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Cuckoo Birds

Example

Cuckoo birds have a behavior in which they lay their eggs in other
birds nests.

The other birds then raise and care for the newly hatched cuckoos.

Cuckoos return year after year to the same territory and lay their eggs
in the nests of a particular host species.

Furthermore, cuckoos appear to mate only within their territory.

Therefore, geographical sub-species are developed, each with a
dominant foster-parent species.

A general question is, are the eggs of the different sub-species
adapted to a particular foster-parent species?

Specifically, we can ask, are the mean lengths of the cuckoo eggs the
same in the different sub-species?
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Cuckoo Bird Egg Length Distribution
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Comparing More than Two Populations

We have developed both t and nonparametric methods for inference
for comparing means from two populations.

What if there are three or more populations?

It is not valid to simply make all possible pairwise comparisons:

with three populations, there are three such comparisons, with four
there are six, and the number increases rapidly.

The comparisons are not all independent: the data used to estimate
the differences between the pair of populations 1 and 2 and the pair
of populations 1 and 3 use the same sample from population 1.

When estimating differences with confidence, we may be concerned
about the confidence we ought to have that all differences are in their
respective intervals.

For testing, there are many simultaneous tests to consider.

What to do?
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Hypotheses

The common approach to this problem is based on a single null
hypothesis

H0 : µ1 = µ2 = · · · = µk

versus the alternative hypothesis that the means are not all the same
(so that there are at least two means that differ) where there are k
groups.

If there is evidence against the null hypothesis, then further inference
is carried out to examine specific comparisons of interest.
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Illustrative Example

The dot plots show two cases of three samples, each of size five.

The sample means are respectively 180, 220, and 200 in both cases.

The left plot appears to show differences in the mean; evidence for
this in the right plot appears weaker.
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Analysis of Variance

The previous example suggests an approach that involves comparing
variances;

If variation among sample means is large relative to variation within
samples, then there is evidence against H0 : µ1 = µ2 = · · · = µk .

If variation amng sample means is small relative to variation within
samples, then the data is consistent with H0 : µ1 = µ2 = · · · = µk .

The approach of testing H0 : µ1 = µ2 = · · · = µk on the basis of
comparing variation among and within samples is called Analysis of
Variance, or ANOVA.
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Notation

There are k populations where Yij is the jth observation from the ith
sample.

There are a total of n observations with ni in sample i .

The sample mean and standard deviation of sample i are Ȳi and si .

The grand mean Ȳ is the mean of all observations.

Note that the grand mean

Ȳ =
k∑

i=1

(ni

n

)
Ȳi

is the weighted average of the sample means, weighted by sample size.

Note that subscripts for samples and populations range i = 1, . . . , k
and for individual observations range j = 1, . . . , ni .
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Modeling Assumptions
We make the following modeling assumptions:

All observations Yij are independent (k independent random samples
from populations of interest).

E(Yij) = µi (µi is the mean of population i).

Var(Yij) = σ2
i (σ2

i is the variance of population i).

We will also often make the following two additional assumptions:

all population variances are equal: σ2
i = σ2 for all i ;

all observations are normally distributed: Yij ∼ N(µi , σ
2
i )

With the first set of assumptions, note that

E(Ȳi ) = µi and Var(Ȳi ) =
σ2

i
ni

and additionally, if the second set of assumptions are made, then

Ȳi ∼ N
(
µi ,

σ2

ni

)
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Variation Among Samples

We use this formula for the variation among sample means:

k∑
i=1

ni (Ȳi − Ȳ )2

which is a weighted sum of squared deviations of sample means from
the grand mean, weighted by sample size.

Under the assumptions of independence and equal variances,

E

( k∑
i=1

ni (Ȳi − Ȳ )2

)
= (k − 1)σ2 +

k∑
i=1

ni (µi − µ)2

where

µ =

∑k
i=1 niµi

n

is the expected value of the grand mean Ȳ .
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Variation Among Samples (cont.)

The sum
k∑

i=1

ni (Ȳi − Ȳ )2

is called the group sum of squares.

If the null hypothesis H0 : µ1 = µ2 = · · · = µk is true, then∑k
i=1 ni (µi − µ)2 = 0 and

E

( k∑
i=1

ni (Ȳi − Ȳ )2

)
= (k − 1)σ2

This suggests defining

MSgroups =

∑k
i=1 ni (Ȳi − Ȳ )2

k − 1

to be the group mean square.

If the null hypothesis is true, then E(MSgroups) = σ2; otherwise,

E(MSgroups) = σ2 +
∑k

i=1 ni (µi − µ)2/(k − 1) > σ2.
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Variation Within Samples

For each sample, the sample variance

s2
i =

∑ni
j=1(Yij − Ȳi )

2

ni − 1

is an estimate of that population’s variance, σ2
i .

Under the assumptions of equal variance and independence, each s2
i is

then an independent estimate of σ2.

The formula
k∑

i=1

ni∑
j=1

(Yij − Ȳi )
2 =

k∑
i=1

(ni − 1)s2
i

is the sum of all squared deviations from individual sample means and
has expected value

E

( k∑
i=1

(ni − 1)s2
i

)
= (n − k)σ2
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Variation Within Samples (cont.)

