
R for Statistics 571
Contingency Tables through Two Samples

Bret Larget

October 22, 2010

1 Creating Tables

The function matrix() will make a table of numbers, here filled with counts in a contingency table,
using rownames() and colnames() to add the names for each category. This code creates a table
for the data from Example 9.3-1.

> fish = matrix(c(1, 49, 10, 35, 37, 9), 2, 3)

> rownames(fish) = c("Eaten", "Not Eaten")

> colnames(fish) = c("Uninfected", "Lightly Infected", "Highly Infected")

> fish

Uninfected Lightly Infected Highly Infected

Eaten 1 10 37

Not Eaten 49 35 9

The first argument to matrix() is an array of the data in the matrix by columns. (If the data is
entered by row, add the argument byrow=true to the matrix() command.) The second and third
arguments are the number of rows and number of columns of data; the command could have been
called matrix(c(1,49,10,35,37,9),nrow=2,ncol=3). If only one of these dimension commands is
specified, R will compute the other using the size of the data. Like all R functions, if the arguments
are not named, R interprets based on their position in the list of arguments. Named arguments can
appear anywhere in the list.

2 Bar Graphs

We use barchart() from the lattice package to make stacked bar graphs to display contingency
tables. By default, barchart() draws horizontal bars; set horizontal=F makes the bars vertical.
The function t() will transpose a matrix; transposing the input matrix will cause the other variable
to be the one used for the main division of the data. The argument ylab can be set to change the
label on the y-axis (and xlab has the same obvious behavior). The argument auto.key works for
may lattice packages to add a key to a graph. Here, we specify the key to be written in columns
across the top of the graph. One command creates an object which is then plotted with plot().
Compare the use of fish and t(fish) in these next two plots.

1

> library(lattice)

> fish.plot = barchart(t(fish), horizontal = F, auto.key = list(columns = nrow(fish)),

+ ylab = "Frequency")

> plot(fish.plot)

F
re

qu
en

cy

0

10

20

30

40

50

Uninfected Lightly Infected Highly Infected

Eaten Not Eaten

> fish.2.plot = barchart(fish, horizontal = F, auto.key = list(columns = ncol(fish)),

+ ylab = "Frequency")

> plot(fish.2.plot)

F
re

qu
en

cy

0

20

40

60

80

Eaten Not Eaten

Uninfected Lightly Infected Highly Infected

2

2.1 Mosaic Plots

The text introduces the idea of a mosaic plot which shows nearly the same information as the stacked
bar graphs, but each bar is rescaled to the same size so that the graph highlights comparisons
between relative frequencies and not absolute frequencies. The function mosaic() below handles
the conversion from frequencies to relative frequencies, so you can just call mosaic() on a matrix
(or its transpose).

> mosaic = function(x, ...) {

+ col.sums = apply(x, 2, sum)

+ for (j in 1:ncol(x)) x[, j] = x[, j]/col.sums[j]

+ my.plot = barchart(t(x), horizontal = F, ylab = "Relative Frequency",

+ auto.key = list(columns = nrow(x)), ...)

+ plot(my.plot)

+ }

Here is an example of its use.

> mosaic(t(fish))

R
el

at
iv

e
F

re
qu

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

Eaten Not Eaten

Uninfected Lightly Infected Highly Infected

3 Chisquare Test and G-Test

The function chisq.test() will carry out a χ2 test. The only argument you need to include is the
matrix.

> chisq.test(fish)

