of this text, written backwards, but DON’T LOOK

NOW: work it out first!

Vectors

OK, I think you need a breather!

 This is an easy section just to tell you more about “vector” data types, which are the c(

...) lists of numbers you’ve already met. Click on the Console window and type

“b=10;c=11;d=12” (the semi-colon is just a way of putting more than one command on one

line). Now type “vec=c(3,b,b,8)” and “vec” and you can see that vec now holds a list (aka.

vector) of numbers. You can access the numbers directly too: type “vec[2]” and “vec[4]” and

“for (i in 1:4) {cat(vec[i],"\n")}” (nb. 3 different types of brackets and they have to be in the

right places).

 Now type “vec2=c(1,2,3,4)” and “vec3=vec+vec2” and “vec3” and

“vec4=(vec*vec2)+6” and “vec4” and “vec5=c(rep(3,times=20))” and “vec5” and if you can

follow what’s going on with all that then you know pretty much all you need to know about

vectors.

Matrices

After vectors come matrices. This is not the enslaving-the-human-race, world-simulating,

karate-kicking kind of matrix, but a more mundane & traditional mathematical matrix, i.e. just

a grid or array or numbers. Type “mat=matrix(c(7,8,2,3,4,5,6,3,2,1,-2,-9),nrow=3,ncol=4)”

and “mat”, which should give you a matrix. Now type “mat2=matrix(c(7,8,2,3,4,5,6,3,2,1,-2,-

9),nrow=3,ncol=4,byrow=TRUE)” and “mat2” and “mat3=matrix(7,nrow=3,ncol=4)” and

“mat3” and “mat4=matrix(3:14,nrow=3,ncol=4)” and “mat4” and “mat2+mat3” and

“mat4*2” and phew, but I think we’ll stop there!

 All these commands about vectors and matrices can be used in a proper program in

just the same way as they work in the Console window. If you feel that hell would freeze over

before you voluntarily did anything with matrices then fair enough: we’ll have no more of

them here.

 11

Miscellaneous

Here are some useful commands to try out. Here’s a way to control the number of decimal

places on what you print out:

cat("x=",formatC(10.5,width=8,format="f",digits=3),"\n")

Here’s some string manipulation:

substring("abracadabra",3,8) # Extract characters 3 to 8

nchar("abracadabra") # Count the number of characters

strsplit("abracadabra","r") # Split wherever "r" appears

strsplit("abcd",split="") # Split into separate characters

paste("ab","c","d",sep="") # Join together

paste(c("a","b","c"),collapse="") # Join vector elements

and try these commands to learn a bit about date formats:

dd=as.Date(c("2003-08-24","2003-11-23","2004-02-22","2004-05-03"))

diff(dd)

as.Date("1/1/1960",format="%d/%m/%Y")

as.Date("1:12:1960",format="%d:%m:%Y")

as.Date("1960-12-1")-as.Date("1960-1-1")

as.Date("31/12/1960","%d/%m/%Y")

as.integer(as.Date("1/1/1970","%d/%m/%Y"))

as.integer(as.Date("1/1/2000","%d/%m/%Y"))

dec1=as.Date("2004-12-1")

format(dec1,format="%b %d %Y")

format(dec1,format="%a %b %d %Y")

strptime("2005-02-07 14:00","%Y-%m-%d %H:%M") #use strptime for Date+time

times=strptime("07/02/2005 14:00","%d/%m/%Y %H:%M",tz="America/Lima")+1800*(0:16)

plot(x=times,y=runif(length(times),min=8,max=12),bty="l")

(the tz option here allows you to specify different time zones, using the standard

Linux/UNIX naming conventions: http://www.vmware.com/support/developer/vc-

sdk/visdk400pubs/ReferenceGuide/timezone.html)

Plotting Data on a Graph

R has a lot of clever plotting functions and these are one of the main reasons for learning how

to use the thing SO here are a couple of examples. Try typing the following into the Console

window to get a basic plot:

years=c(2004,2005,2006,2007,2008)

rainfall=c(1500,1300,1800,1350,1950)

plot(x=years,y=rainfall)

Now that’s fine, but the plot comes out using the R defaults which (oddly) don’t correspond

with the standard guidelines on figures that most scientific journals insist on (e.g. see

“Figures” on the Journal of Ecology page

http://www.blackwellpublishing.com/submit.asp?ref=0022-0477 which starts “Figures should

not be boxed (superfluous bounding axes)...”; have you ever heard of “chartjunk”