The mean square error formula

MSerror =

∑k
i=1(ni − 1)s2

i

n − k

is a weighted average of the sample variances, weighted by degrees of
freedom.

Notice that E(MSerror) = σ2 always: it is true when
H0 : µ1 = µ2 = · · · = µk is true, but also when H0 is false.
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The F Test Statistic

We have developed two separate formulas for variation among and
within samples, each based on a different mean square:

I MSgroups measures variation among groups;
I MSerror measures variation within groups.

Define the ratio F = MSgroups/MSerror to be the F -statistic (named in
honor of R. A. Fisher who developed ANOVA among many other
accomplishments).

When H0 : µ1 = µ2 = · · · = µk is true (and the assumption of equal
variances is also true), then both E(MSgroups) = σ2 and
E(MSerror) = σ2 and the value of F should then be close to 1.

However, if the population mean are not all equal, then
E(MSgroups) > σ2 and we expect F to be greater than one, perhaps
by quite a bit.
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The F Distribution

Definition

If W1 and W2 are independent χ2 random variables with d1 and d2

degrees of freedom, then

F =
W1/d1

W2/d2

has an F distribution with d1 and d2 degrees of freedom.

The mean of the F (d1, d2) distribution is d2/(d2 − 2) provided that
d2 > 2.

The F distributions have different shapes, depending on the degrees
of freedom, but are typically unimodal and skewed right.

The R function pf() finds areas to the left under F distribution and
the R function qf() finds quantiles. These functions work just like
pt() and qt() except that two degrees of freedom need to be
specified.
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Sampling Distribution

If we have k independent random samples and:
I the null hypothesis H0 : µ1 = µ2 = · · · = µk is true;
I all population variances are equal σ2

i = σ2;
I individual observations are normal, Yij ∼ N(µ, σ2);

then,
I (k − 1)MSgroups/σ

2 ∼ χ2(k − 1);
I (n − k)MSerror/σ

2 ∼ χ2(n − k);
I MSgroups and MSerror are independent;

It follows that

F =
MSgroups

MSerror
∼ F (k − 1, n − k)
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ANOVA Table

The F statistic is the test statistic for the hypothesis test
H0 : µ1 = µ2 = · · · = µk versus HA : not all means are equal.

The steps for computing F are often written in an ANOVA table with
this form.

Source df Sum of Squares Mean Square F P value

Groups k − 1 SSgroups MSgroups F P
Error n − k SSerror MSerror

Total n − 1 SStotal
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Total Sum of Squares

The total sum of squares is the sum of squared deviations around the
grand mean.

SStotal =
k∑

i=1

ni∑
j=1

(Yij − Ȳ )2

It can be shown algebraically that

k∑
i=1

ni∑
j=1

(Yij − Ȳ )2 =
k∑

i=1

ni (Ȳi − Ȳ )2 +
k∑

i=1

(ni − 1)s2
i

or
SStotal = SSgroups + SSerror
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Return to the Cuckoo Example

The function lm() fits linear models in R.

The function anova() displays the ANOVA table for the fitted model.

> cuckoo.lm = lm(eggLength ~ hostSpecies, data = cuckoo)

> anova(cuckoo.lm)

Analysis of Variance Table

Response: eggLength
Df Sum Sq Mean Sq F value Pr(>F)

hostSpecies 5 42.940 8.5879 10.388 3.152e-08 ***
Residuals 114 94.248 0.8267
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Interpretation

There is very strong evidence that the mean sizes of cuckoo bird
eggs within populations that use different host species are
different (one-way ANOVA, F = 10.4, df = 5 and 114,
P < 10−7). This is consistent with a biological explanation of
adaptation in response to natural selection; host birds may be
more likely to identify an egg as not their own and remove it
from the nest if its size differs from the size of its own eggs.
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Summary Statistics

The table can also be constructed from summary statistics.

Note for example that the mean square error in the ANOVA table is a
weighted average of the sample variances.

Host Species n mean sd variance

HedgeSparrow 14 23.12 1.07 1.14
MeadowPipet 45 22.30 0.92 0.85
PiedWagtail 15 22.90 1.07 1.14
Robin 16 22.57 0.68 0.47
TreePipet 15 23.09 0.90 0.81
Wren 15 21.13 0.74 0.55
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Example Calculations

Degrees of freedom depends only on sample sizes.

14 + 45 + 15 + 16 + 15 + 15 = 120 so there are 119 total degrees of
freedom.

There are k = 6 groups, so there are 5 degrees of freedom for group.

The difference is 114 degrees of freedom for error (or residuals).