Pearson's Chi-squared test

data: fish

X-squared = 69.7557, df = 2, p-value = 7.124e-16

3

For the G-test, there is no built-in function in base R. An internet search will undoubtedly find
someone who has made the function available. However, coding a few line of R code to find the
expected counts in each table and then the values of the test statistics (for both G- and χ2 tests) is
informative. The following code uses the function apply() to apply the sum() function to both rows
and columns to find the marginal counts and the %o% operator to form the outer sum of the arrays
of row and column counts. In the example with a 2-array for rows and a 3-array for columns, the
outer sum will be a 2× 3 matrix where each element is the product of the corresponding values for
the row and column. Dividing this table by the sum of all elements of the table gives the expected
counts. The three arguments for apply() are a matrix, a number to indicate the dimension (1
for rows, 2 for columns), and a function to apply to each row or column. The observed counts
and expected counts now be combined to find both test statistics. The following function takes a
matrix as an argument, computes both the χ2 and G − test test statistics, and returns a list with
the expected counts, the values of the test statistics, and the p-values. In R, a list() is an object
that can contain any number of potentially different types of items. Components of a list can be
accessed with $ and the name of the component. For example, to print only the matrix of expected
values, one could append $expected to the name of the returned value from this function.

> chisq.g.test = function(x) {

+ row.sum = apply(x, 1, sum)

+ col.sum = apply(x, 2, sum)

+ n = sum(x)

+ x.expected = row.sum %o% col.sum/n

+ x2 = sum((x - x.expected)^2/x.expected)

+ g = 2 * sum(x * log(x/x.expected))

+ degf = (length(row.sum) - 1) * (length(col.sum) - 1)

+ p.x2 = 1 - pchisq(x2, degf)

+ p.g = 1 - pchisq(g, degf)

+ return(list(expected = x.expected, x2 = x2, p.x2 = p.x2, g = g,

+ p.g = p.g))

+ }

> fish.out = chisq.g.test(fish)

> fish.out$expected

Uninfected Lightly Infected Highly Infected

Eaten 17.02128 15.31915 15.65957

Not Eaten 32.97872 29.68085 30.34043

> fish.out

$expected

Uninfected Lightly Infected Highly Infected

Eaten 17.02128 15.31915 15.65957

Not Eaten 32.97872 29.68085 30.34043

$x2

[1] 69.7557

$p.x2

4

[1] 6.661338e-16

$g

[1] 77.89698

$p.g

[1] 0

4 Fisher’s Exact Test

The R function fisher.test() conducts Fisher’s exact test ona 2 × 2 matrix. Note that the
alternative hypothesis is in reference to the top left cell of the matrix. In this example, we ask
what is the chance if the interior of the table were resampled leavin the margins constant, what is
the probability that the upper left corner would be 15 or more. Here is code for an example from
lecture.

> x = matrix(c(15, 7, 6, 322), nrow = 2, ncol = 2)

> fisher.test(x, alternative = "greater")

Fisher's Exact Test for Count Data

data: x

p-value < 2.2e-16

alternative hypothesis: true odds ratio is greater than 1

95 percent confidence interval:

35.49817 Inf

sample estimates:

odds ratio

108.3894

The p-value of Fisher’s exact test is found by summing hypergeometric probabilities (the prob-
ability distribution for sampling without replacement). The arguments to dhyper() are: (1) the
value or values for which to compute the probability; (2) the number of good balls in the bucket; (3)
the number of bad balls in the bucket; and (4) the sample size (without replacement). Either the
row or column marginal totals can be used for the number of balls; the other becomes the sample
size. So, in this example, the p-value is the probability of choosing 15 or more balls from either: (1)
a bucket with 21 good balls and 329 bad balls with a sample of 22; or (2) a bucket with 22 good
balls and 328 bad balls with a sample of 21.

> sum(dhyper(15:21, 21, 329, 22))

[1] 1.004713e-16

> sum(dhyper(15:21, 22, 328, 21))

[1] 1.004713e-16

5

5 Normal Distribution

The functions pnorm() and qnorm() find probabilities (areas to the left) or quantiles from standard
or other normal distributions. The first argument is the quantity of interest. The second and
third (optional) specify the mean and standard deviation if these are not 0 or 1. Here are several
examples:

1. The area to the left of −1.57 under a standard normal curve;

> pnorm(-1.57)

[1] 0.05820756

2. The area to the right of 2.12 under a standard normal curve;

> 1 - pnorm(2.12)

[1] 0.01700302

3. The 0.975 quantile of the standard normal distribution;

> qnorm(0.975)

[1] 1.959964

4. The cutoffs for the middle 99% of the standard normal distribution;

> qnorm(c(0.005, 0.995))

[1] -2.575829 2.575829

5. The area between 90 and 105 for the N(100, 42) distribution;

> pnorm(105, 100, 4) - pnorm(90, 100, 4)

[1] 0.8881406

6. The lower and upper quartiles of the same distribution;

> qnorm(c(0.25, 0.75), 100, 4)

[1] 97.30204 102.69796

6 Graphs for Quantitative Data

The following examples show examples of histograms, density plots, box-and-whisker plots, and dot
plots for the female sockeye salmon mass data set. First, read in the data. There is a single variable
named mass.

