R for Statistics 571

Bret Larget
September 6, 2010

1 Preliminaries

Before the first discussion section, you ought to install R onto your computer. If you have laptop,
install R on the laptop and bring it to discussion section.

1.1 Installing R

To install R, connect your computer to the web and go to the Comprehensive R Archive Network
(CRAN)

http://cran.r-project.org/
or its US mirror site
http://cran.us.r-project.org/

Click on the link to Linux, Mac OS X, or Windows, depending on your computer. (If you are a
power user who wants to compile your own version from source code, there is a link for you too and
you do not need these instructions.)

1.1.1 Mac OS X

Click on the link to the latest version of the software (R-2.11.1.pkg as of this writing), download
the 40 MB file, double-click on the resulting icon, and follow onscreen instructions.

1.1.2 Windows

If you have a 32-bit system, click on the link named base and then click on Download R 2.11.1
for Windows (or a more recent version). Double-click on the executable file R-2.11.1-win32.exe
(or more recent version).

If you have a 64-bit system, click on the link here for a 64-bit Windows port, then on the link
base, and then click on Download R 2.11.1 for Windows (or a more recent version). Double-click
on the executable file R-2.11.1-win64.exe (or more recent version).

1.2 Installing Packages

The easiest way to install a package is from within R when your computer is connected to the web.
We will use the package lattice in the class. From the command line, you can type

> install.packages("lattice")

which will open a dialog asking you to pick a server (there are several in the US, or travel somewhere
exotic around the world). Pick the server, wait a few moments, and the package and any other
packages which lattice depends on will also be insalled. If successful, there will be a message to
the screen indicating what was installed and the prompt will return.

In Windows and Macs, you can also install packages through a menu. On a Mac, the menu
is named Packages € Data from which you select Package Installer. When you click on the Get
List button, a box opens ask you to pick a CRAN server (unless you have already been to one this
session). Over 1000 package names will appear. You can use the search box to find the name of
the package you are seeking, select it, and then click the Install Selected button. A similar process
works in Windows.

This is an excellent example of how the command line is easier than the menu, but only if you
already know the right command to type.

To prepare for discussion section next week, install R and the 1lattice package on your computer.

2 Basics

Prompts. When you start R, the first window that pops up is a console window with a prompt >.
You type commands at the prompt, press return, and something happens. If you ever see a prompt
+, this means that the previous command was incomplete and R is waiting for you to complete it.
Most likely, your previous command included a left parenthesis ‘(’ that was not matched by a right
one ‘)’. Type something to complete the command and then continue.

Output. When R writes out an array of numbers to the screen, it labels each line with the position
in the array of the first element of the array between square brackets (for example, [1]). This label
is not part of the array.

> 100
[1] 100
> 1:100

[1] 1 2 3 4 65 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[66] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 T2
(73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 83 89 90
[91] 91 92 93 94 95 96 97 98 99 100

Changing your workspace. R keeps all of the variables you keep in memory as it runs. When
you end an R session, you may save your workspace. This allows you to have variables you have
previously defined available without the need to create them all again from scratch. My recom-
mendation, however, is to not save the workspace, but rather keep a text file with the commands
needed to read in data and do any necessary manipulations, as well as analyses. In this way, you
have a record of what is there and can create the workspace from scratch. (More on this later.)

By default, R will use as its workspace the folder in which the executable program exists. You
will most likely want to change the workspace to a new folder where you might keep data from
the textbook and your homework. You change the workspace for R under Windows by using the
File menu and selecting Change Directory... with your mouse. For Macs, the menu Misc has
the selection Change Working Directory.... My advice is to have a folder where you keep work
for this course and to change the worspace to this folder each time you start R. You may want a
separate folder for each project or assignment.

Quitting R. To quit, you can type q() on a command line or you can quit through the File
menu. R will prompt you if you want to save your workspace.

Calculating with numbers. You can use R like a calculator. The * symbol stands for multi-
plication and the ~ symbol stands for exponentiation. The colon operator : creates an array of
numbers from the first to the second. R has a number of built-in functions such as mean(), sum(),
median(), sd(), sqrt(), log(), and exp() that have obvious meaning. Note that log() com-
putes the natural (base e) logarithm; use a second argument (1og(1000,10) or 1log(1024,2), for
example) to compute the logarithm with a different base. Try these example.

2+ 2

12 * 3 - 10/2 + sqrt(16)
372

1:10

sum(1:10)

mean(1:10)

sd(1:10)

1og (1000)

log (1000, 10)

log(1024, 2)

VVVVVVVVVYV

Calculating with arrays. R can do arithmetic operations on arrays. If you multiply an array of
numbers by a single number, the multiplication happens separately for each number. You can also
add or multiply equal-sized arrays of numbers.

> 2 % (1:15)
> (1:10) + (10:1)
> (1:4)°2

Assigning variables. You can use the = sign to create new variables. Typing the name of a
variable displays it.