MSerror is the weighted average of sample variances

MSerror =
(13)(1.07)2 + (44)(0.92)2 + (14)(1.07)2 + (15)(0.68)2 + (14)(0.90)2 + (14)(0.74)2

114
.
= 0.827
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More Calculations

The grand mean:

(14)(23.12) + (45)(22.30) + (15)(22.90) + (16)(22.57) + (15)(23.09) + (15)(21.13)

120

.
= 22.46

Group sum of squares:

(14)(23.12−22.46)2+(45)(22.30−22.46)2+(15)(22.90−22.46)2+(16)(22.57−22.46)2+(15)(23.09−22.46)2+(15)(21.13−22.46)2

.
= 42.94

You should know how to complete a partially filled ANOVA table and
how to find entries from summary statistics.
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Variance Explained

Definition

The proportion of variability explained by the groups, or R2value, is
defined as

R2 =
SSgroups

SStotal
= 1− SSerror

SStotal

and takes on values between 0 and 1.

In the cuckoo example, the proportion of the variance explained is
42.94/137.19

.
= 0.31.
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Estimation

The ANOVA analysis provides strong evidence that the populations of
cuckoo birds that lay eggs in different species of host nests have, on
average, eggs of different size.

It is more challenging to say in what ways the mean egg lengths are
different.

Estimating the standard error for each difference is straightforward.

Finding appropriate multipliers for those differences may depend on
whether or not the researcher is examining a small number of
predetermined differences, or if the researcher is exploring all possible
pairwise differences.

In the former case, a t-distribution multiplier is appropriate, except
that the standard error is estimated from all samples, not just two.

In the latter case, there are many approaches, none perfect.
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Standard Error

When estimating the difference between two population means, recall
the standard error formula (assuming a common standard deviation σ
for all populations)

SE(Ȳi − Ȳj) = σ

√
1

ni
+

1

nj

In the two-sample method, we pooled the two sample variances to
estimate σ with spooled.

In ANOVA, the square root of the mean square error,
√

MSerror pools
the data from all samples to estimate the common σ.

This is only sensible if the assumption of equal variances is sensible.
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Example

For the cuckoo data, we have this estimate for σ.√
MSerror

.
=
√

0.827
.

= 0.91

With six groups, there are 15 different two-way comparisons between
sample means.

The standard errors are different and depend on the specific sample
sizes.

It can be useful to order the groups according to the size of the
sample means.
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Example

Population Mean n Population Mean n Difference SE
MeadowPipet 22.30 45 Wren 21.13 15 1.17 0.27
Robin 22.57 16 Wren 21.13 15 1.45 0.33
PiedWagtail 22.90 15 Wren 21.13 15 1.77 0.33
TreePipet 23.09 15 Wren 21.13 15 1.96 0.33
HedgeSparrow 23.12 14 Wren 21.13 15 1.99 0.34
Robin 22.57 16 MeadowPipet 22.30 45 0.28 0.27
PiedWagtail 22.90 15 MeadowPipet 22.30 45 0.60 0.27
TreePipet 23.09 15 MeadowPipet 22.30 45 0.79 0.27
HedgeSparrow 23.12 14 MeadowPipet 22.30 45 0.82 0.28
PiedWagtail 22.90 15 Robin 22.57 16 0.33 0.33
TreePipet 23.09 15 Robin 22.57 16 0.52 0.33
HedgeSparrow 23.12 15 Robin 22.57 16 0.55 0.33
TreePipet 23.09 15 PiedWagtail 22.90 15 0.19 0.33
HedgeSparrow 23.12 14 PiedWagtail 22.90 15 0.22 0.34
HedgeSparrow 23.12 14 TreePipet 23.09 15 0.03 0.34
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Confidence Intervals

Each of the fifteen differences can be estimated with confidence by
using a t-multiplier times the SE for the margin of error.

The t-multiplier is based on the confidence level and the error degrees
of freedom.

In the example, for a 95% confidence interval, the multiplier would be
t∗ = 1.98.

Each of the fifteen confidence intervals would be valid, but it would
be incorrect to interpret with 95% confidence that each of the fifteen
confidence intervals contains the corresponding difference in means.
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95% Confidence Intervals

Population Population a b
MeadowPipet Wren 0.63 1.71
Robin Wren 0.80 2.09
PiedWagtail Wren 1.12 2.43
TreePipet Wren 1.30 2.62
HedgeSparrow Wren 1.32 2.66
Robin MeadowPipet -0.25 0.80
PiedWagtail MeadowPipet 0.07 1.14
TreePipet MeadowPipet 0.25 1.33
HedgeSparrow MeadowPipet 0.27 1.37
PiedWagtail Robin -0.32 0.98
TreePipet Robin -0.13 1.16
HedgeSparrow Robin -0.11 1.21
TreePipet PiedWagtail -0.47 0.84
HedgeSparrow PiedWagtail -0.45 0.89
HedgeSparrow TreePipet -0.64 0.70
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Simultaneous confidence intervals

If we want to be 95% confident that all population mean differences
are contained in their intervals, we need to increase the size of the
multipler.

This issue is known as multiple comparisons in the statistics literature.

The method described in the text, Tukey’s honestly significant
difference (HSD) is based on the sampling distribution of the
difference between the largest and smallest sample means when the
null distribution is true, but assumes equal sample sizes.

Other methods use slightly smaller multipliers for other differences;
for example, the multiplier for the difference between the first and
second largest sample means would be smaller than that for the
largest and smallest sample means.