 12

http://en.wikipedia.org/wiki/Chartjunk ?). If you look at the manual pages ?plot and ?par

you’ll find out how to change the formatting options (you’ll almost always need at least

bty="l" and las=1) and here is an example of a different way of displaying the same data:

thisdata=data.frame(years,rainfall) #Try fix(thisdata) for a nice way to

see the contents of a data frame

bestfit=lm(rainfall~years,data=thisdata)

x11();plot(thisdata,main="Annual Rainfall",xlab="recorded

years",ylab="mm",bty="l",las=1,ylim=c(0,2000),pch=4,sub=paste("Best Fit

line is y = (",bestfit$coefficients[2],") x +

(",bestfit$coefficients[1],")"))

lines(thisdata)

abline(bestfit,lty=2)

and here’s a plot with data labels:

sp=c("Alchornea costaricensis","Alseis blackiana","Annona spraguei","Apeiba

aspera","Cordia alliadora","Sapium caudatum")

seedmass.mg=c(38.5,0.12,40.4,14.2,2.9,64)

leaflifetime.mo=c(5.3,10.2,3.9,5.9,8.5,5.3)

posns=c(4,3,2,1,1,1) #1=below, 2=left, 3=above, 4=right

x11();plot(x=leaflifetime.mo,y=seedmass.mg,xlim=c(0,12),xlab="Leaf lifetime

in months",ylab="Seed air-dry mass in mg",bty="l",las=1,log="y",type="n")

points(x=leaflifetime.mo,y=seedmass.mg,pch=4)

text(x=leaflifetime.mo,y=seedmass.mg,labels=sp,pos=posns) #adding

",offset=-0.305" and removing the points command would mean the data label

is actually on the correct point

Some bright spark at the R office decided to write a nice graphics demonstration for people

like you and me and you should definitely have a look: type “demo(graphics)” and keep

pressing ENTER or RETURN to go through it. Also, see

http://addictedtor.free.fr/graphiques/thumbs.php for a website about R graphics and

http://zoonek2.free.fr/UNIX/48_R/04.html for a lot of basic examples. For those worried

about how to put maths on the axis labels, see demo(plotmath). R can do LOTS of more

advanced plots including trellis/lattice plots (package “lattice”: see next section for what

packages are, http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter4.pdf), 3D graphics

(package “rgl”, http://rgl.neoscientists.org/gallery.shtml), dynamic visualisation (package

“rggobi” to link with GGobi, http://www.ggobi.org/), etc.

(http://www.math.yorku.ca/SCS/Gallery/ is worth a look) but these are far too much for now.

 Remember to look at all the manual pages of all the various plotting commands in

these demos, by the way, and try the examples: that’s the only way you can learn how to

make all those impressive plots.

Packages

For a lot of statisical analyses you have to get to know R’s system of ‘packages’. Type

“library()” into a Console window to find out what packages were installed on your computer

when you put in R. Now type “search()” to get a list of the packages from that list that are

already loaded in (installed packages are not necessarily loaded in).

 A package like “methods” is already installed and loaded in by default, but “survival”

is only installed so if you want to use it you have to load it in by typing “library(survival)” or

“require(survival)”. Try the command “date.mdy(sdate=15000)” both before and after loading

in survival (which should give you 25-JAN-2001) to see what I mean.

 13

 If you want to use a package that isn't already installed, then, hmmmm To be

honest, if you’re reading a beginners’ course on R (which you are) then you should have no

cause whatsoever to be using uninstalled packages OK, if you insist, then type

“install.packages("nlme")” into the Console window, choose a mirror site geographically

nearby and see what happens (Windows Vista users will have to close R and reopen it as an

administrator (right-click on the R icon for this option) in order to be able to install packages).

For a list of (the many) available packages, go to http://www.R-project.org, click CRAN on

the left, choose a mirror site near you and then click Packages on the left (you can find “nlme”

in that list to see what you’ve just installed). Every package has a PDF manual uploaded onto

the R website at this location and some also have example files to show what the package

does (e.g. check out the ‘world map’ package at http://cran.r-

project.org/web/packages/rworldmap/index.html).

 The packages list on the R website is also how you can find out whether there’s a

package that can accomplish a particular task. For example, let’s say you have to deal with

netCDF files (.nc). There is an R package that gives you commands for reading and writing to

netCDF format, which you can find on that list page, so can you download the manual and

install it? (this isn’t quite a trivial question because the package isn’t called “netcdf” so

install.packages("netcdf") won’t do anything).

Quadrat-o-phenia

This is only supposed to be a beginners’ course and I think it’s long enough already so I’m

going to wrap it up here by giving you a final example program that demonstrates some R

features (vector arithmetic, reading in data from a textfile using the read.table() command, a

χ
2
 test, a bar plot, a function definition and sampling from a Poisson distribution). Have a look

at quadrats.r and try to figure out how it works using the manual resources I’ve been telling

you about above (the program explains what it’s working out as it goes along). Apart from

running this program and pausing in admiration at the clear and concise way I write code (or

perhaps staring in disbelief at how much pain can be compressed into a single page of text ...),

I’d like you to do something as a final challenge.

 Q6 Dig out a different worked example of a χ
2
 test (you may have encountered one

before in a textbook or you could look at

http://www.mste.uiuc.edu/patel/chisquare/intro.html). They should all follow exactly the same

calculations and I’d like you to modify the program quadrats.r so that it calculates whatever

problem you’ve dug out and gets the same answer as your book or website. A big, fat 30 stars

to you if you can do that!