>a=1:10
> mean(a)

An alternative (and the original) to the = syntax is to use the key combination <~ which was created
to look like an arrow. Much documentation may use this instead of the equal sign, but both are
valid methods. One point of view is that you are only blessed with a certain number of key-strokes
in life, and you do not want to waste them. On the other hand, writing comments for code and
using long and meaningful variable names is worthwhile.

3 Entering Data

3.1 Entering Data Directly

Single variables can be entered directly into R using c() for concatenation.

> milk = c¢(3.46, 3.55, 3.21, 3.78)
> treatment = factor(c("Control", "Low", "Medium", "High"))

This is useful for very small data sets, but it generally more useful to use either a word processor
or Excel to enter larger data sets in a format that can later be read into R.

3.2 Entering Data from a Text File

The file cows . txt contains the cow data we encountered in class. This file is in a plain text file (not
a Word or rich-text formatted file) which can be created in Windows using Notepad or on a Mac
using Text Edit (or with another program). The first row contains variable names, separated by
white space, which are spaces or tabs. Subsequent rows contain the data. Each row must contain
the same number of fields, but it is not necessary to line up all of the data into neat columns.

The function that reads data into R from a text file in this format is read.table (). For historical
reasons, the default is to not include a header line, so we add the argument header=T (T for true)
to let R know that the first line of the file contains a header row with variable names.

> cows = read.table("cows.txt", header = T)
> str(cows)

'data.frame': 50 obs. of 11 variables:

$ treatment : Factor w/ 4 levels "control","high",..: 1111111111
$ level :num 0000000000 ...

$ lactation :int 3322211133 ...

$ age : int 49 47 36 33 31 22 34 21 65 61

$ initial.weight: int 1360 1498 1265 1190 1145 1035 1090 960 1495 1439 ...
$ dry :num 15.4 18.8 17.9 18.3 17.3 ...

$ milk :num 45.6 66.2 63 68.4 59.7 ...

$ fat :num 3.88 3.4 3.44 3.42 3.01 2.97 2.99 3.54 2.65 4.04 ...
$ solids :num 8.96 8.44 8.7 8.3 9.04 8.6 8.46 8.78 9.04 8.51

$ final.weight : int 1442 1565 1315 1285 1182 1043 1030 1057 1520 1300 ...
$ protein :num 3.67 3.03 3.4 3.37 3.61 3.03 3.31 3.48 3.42 3.27 ...

The function str() shows the structure of the data we just read in. Notice that numerical variables
and categorical variables (factors) are distinguished. If levels of a categorical variable had been
stored as numbers, we would have needed to tell R to reclassify the variable as a factor.

R calls a rectangular array of data where rows are observations and columns are variables a data
frame.

3.3 Entering Data from an Excel Worksheet

Many of you may be more comfortable using Excel then a plain text editor. To enter data into
an excel spreadsheet for subsequent entry into R, use the first row as a header row with variable
names and put the values of each variable in a column. After the data is entered, save the file as
a comma-separated-variable file (CSV file, for short). Excel will ask if you really mean to do this
and warn you of all of the things you will lose of you do so, but disregard the warning and save the
data in this format nevertheless. The resulting file is a plain text file where each field is separated
by a comma rather than white space. This file can be read into R using the function read.csv().
There is no need with this function to specify header=T.

> cows = read.csv("cows.csv")
> str(cows)

'data.frame': 50 obs. of 11 variables:

$ treatment : Factor w/ 4 levels "control","high",..: 1111111111 ...
$ level :num 000000000O0 ...

$ lactation :int 3322211133 ...

$ age : int 49 47 36 33 31 22 34 21 65 61 ...

$ initial.weight: int 1360 1498 1265 1190 1145 1035 1090 960 1495 1439 ...
$ dry :num 15.4 18.8 17.9 18.3 17.3 ...

$ milk : num 45.6 66.2 63 68.4 59.7 ...

$ fat :num 3.88 3.4 3.44 3.42 3.01 2.97 2.99 3.54 2.65 4.04 ...
$ solids :num 8.96 8.44 8.7 8.3 9.04 8.6 8.46 8.78 9.04 8.51 ...

$ final.weight : int 1442 1565 1315 1285 1182 1043 1030 1057 1520 1300 ...
$ protein :num 3.67 3.03 3.4 3.37 3.61 3.03 3.31 3.48 3.42 3.27 ...

4 Working with Data Frames

4.1 Access to Variables

The operator $ is used to specify variables within a data frame. For example, we can work with the
variable milk by typing cows$milk.

> cows$milk

[1] 45.552 66.221 63.032 68.421 59.671 44.045 55.153 46.957 63.948 65.994
[11] 57.603 63.254 57.053 69.699 71.337 68.276 74.573 66.672 72.237 58.168
[21] 48.063 60.412 45.128 53.759 52.799 76.604 64.536 71.771 59.323 62.484
[31] 70.178 48.013 60.140 56.506 40.245 45.791 59.373 54.281 71.558 56.226
[41] 49.543 55.351 64.509 74.430 68.030 46.888 53.164 53.096 50.471 66.619

> mean (cows$milk)
[1] 59.54314

Assuming that this variable is measured in kg/day and that the density of milk is 1.03 kg/liter, we
could add a new variable volume to the cow data set equal to the number of liters of milk produced
on average each day.