It suffices to know that if you care about adjusting for multiple
comparisons, that the multipliers need to be larger than the
t-multipliers and that there are many possible ways to accomplish this.
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Tukey’s HSD in R

R contains the function TukeyHSD() which can be used on the
output from aov() to apply Tukey’s HSD method for simultaneous
confidence intervals.

The method adjusts for imbalance in sample size, but may not be
accurate with large imbalances.

ANOVA Estimation Standard Error 32 / 79



Cuckoo Data

-------------- file cuckoo.txt --------------
eggLength hostSpecies
19.65 MeadowPipet
20.05 MeadowPipet
20.65 MeadowPipet
20.85 MeadowPipet
21.65 MeadowPipet
...
21.45 Wren
22.05 Wren
22.05 Wren
22.05 Wren
22.25 Wren
--------------- end of file -----------------
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Reading in the Data

Here is code to read in the data.

We also use the lattice function reorder() to order the populations
from smallest to largest egg length instead of alphabetically.

This reordering is not essential, but is useful.

The command with() allows R to recognize the names hostSpecies
and eggLength without the dollar sign.

The require() function loads in lattice if not already loaded.

> cuckoo = read.table("cuckoo.txt", header = T)

> require(lattice)

> cuckoo$hostSpecies = with(cuckoo, reorder(hostSpecies,

+ eggLength))
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Fitting the ANOVA model

We greatly prefer using lm() instead of aov(), but TukeyHSD()
requires the latter.

> fit = aov(eggLength ~ hostSpecies, data = cuckoo)
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Tukey’s HSD

> TukeyHSD(fit)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = eggLength ~ hostSpecies, data = cuckoo)

$hostSpecies

diff lwr upr p adj

MeadowPipet-Wren 1.16888889 0.383069115 1.954709 0.0004861

Robin-Wren 1.44500000 0.497728567 2.392271 0.0003183

PiedWagtail-Wren 1.77333333 0.810904595 2.735762 0.0000070

TreePipet-Wren 1.96000000 0.997571262 2.922429 0.0000006

HedgeSparrow-Wren 1.99142857 1.011964373 2.970893 0.0000006

Robin-MeadowPipet 0.27611111 -0.491069969 1.043292 0.9021876

PiedWagtail-MeadowPipet 0.60444444 -0.181375330 1.390264 0.2324603

TreePipet-MeadowPipet 0.79111111 0.005291337 1.576931 0.0474619

HedgeSparrow-MeadowPipet 0.82253968 0.015945760 1.629134 0.0428621

PiedWagtail-Robin 0.32833333 -0.618938100 1.275605 0.9155004

TreePipet-Robin 0.51500000 -0.432271433 1.462271 0.6159630

HedgeSparrow-Robin 0.54642857 -0.418146053 1.511003 0.5726153

TreePipet-PiedWagtail 0.18666667 -0.775762072 1.149095 0.9932186

HedgeSparrow-PiedWagtail 0.21809524 -0.761368960 1.197559 0.9872190

HedgeSparrow-TreePipet 0.03142857 -0.948035627 1.010893 0.9999990
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Comparison

t-method Tukey HSD
Population Population a b a b
MeadowPipet Wren 0.63 1.71 0.38 1.95
Robin Wren 0.80 2.09 0.50 2.39
PiedWagtail Wren 1.12 2.43 0.81 2.74
TreePipet Wren 1.30 2.62 1.00 2.92
HedgeSparrow Wren 1.32 2.66 1.01 2.97
Robin MeadowPipet -0.25 0.80 -0.49 1.04
PiedWagtail MeadowPipet 0.07 1.14 -0.18 1.39
TreePipet MeadowPipet 0.25 1.33 0.01 1.58
HedgeSparrow MeadowPipet 0.27 1.37 0.02 1.63
PiedWagtail Robin -0.32 0.98 -0.62 1.28
TreePipet Robin -0.13 1.16 -0.43 1.46
HedgeSparrow Robin -0.11 1.21 -0.42 1.51
TreePipet PiedWagtail -0.47 0.84 -0.78 1.15
HedgeSparrow PiedWagtail -0.45 0.89 -0.76 1.20
HedgeSparrow TreePipet -0.64 0.70 -0.95 1.01
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Interpretation

There is evidence that the population mean length of cuckoo bird
eggs in wren nests is smaller than those of all other cuckoo bird
populations.

Other comparisons are difficult to interpret, as we are not confident in
the order of means, even though we are confident about some
differences.

Note that the Tukey confidence intervals are noticeably wider.
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What you should know so far

You should know:

how to complete a partially completed ANOVA table;

how to fill an ANOVA table from summary statistics;

how to find the pooled estimate of the common standard deviation;

how to construct a confidence interval for the difference in two
population means;

why there may be a need to use a different method when contructing
simutaneous confidence intervals.
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Linear Models

ANOVA is an example of a linear model.

In a linear model, a response variable Y is modeled as a mean plus
error, where

I the mean is a linear function of parameters and covariates;
I the error is random normally distributed mean-zero variation.