Whilst trawling through quadrats.r you should have found examples of many unfamiliar

commands. This is deliberate and you may have noticed that I’ve been trying to slip into all

these programs as many different useful commands as I could. This is because I want you to

keep the programs and use them. You see, no-one ever really writes an R script straight off

from scratch: most programmers maintain a little ‘library of useful programs’ somewhere and

when they have to write a new one they start with an old program in this library and modify it

until it can do the job in hand. There’s nothing bad in this (C and FORTRAN pogrammers

even publish many standard routines - see “Numerical Recipes”, http://www.nr.com) and the

idea of giving you these scripts is that they will form the kernel of a similar library for you.

 14

All Done and Dusted

That’s it! The end of the course. You’re now no longer a beginner at R (!). Where to go from

here? For people past beginner level, I'm afraid there’s not really many substitutes to

“learning by doing”, which is very tedious and boring! You can buy a textbook if you like,

but check out the R website http://www.R-project.org before you do that: click on

Documentation/Other on the left and then “contributed documentation” in the main part of the

screen. There are lots of freely-downloadable resources there, e.g. I liked Tom Short’s

reference card at http://cran.r-project.org/doc/contrib/Short-refcard.pdf.

 There are many R courses online nowadays, e.g. have a look at help.start()

(mentioned above) or CSIRO’s course (http://www.csiro.au/resources/Rcoursenotes.html) or

Ruth Ripley’s course (http://www.stats.ox.ac.uk/~ruth/RCourse/APTS.html), or “Uso da

Linguagem R para Análises de dados Ecológicos” (somente disponível em português,

http://ecologia.ib.usp.br/bie5782/doku.php) or you could check out

http://www.r4all.group.shef.ac.uk/ (though that’s not free). You can use the web to find more

specific help, e.g. if you search “tutorial R functions” on Google (http://www.google.com)

then you will find several pages which explain functions fairly well. Also use the web if you

get stuck: if you are struggling to work out how to do something, then 99% of the time

someone has encountered the same problem before and obligingly put a solution on a website.

For example, having trouble rotating the axis labels on an R plot? It took me only a few

seconds to find https://stat.ethz.ch/pipermail/r-help/2000-December/009507.html on Google

and it might have been even quicker using Rseek (http://www.rseek.org/) or MarkMail

(http://r-project.markmail.org/search/). I’d like to put in here a very big THANK YOU to all

the people who contribute solutions to websites like these: you have saved me MANY times.

 If you’ve got this far and you feel that R is not very user-friendly and you’re unhappy

about that, then there are some packages that put a menu-driven ‘front end’ onto the interface:

have a look at R Commander http://socserv.mcmaster.ca/jfox/Misc/Rcmdr, Tinn-R

http://www.sciviews.org/Tinn-R, JaguaR http://rosuda.org/JGR, Brodgar

http://www.brodgar.com and (Linux only) RKWard http://rkward.sourceforge.net. However, I

should point out that none of these softwares extend R’s capabilities in any way: they just

offer a more ‘point-and-click’ interface for using it. If you’re happy with the R Console

window and manual pages and entering commands in directly (as I am) then you don’t need

to look at any of them.

 For further information, the R website has links to a lot more (e.g. see http://cran.r-

project.org/doc/Rnews/Rnews_2001-1.pdf for some history about R) and a mailing list for

help (don’t email this list with general questions like “how do I do XXX?”: be specific e.g.

“I’m trying to do XXX. I’ve tried AAA and BBB (example code ...) but they don’t work ...”).

 Almost done: just have to explain about the stars. For each star you earned during this

course (max. 70), please now go out and buy a seed or a plant and put it in your garden or

somewhere similar (native species only, of course). In this way the study of R can contribute

to the greening and beautifying of the world around us.

 All the best!

 Toby Marthews.

PS. Most R users (and most R manuals) say you should type “x <- 3” instead of “x=3” to make x equal 3. There are reasons for this, but I

find “x=3” much more straight-forward (and easier to explain to my boss when he looks at my code!) and they are both equivalent.

PPS. Watch out for my 4 most common errors when writing R code:
 i) Thinking that if something like mean(5.4,6.7,2.3) gives me 5.4 then that’s the mean, when actually it’s 4.8 (from mean(c(5.4,6.7,2.3)))

 ii) Forgetting that “log(x)” means ln(x) not log10(x),

 iii) Forgetting to use “==“ in if statements (e.g. you have to type “if (x==3) { ...” instead of “if (x=3) { ...”) and
 iv) Comparing with a negative number (e.g. “if (x<-3) { ...” doesn’t work: you have to do “if (x<(-3)) { ...”).

PPPS. Almost forgot: the answer to Q4 is: “ecnatsid ruobhgien tseraen” rof sdnats “DNN”.

PPPPS. Yes, of course you have to buy the plants! We have ways of watching you ... OK, at least buy one potted plant and just love it ...?