> cows$volume = cows$milk/1.03
> str(cows)

'data.frame': 50 obs. of 12 variables:

$ treatment : Factor w/ 4 levels "control","high",..: 1111111111
$ level :num 000000000O0 ...

$ lactation :int 3322211133 ...

$ age : int 49 47 36 33 31 22 34 21 65 61

$ initial.weight: int 1360 1498 1265 1190 1145 1035 1090 960 1495 1439 ...
$ dry :num 15.4 18.8 17.9 18.3 17.3 ...

$ milk : num 45.6 66.2 63 68.4 59.7 ...

$ fat :num 3.88 3.4 3.44 3.42 3.01 2.97 2.99 3.54 2.65 4.04 ...
$ solids :num 8.96 8.44 8.7 8.3 9.04 8.6 8.46 8.78 9.04 8.51

$ final.weight : int 1442 1565 1315 1285 1182 1043 1030 1057 1520 1300 ...
$ protein :num 3.67 3.03 3.4 3.37 3.61 3.03 3.31 3.48 3.42 3.27 ...
$ volume :num 44.2 64.3 61.2 66.4 57.9 ...

4.2 Subsets

It is frequently useful to partition data into smaller groups, often on the basis of the levels of a
categorical variable. For example, with the cows data, we may want to calculate the mean protein
level for cows by treatment group. In R, we can get subsets of a data frame using the square brackets
[and]. For example, to display the protein numbers for all cows in the control group, we can do
the following.

> cows$protein[cows$treatment == "control"]
[1] 3.67 3.03 3.40 3.37 3.61 3.03 3.31 3.48 3.42 3.27 3.31 3.32

Note that two equal signs without a space is a comparison operator. The array cows$treatment=="control"
has length 50 (the length of the cows$treatment variable) and the values are True and False. Inside
the square brackets, only those elements corresponding to True are retained.

> cows$treatment == "control"

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE

We could find the mean of each group in turn.

> mean (cows$protein[cows$treatment == "control"])
[1] 3.351667
> mean (cows$protein[cows$treatment == "low"])

[1] 3.378462

> mean(cows$protein[cows$treatment == "medium"])
[1] 3.242308

> mean(cows$protein[cows$treatment == "high"])
[1] 3.341667

There is a shortcut using the functions split () which partitions a variable into a list for each level
of a factor and sapply() which applies a function to each element of a list.

> sapply(split(cows$protein, cows$treatment), mean)

control high low medium
3.351667 3.341667 3.378462 3.242308

Notice that the ordering of the levels of treatment is alphabetical. Here, it makes sense to order by
level. The reorder () function in lattice can be used for this purpose.

> cows$treatment = reorder(cows$treatment, cows$level)
> sapply(split(cows$protein, cows$treatment), mean)

control low medium high
3.351667 3.378462 3.242308 3.341667

The square brackets can also be used to find subsets of a data frame. Here, the command has the
form data frame[row subset,column subset]. For example, to show columns 1, 7, and 11 for the first
five cows, we could do the following.

> cows[1:5, c(1, 7, 11)]

treatment milk protein
1 control 45.552 3.67
2 control 66.221 3.03
3 control 63.032 3.40
4 control 68.421 3.37
5 control 59.671 3.61

4.3 Simple Lattice Plots

The lattice package is loaded using this command.
> library("lattice")

The graphics function in lattice are particularly useful for displaying data separately for each group
of a categorical variable. Compare the commands for showing a density plot of all of the protein
measurements

> plot(densityplot(~“protein, cows))

2.0 -
15 ~
2
@ 1.0 L
[}
(@)
0.5 — L
0.0 00 000 OPPO WD 66° ® o0 O 00 00 =
I I I
3.0 3.5 4.0
protein

with density plot of protein for each treatment group in a different panel

> plot(densityplot(“protein | treatment, cows))

30 35 40 30 35 40
]]]]]]]]]]]]
control low medium high
3 — —
2
2 2+ -
(]
o ;| B
0 + 0 ®®mo % O ® ORO® O @ 0@8 oo O C@®®® o —
I I I I I I I I I I I I
30 35 40 3.0 35 40
protein

with a plot with the density plots overlayed.

> plot(densityplot(“protein, cows, groups = treatment, auto.key = T))

control

low EE—
medium ———
high —_—
| | |
z 37 N
a2+ L
(&)
O 1 =
0 — 0000 O®®DO FWEFL O W ® —
I I I
3.0 35 4.0
protein

The raw data can be displayed with dotplot () with a layout with one column and four rows as

follows.

> plot(dotplot(“protein | treatment, cows, layout = c(1, 4)))

low

control

protein