A linear function takes the form

β0 + β1x1 + · · ·+ βpxp

where the {βi} are parameters and the {xi} are covariates.
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New Notation

To accomodate multiple explanatory variables and prepare for other
linear models such as regression, we will change notation.

I Yi is the value of the response variable for the ith observation;
I n is the total number of observations;
I j(i) is the group of the ith observation;
I k is the number of groups.

In this new notation:
I i = 1, . . . , n varies over all observations (and not groups);
I j = 1, . . . , k varies over groups (and not observations within groups);
I k and n mean the same thing as before.
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Linear Model

A linear model takes the following form.

Yi = µj(i) + εi

where εi ∼ N(0, σ2) and µj(i) = E(Yi ).

There are multiple ways to parameterize a one-way ANOVA model.

Consider a toy example with k = 3 groups with means 16, 20, and 21.
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First Parameterization

One way to parameterize a one-way ANOVA model is to treat one
group as a reference, and parameterize differences between the means
of other groups and the reference group.

If the first group is selected as the reference:
I β0 = µ1;
I β1 = µ2 − µ1;
I β2 = µ3 − µ1.

Using the example µ1 = 16, µ2 = 20, and µ3 = 21, we have β0 = 16,
β1 = 4 and β2 = 5.

Notice that the statement
the first mean is 16, the second mean is four larger than the
first, and the third mean is five larger than the first

is just a different way to convey the same information as

the first mean is 16, the second is 20, and the third is 21.
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First Parameterization (cont.)

Define these covariates (here, indicator random variables):
I x1i is 1 if the ith observation is in group 2 and be 0 if it is not.
I x2i be 1 if the ith observation is in group 3 and be 0 if it is not.

Then,
Yi = β0 + β1x1i + β2x2i + εi

In this example the three means {muj} are reparameterized with three
parameters {βj}.
Notice:

I if the ith observation is in group 1, then x1i = 0 and x2i = 0 so
Yi = β0 + εi ;

I if the ith observation is in group 2, then x1i = 1 and x2i = 0 so
Yi = β0 + β1 + εi ;

I if the ith observation is in group 3, then x1i = 0 and x2i = 1 so
Yi = β0 + β2 + εi .
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lm() in R

The previous parameterization is the default in R.

Consider the cuckoo example again.
> cuckoo.lm = lm(eggLength ~ hostSpecies, data = cuckoo)

> summary(cuckoo.lm)

Call:

lm(formula = eggLength ~ hostSpecies, data = cuckoo)

Residuals:

Min 1Q Median 3Q Max

-2.64889 -0.44889 -0.04889 0.55111 2.15111

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.1300 0.2348 90.004 < 2e-16 ***

hostSpeciesMeadowPipet 1.1689 0.2711 4.312 3.46e-05 ***

hostSpeciesRobin 1.4450 0.3268 4.422 2.25e-05 ***

hostSpeciesPiedWagtail 1.7733 0.3320 5.341 4.78e-07 ***

hostSpeciesTreePipet 1.9600 0.3320 5.903 3.74e-08 ***

hostSpeciesHedgeSparrow 1.9914 0.3379 5.894 3.91e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9093 on 114 degrees of freedom

Multiple R-squared: 0.313, Adjusted R-squared: 0.2829

F-statistic: 10.39 on 5 and 114 DF, p-value: 3.152e-08

ANOVA Linear Models R 45 / 79



lm() in R (cont.)

In this formulation, the mean length of cuckoo birds laid in wren nests
is the intercept β0.

This is estimated as 21.13, the wren group mean.

The other parameters are differences between means of other groups
and means of the wren group.

For example, the meadow pipet mean group mean is 22.30, or 1.17
larger than the wren group mean.

The summary contains inferences for six parameters.

The first line tests H0 : β0 = 0, or that the mean length of the eggs in
the wren group is zero. This is biologically meaningless and
overwhelmingly rejected.

Each other row one of the pairwise comparisions between the wren
group and the others.

Each p-value is (much) less than 0.05, consistent with the 95%
confidence intervals for these differences not containing 0.

None of the other ten pairwise comparisons is shown, though.
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Confidence Intervals from the Summary
We can construct some confidence intervals for population mean
differences from this summary.
The residual error 0.9093 on 114 degrees of freedom matches√

0.8267 from the ANOVA table.
The standard error for the meadow pipet minus wren group mean
difference is 0.2711 which matches

0.9093×
√

1

15
+

1

45

The critical t quantile with 114 degrees of freedom for a 95%
confidence interval is 1.98, so the margin of error is 0.54.
Adding and subtracting this to the difference 1.17 results in the 95%
confidence interval

0.63 < µmeadow pipet − µwren < 1.71

This matches the result from an earlier slide.
This interval (and the others) do not compensate for multiple
comparisons.
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Second Parameterization
A second parameterization is that there is an overall mean µ and a
separate treatment effect αj for the jth group.
Here, µj = µ+ αj for j = 1, . . . , k.
Each parameter αj now represents the difference between a group
mean and an overall mean, not a difference between the group mean
and a reference mean as in the first parameterization.
As specified, this model is not well defined because the same set of
population means can be represented by an infinite number of
parameter values.
For example, in the toy example with µ1 = 16, µ2 = 20, and µ3 = 21,
the parameterizations:

I µ = 0, α1 = 16, α2 = 20, and α3 = 21; and
I µ = 19, α1 = −3, α2 = 1, and α3 = 2.

both simplify to the group means.
This can be avoided by adding the constraint

∑
j αj = 0.

