R for Statistics 571
Binomial Distribution and Proportions

Bret Larget
September 23, 2010

1 Bar Graphs

We will create bar graphs in R using barchart () in the lattice package. Begin by loading the
lattice package.

> library(lattice)

The first argument to barchart() is a formula of the form y ~ x where y is an array with the
frequencies and x is an array with the names of the groups. By default, barchart () may not extend
bars down to 0. (Why, Deepayan, why?!?) To remedy this poor and misleading default behavior,
barchart () should always include an additional argument origin=0. Note the general behavior
of functions in R: if arguments are not named, their position in the list of arguments determines
which argument it is interpreted as. But, if the argument is named, it can appear anywhere in the
list. Here is a simple bar graph for the fruit fly recombination data.

In addition, the commands shown here include the function plot() wrapped around the com-
mand to make plots. This is not necessary (but not harmful) when typing lattice plotting commands
directly into R, but is needed for documents like this one where R reads commands in from a file.

> freq = c(216, 428)
> type = c("recombinant", "parental')
> plot(barchart(freq ~ type, origin = 0))

parental recombinant

This plot can be customized by adding additional arguments to specify, for example, labels on
the x- and y-axes (with arguments x1ab and ylab), a title (with argument main), and color (with
argument col).

> plot(barchart(freq ~ type, origin = 0, xlab = "Type",
+ ylab = "Frequency", main = "Male Offspring Types",
+ col = "red"))

Male Offspring Types

3 400 - -
§ 300 —
200 — —
8 100 - _ B
L 0 - —
parental recombinant
Type

The next example is very similar, but uses a data frame to hold the frequencies and multiple
factors. Note the use of paste() to paste together the level names for color and wing and factor ()
to create a new factor with the four combinations of color and wing.

> frequency = c(226, 202, 114, 102)

> color = c("white", "red", "red", "white")

> wing = c("normal", "miniature", "normal",

+ "miniature")

> phenotype = c("parental", "parental", "recombinant",

+ "recombinant")

> my.data = data.frame(frequency = frequency,

+ color = color, wing = wing, phenotype = phenotype)

> plot(barchart (frequency ~ factor(paste(color,

+ wing)), data = my.data, origin = 0, xlab = "Genotype",
+ ylab = "Frequency", main = "Male Offspring Genotypes"))

Male Offspring Genotypes

a 200

§ 150 — B
100 — —

o

<5 50 — —

LL 0 - L

red miniature red normal white miniature white normal
Genotype

The documentation on barchart () is available by typing ?barchart at the prompt. Like most
lattice documentation, it is incomplete (any mention of the argument origin?) and assumes more
familiarity with R than beginners typically possess.

2 Binomial Probabilities

The two primary functions for computing binomial probabilities are dbinom() which computes
probabilites at individual values and pbinom() which computes sums of binomial probabilites. The
function sum() may be used in conjunction with dbinom() also to compute sums of binomial
probabilities. Specifically, dbinom(k,n,p) calculates P(X = k) when X ~ Binomial(n,p) and
pbinom(k,n,p) calculates P(X < k).

The second homework set had a couple questions with X ~ Binomial(5,0.7). Here are several
example calculations.

Find P(X = 4).
> dbinom(4, 5, 0.7)
[1] 0.36015
Find P(X < 4) using both dbinom() and pbinom().
> sum(dbinom(0:4, 5, 0.7))
[1] 0.83193
> pbinom(4, 5, 0.7)
[1] 0.83193

Find P(X > 3) using both dbinom() and pbinom(). Note that P(X > 3) =1—-P(X < 3) =
1-P(X <2).

> sum(dbinom(3:5, 5, 0.7))
[1] 0.83692

> 1 - pbinom(2, 5, 0.7)
[1] 0.83692

The entire distribution can be found by giving more than one value for the first argument.
> dbinom(0:5, 5, 0.7)

[1] 0.00243 0.02835 0.13230 0.30870 0.36015 0.16807

The second and third argument can also be replaced by sequences. For example, here is P(X = 0)
forn=1,2,4,8,16,32 and p = 0.5 and P(X =5) for n = 10 and p = 0.1,0.2,...,0.9.

> dbinom(0, 2°(0:5), 0.5)

[1] 5.000000e-01 2.500000e-01 6.250000e-02 3.906250e-03
[5] 1.525879e-05 2.328306e-10

> dbinom(5, 10, (1:9)/10)

[1] 0.001488035 0.026424115 0.102919345 0.200658125
[5] 0.246093750 0.200658125 0.102919345 0.026424115
[9] 0.001488035

3 Binomial Random Variables

The function rbinom() generates pseudo-random numbers. This series of commands will generate
10,000 different binomial random variables, each with n = 8 and p = 0.2. The table() function
will display how many outcomes of each value were sampled.

> s = rbinom (10000, 8, 0.2)
> table(s)

0 1 2 3 4 5 6 7
1715 3352 2920 1467 448 86 11 1

4 Graphing the Binomial Distribution

To graph the binomial distribution, we will write a function to do the job. Once the function is
written, you can put it into a file, use source() to read it into R when desired, and then have
access to it. It is also possible to construct the graph separately each time, but writing and saving a
function is a good way to reduce repetitive typing of complicated series of commands. The function
gbinom() is defined in the file gbinom.R. It includes quite a few complicated features. We will
describe the function writing in more detail with a simpler example.