Notice that in the toy example, three means are represented by four
parameters, but adding a constraint means that only three of the four
parameters are free.
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Quick summary

A one-way analysis of variance model is fit in R using lm().

The results of this model fit can be summarized using anova() which
displays an ANOVA table.

The ANOVA table is a structured calculation of a test statistic for the
null hypothesis H0 : µ1 = · · · = µk with an F test.

The results can also be summarized with summary() which displays
estimated coefficients and standard errors for model parameters and
t-tests for the hypotheses H0 : βj = 0.

The model parameters include k − 1 of the pairwise differences, but
not all of them.

Standard errors for other differences may be found by hand
σ̂
√

1/ni + 1/nj or by changing the order of the levels in the factor.
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Cautions and Concerns

One-way ANOVA assumes independent random sampling from
different populations.

The F -distribution of the test statistic assumes equal variances
among populations and normality:

I if not, the true sampling distribution is not exactly F ;
I However, the method is robust to moderate deviations from equal

variance;
I and, the method is robust to moderate deviations from normality.
I If the equal variance or normal assumptions (or both) are untenable,

then the p-value could be found from the null distribution of the F
statistic from a randomization test where groups are assigned in their
given sizes at random.
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Extensions

Linear models can be extended by adding additional explanatory
variables.

If all explanatory variables are factors, then the model is mutli-way
ANOVA.

If all explanatory variables are quantitative, then the model is
regression.

If the levels of a factor are considered as random draws from a
population instead of unknown fixed parameters, then the model is
called a random effects model.

Models with two or more explanatory variables can include parameters
for interactions.

If the response variable is not normal (or transformable to normal)
and another distribution is more appropriate (such as binomial or
Poisson), then we should consider instead a generalized linear model.
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Case Study

Example

In a field experiment in the shallows of a small lake on Vancouver Island,
biologists examined the relationship between fish abundance and the
abundance and diversity of prey zooplankton. At five different locations in
the lake, the biologists created three 3m × 3m regions: a control region
which was open, a low fish abundance region in which 30 small fish were
enclosed in a mesh cage, and a high fish abundance region in which 90 fish
were enclosed in a mesh cage. After 13 days, the biologists summarized the
abundance and diversity of zooplankton using an index called Levin’s D,
which depends both on the number of species found and their frequency.

Is there evidence that fish abundance affects zooplankton diversity?
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Data

Here is the data.

Location
Abundance 1 2 3 4 5

Control 4.1 3.2 3.0 2.3 2.5
Low 2.2 2.4 1.5 1.3 2.6
High 1.3 2.0 1.0 1.0 1.6
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Blocking

It is not appropriate to treat this data as three independent samples
of size five, as there are really a sample of five locations where each
treatment is measured at each location.

If there were only two treatments, this would be just like a paired
design.

In more generality with possibly more than two treatments, this is
known as a randomized block design.

Each treatment is applied to an individual region within each block
(location on the lake).

We model the diversity as a function of both location and fish
abundance treatment.

We care about differences in effects due to fish abundance, but wish
to control for possible effects due to location.
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Graphing the Data
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Displaying Block Effects
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Adjusted Data (subtract block mean)
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Two-way ANOVA Model

We can test for a fish abundance effect while controlling for a possible
block effect with a two-way ANOVA.

The total sum of squares may be partitioned into sums of squares for
treatment, block, and error.

SStotal = SStreatment + SSblock + SSerror

Treatment and block effects are tested separately with F -tests using
ratios of corresponding mean square versus mean square error.

Just like in one-way ANOVA, when the null hypothesis is true (no
treatment effect or no bock effect, respectively), then both the
numerator and denominator mean squares are independent estimates
of the individual variance σ2.

But, if the effects are not zero, the numerator is inflated. The
ANOVA table contains two F statistics and two p-values.
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The data as a .csv file

treatment,zooplankton,block
Control,4.1,B1
Low,2.2,B1
High,1.3,B1
Control,3.2,B2
Low,2.4,B2
High,2,B2
Control,3,B3
Low,1.5,B3
High,1,B3
Control,2.3,B4
Low,1.3,B4
High,1,B4
Control,2.5,B5
Low,2.6,B5
High,1.6,B5
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Reading Data into R

> zoo = read.csv("zooplankton.csv")

> library(lattice)

> zoo$treatment = reorder(zoo$treatment, -1 * zoo$zooplankton)

The reorder function orders the treatment variable from largest to
smallest on the basis of mean zooplankton diversity measure (smallest
to largest for negative diversity).

This is not necessary, but puts the levels in the order Control, Low,
High, which will make comparisons with the control group for both
treatments easier to determine from output.
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ANOVA Table

> fit.1 = lm(zooplankton ~ treatment + block, data = zoo)

> anova(fit.1)

Analysis of Variance Table

Response: zooplankton
Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 6.8573 3.4287 16.3660 0.001488 **
block 4 2.3400 0.5850 2.7924 0.101031
Residuals 8 1.6760 0.2095
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Results

There is very strong evidence of a treatment effect (p < 0.002,
F -test, F = 16.4, df = 2, 8).

There is much weaker evidence of a block effect (p = 0.101, F -test,
df = 4, 8).

But the experiment was designed with blocks, so we keep block in the
model, even though the estimated effect is not very significant.
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Additional Information

There are 15 total observations, so 14 total degrees of freedom.

There were 3 treatments, so 2 degrees of freedom for treatment.

There were 5 blocks, so 4 degrees of freedom used for blocks.

The remaining 14− 2− 4 = 8 degrees of freedom are for error.

The square root of the mean square error,
√

0.2095 = 0.458 is the
estimate of σ, the common deviation of an observation from its
expected value after considering both treatment and block effects.
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Another Summary of the Model

> summary(fit.1)

Call:

lm(formula = zooplankton ~ treatment + block, data = zoo)

Residuals:

Min 1Q Median 3Q Max

-0.62 -0.20 -0.08 0.22 0.68

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.420e+00 3.127e-01 10.938 4.33e-06 ***

treatmentLow -1.020e+00 2.895e-01 -3.524 0.007805 **

treatmentHigh -1.640e+00 2.895e-01 -5.665 0.000473 ***

blockB2 1.254e-15 3.737e-01 3.36e-15 1.000000

blockB3 -7.000e-01 3.737e-01 -1.873 0.097945 .

blockB4 -1.000e+00 3.737e-01 -2.676 0.028108 *

blockB5 -3.000e-01 3.737e-01 -0.803 0.445316

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4577 on 8 degrees of freedom

Multiple R-squared: 0.8459, Adjusted R-squared: 0.7303

F-statistic: 7.317 on 6 and 8 DF, p-value: 0.006513
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Comparisons

The previous summary displays inferences for the seven model
parameters for the expected values.

There were 15 observations and 8 degrees of freedom for estimating
error, and so there were 15− 8 = 7 parameters used to specify the
expected values of the 15 observations.

In this parameterization, the intercept is the expected diversity level in
block B1 for the control group. Its test is biologically irrelevent (the
diversity is not zero in this setting).

The remaining six parameters compare the low and high treatments
to the control (averaging acorss blocks) and blocks B2 through B5
against block B1 (averaging across treatments).

We see that both Low and High treatments have significantly lower
means than the control (−1.02± 0.29 and −1.64± 0.29, mean ± SE,
respectively).

Block B4 has a lower average than Block B1.

None of these p-values controls for multiple testing.
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Model Parameterization

Yi = µ+ αj(i) + βk(i) + εi

for:
1 i = 1, . . . , n = 15, which indexes the observation;
2 j = 1, . . . , 3, for the treatment with α1 = 0 for the control group;
3 k = 1, . . . , 5, for the block with β1 = 0 for block B1;
4 µ is the intercept (expected value for control in block B1);
5 and εi ∼ i.i.d. N(0, σ2).

The 7 free parameters for the mean are µ, α2, α3, β2, β3, β4, and β5.

In this balanced design, the parameter estimates are simple.

The estimated effect for the Low group is the difference between the
means of the Low (2.00) and the Control (3.02) groups.

The intercept is estimated by

(Grand Mean)+(Control Mean−Grand Mean)+(B1 Mean−Grand Mean)

For unbalanced designs, estimated parameter values are not as simple.
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Random Effects Models

Yi = µ+ αj(i) + βk(i) + εi

1 i = 1, . . . , n = 15, which indexes the observation;

2 j = 1, . . . , 3, for the treatment with α1 = 0 for the control group;

3 k = 1, . . . , 5, for the block;

4 and βk ∼ i.i.d. N(0, σ2
β).

5 and εi ∼ i.i.d. N(0, σ2).

Another possible model is to treat the blocks not as four fixed
differences, but as five draws from a normal distribution with mean
zero.

Such a model is called a random effects model.

Next semester will study this type of model in detail.
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Fitted Values and Residuals

The two-way ANOVA model is

Yi = µ+ αj(i) + βk(i) + εi

Given data, the parameters may be estimated yielding this expression
for fitted values.

Ŷi = µ̂+ α̂j(i) + β̂k(i)

A residual is the difference between the observed value Yi and the
fitted value Ŷi .

residuali = Yi − Ŷi
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Parameter Estimation

Values for estimates of the parameters may be found by the method
of least squares which chooses estimates that minimize the sum of the
squared residuals.

Values may also be estimated by maximum likelihood, which selects
values so that the likelihood of the data is as large as possible. (Here,
likelihood is the product of normal densities.)

The least squares and maximum likelihood estimates of parameters
for the means are identical for ANOVA models (and also for all linear
models with a normal response variable).

The maximum likelihood estimate for the variance σ2 differs from the
conventional unbiased estimate.