We create a function in R using function(). We will use xyplot() from lattice to do the
work. We can write the function so that by default, it shows the entire distribution, but includes
an argument scale which will cause the graph to be drawn from the 4 SDs below to 4SDs above
the mean.

The following two graphs show the effects of setting scale.

> source("gbinom.R")
> plot(gbinom (1000, 0.3))

Binomial(1000, 0.3)

0.025 —
0.020 —
0.015 —
0.010 —
0.005 —
0.000 — —

probability

0 200 400 600 800 1000

> plot(gbinom (1000, 0.3, scale = T))

Binomial(1000, 0.3)

0.025
0.020
0.015
0.010
0.005
0.000 —

probability

|

I I

I I

5 Graphing the Likelihood

The following example shows how to use xyplot() with argument type="1" to graph a line rep-
resenting the likelihood and then log-likelihood from the fruit fly data in class. We use seq() to
create an array of the values for which we want to compute the likelihood and dbinom() for the
values themselves. The first two arguments to seq() are the start and end values and the third
argument is the difference between points. Here we evaluate p from 0.2 to 0.45 in steps of size 0.001.
Optional arguments to xyplot() include 1wd=2 to make the line width twice as large as normal,
x1im=c(0.2,0.45) to force the limits of the x-axis to span these values, and ylab to specify a label

260

280

300

320

for the y-axis. In the second plot, log() is the natural logarithm.

> p = seq(0.2, 0.45, 0.001)

> y = dbinom (216, 644, p)

> plot(xyplot(y ~ p, type = "1",
+ lwd = 2, x1im

ylab = "Likelihood",
c(0.2, 0.45)))

340

0.03 —

0.02 —

Likelihood

0.01 L

0.00

0.25 0.30 0.35 0.40

> plot(xyplot(log(y) ~ p, type = "1", ylab = "log-Likelihood",

+ lwd = 2, xlim = c(0.2, 0.45)))
| | | |
-10 — L
o
(@]
(@]
<
£ 204 -
T
(@))
o
-30 — L
I I I I
0.25 0.30 0.35 0.40

6 Confidence Intervals

The text describes a method for building confidence intervals that uses a small adjustment to the
sample proportion. The calculations are simple enough, but we can write a function in R to do all
the steps for us. Here, we select the name of the function to be p.ci and the two arguments to be
x and n, the summary statistics form the sample. Here is code to create a function to do the work,
and then an application of it using data from lecture. The function return() specifies the value
that is returned by the function. By default, it is whatever object is created last, but an explicit
use of return() make reading the function easier. Note that c() is a common utility function used
to concatenate (combine) different objects into one. In this case, c() concatenates expressions for
the lower and upper endpoints of the confidence interval.

> p.ci = function(x, n) {

+ p.prime = (x + 2)/(n + 4)

+ margin.error = 1.96 * sqrt(p.prime * (1 -
+ p.-prime)/(n + 4))

+ return(c(p.prime - margin.error, p.prime +
+ margin.error))

+ }

> p.ci(212, 644)

[1] 0.2940355 0.3664583

7 Hypothesis Tests

The method for hypothesis tests we have explored so far is the binomial test. R’s version of this
test is binom.test (), the first argument of which is the count x and the second of which is the
total sample size n. Additional arguments are p which is the null proportion (default value is
0.5) and alternative which must be one of "two.sided" (the default), "less", and "greater".
As with any argument in an R function which specifies a list of possible values, you need only
type enough characters to distinguish it for other options (but for code clarity, typing the whole
thing is helpful). For one-sided tests, the calculated p-value is the sum of binomial probabilities
less than x for alternative="less" and the sum of binomial probabilities greater than x for
alternative="greater". For alternative="less", binom.test() computes the p-value as the
sum of all probabilities with outcomes less than or equal to the probability of x under the null
hypothesis. This behavior is consistent with a likelihood-based approach to inference, but differs
from the method presented in lecture in which at least as extreme as is interpreted as at least as far
from the mean as and not at most as probable as. For the specific example in lecture, this results
in a difference, but most of the time, the calculations will be the same.

Here, for example, is the result if we changed the problem and there had been 60 left-handed
offspring from 270 total and the null hypothesis p = 0.25. Using the method in lecture, X ~
Binomial(270, 0.25) so E(X) = 67.5 and outcomes at least as extreme as 60 are those 60 and below
or 67.5+ 7.5 = 75 or higher. The p-value is

> sum(dbinom(c(0:60, 75:270), 270, 0.25))

[1] 0.3251164

using the distance-from-the-mean definition of extreme and

> binom.test (60, 270, p = 0.25, alternative = "two.sided")

Exact binomial test

data: 60 and 270
number of successes = 60, number of trials =
270, p-value = 0.3251
alternative hypothesis: true probability of success is not equal to 0.25
95 percent confidence interval:
0.1740749 0.2765797
sample estimates:
probability of success
0.2222222