σ̂2
unbiased =

sum of squared residuals

n −# of parameters for means

σ̂2
ML =

sum of squared residuals

n
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Example

Here are the observed values, the fitted values, and the residuals.

Observed Values

Location
Abundance 1 2 3 4 5
Control 4.1 3.2 3.0 2.3 2.5
Low 2.2 2.4 1.5 1.3 2.6
High 1.3 2.0 1.0 1.0 1.6

Fitted Values

Location
Abundance 1 2 3 4 5
Control 3.42 3.42 2.72 2.42 3.12
Low 2.40 2.40 1.70 1.40 2.10
High 1.78 1.78 1.08 0.78 1.48

Residuals

Location
Abundance 1 2 3 4 5
Control 0.68 −0.22 0.28 −0.12 −0.62
Low −0.20 0.00 −0.20 −0.10 0.50
High −0.48 0.22 −0.08 0.22 0.12
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More on Fitted Values

Each fitted value comes from the estimated parameters.

µ

Location
Abundance 1 2 3 4 5
Control 3.42 3.42 3.42 3.42 3.42
Low 3.42 3.42 3.42 3.42 3.42
High 3.42 3.42 3.42 3.42 3.42

αj

Location
Abundance 1 2 3 4 5
Control 0 0 0 0 0
Low −1.02 −1.02 −1.02 −1.02 −1.02
High −1.64 −1.64 −1.64 −1.64 −1.64

βk

Location
Abundance 1 2 3 4 5
Control 0 0 −0.7 −1.0 −0.3
Low 0 0 −0.7 −1.0 −0.3
High 0 0 −0.7 −1.0 −0.3
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Comments

Notice that in this two-way ANOVA model, effects of treatment and
block (or any to factors in a different context) are additive.

Rows of fitted values differ by constant amounts and columns of
fitted values differ by constant amounts.

The effect of the low treatment is modeled as being the same within
each block.

If the true means do not follow such a relationship (if there is an
interaction between treatment and block), the model we have been
studying will not capture the deviation.

However, to model an interaction, we need more than one observation
at each treatment/block combination, which we do not have in this
example.
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Example

Example

We saw data from Example 18-3 earlier in the semester. The following
plot shows the response (area of red algae) in an experiment in the
intertidal habitat of coastal Washington on the basis of two factors.

Experimental location is either just above the low tidal zone or
midway between the low and high tidal zones, and each location is
either accessible to herbivores or not.

The plot indicates that the herbivore treatment has little effect at mid
tidal zones, but that excluding herbivores results in larger algal growth
at low tidal zones.

We next show how to test this formally with ANOVA.
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Interaction Plot
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ANOVA with Interaction

The two-way ANOVA model with an interaction is

Yi = µ+ αj(i) + βk(i) + (αβ)j(i),k(i) + εi

1 i = 1, . . . , n indexes the observation;
2 j indexes one factor, let α1 = 0;
3 k indexes a second factor, let β1 = 0;
4 (αβ)jk are interaction parameters where the value is 0 is either j = 1 or

k = 1.
5 µ is the intercept
6 and εi ∼ i.i.d. N(0, σ2).

In this model, each treatment combination has its own mean, but the
parameters give the same information in a different format.
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Example Data

height,herbivores,sqrtarea
low,minus,9.40
low,minus,34.4
low,minus,46.6
...
mid,plus,40.1
mid,plus,40.8
mid,plus,44.8
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Fitting a model with an interaction term in R

> algae = read.csv("algae.csv")

> algae.int = lm(sqrtarea ~ height * herbivores, data = algae)

The expression height*herbivores means include main effects for
both height and herbivores and also include an interaction term.

The same model could be expressed less succinctly as follows:
sqrtarea ~ height + herbivores + height:herbivores
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Summary

The summary shows all estimated parameter values and tests.

There are four treatment combinations and four parameters.

Combining parameters returns the fitted values which are simply
sample means for each treatment combination.

> summary(algae.int)

Call:

lm(formula = sqrtarea ~ height * herbivores, data = algae)

Residuals:

Min 1Q Median 3Q Max

-32.2074 -9.6966 -0.3949 11.2076 32.5818

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.915 3.856 8.537 5.98e-12 ***

heightmid -10.431 5.453 -1.913 0.060519 .

herbivoresplus -22.511 5.453 -4.128 0.000115 ***

heightmid:herbivoresplus 25.578 7.711 3.317 0.001549 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.42 on 60 degrees of freedom

Multiple R-squared: 0.2281, Adjusted R-squared: 0.1896

F-statistic: 5.912 on 3 and 60 DF, p-value: 0.001329
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ANOVA Table

The ANOVA table tests three hypotheses.

> anova(algae.int)

Analysis of Variance Table

Response: sqrtarea
Df Sum Sq Mean Sq F value Pr(>F)

height 1 89.0 88.97 0.3741 0.543096
herbivores 1 1512.2 1512.18 6.3579 0.014360 *
height:herbivores 1 2617.0 2616.96 11.0029 0.001549 **
Residuals 60 14270.5 237.84
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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