> salmon = read.table("sockeye.txt", header = T)

> str(salmon)

'data.frame': 228 obs. of 1 variable:

$ mass: num 3.09 2.91 3.06 2.69 2.88 2.98 1.61 2.16 1.56 1.76 ...

6

Histogram. The first argument is a formula specifying the variable to graph. The second argu-
ment is the name of the data frame where the variable can be found. Note the arguments nint to
suggest using 25 intervals and xlab to set the label on the x-axis. The function plot() is need for
this to execute when read in from a file, but is optional when typing at the command line.

> library(lattice)

> plot(histogram(~mass, salmon, nint = 25, xlab = "Body Mass (kg)"))

Body Mass (kg)

P
er

ce
nt

 o
f T

ot
al

0

5

10

1.0 1.5 2.0 2.5 3.0 3.5

Density plot. The density plot draws a curve which is estimated by averaging many (50 by
default) histograms, with the breakpoints shifted slightly for each. I usually bump this number up
using the argument n=201 so that the resulting curve appears smoother. To suppress the plotting
of points (useful when the sample size is enormous), add the argument plot.points=F.

> plot(densityplot(~mass, data = salmon, xlab = "Body Mass (kg)",

+ ylab = "Density", n = 201))

7

Body Mass (kg)

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

●● ●● ● ●● ●● ●● ●● ●●● ●●●● ●● ●●● ● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●● ● ● ●●●● ● ●● ●●●●● ● ●●●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ● ●● ● ●● ●● ●● ● ● ●● ●●● ● ●● ●●● ● ● ●●● ● ● ●●●● ●● ●●● ●●● ●● ●● ●● ● ●●●● ●● ●● ●● ● ● ●●●● ● ●●● ● ● ●● ●● ●● ●●● ●●● ●● ●●●● ●● ●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●

Box-and-Whisker Plots. A box and whisker plot represents the middle half of the data, between
the 0.25 and 0.75 quantiles, with a box. The center of the box includes a point at the median.
Whiskers are drawn left and right to extreme points; here, the largest and smallest individual
values between the fences, where there are invisible fences to the left and right of the box a distance
1.5 IQR (interquartile range units) from the ends of the box. In other words, if the lower and
upper quartiles are q0.25 and q0.75, the lower fence is at q0.25 − 1.5(q0.75 − q0.25), the upper fence is at
q0.75 + 1.5(q0.75− q0.25), the left whisker extends to the smallest value to the right of the lower fence,
the right whisker extends to the largest value to the left of the upper fence, and any observations
beyond the fences are marked individually.

> plot(bwplot(~mass, data = salmon, xlab = "Body Mass (kg)"))

Body Mass (kg)

1.5 2.0 2.5 3.0 3.5

● ●● ●●● ●●

8

Dot Plots. A dot plot is simply a plot of dots on a number line for each value. To reduce plotting
points on top of one another, the argument jitter.y adds a small bit of random noise to each
point in the y direction. jitter.x is also available.

> plot(dotplot(~mass, data = salmon, xlab = "Body Mass (kg)", jitter.y = T))

Body Mass (kg)

1.5 2.0 2.5 3.0 3.5

●● ●● ● ●● ●● ●● ●● ●●● ●●●● ●● ●●● ● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●● ● ● ●●●● ● ●● ●●●●● ● ●●●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ● ●● ● ●● ●● ●● ● ● ●● ●●● ● ●● ●●● ● ● ●●● ● ● ●●●● ●● ●● ● ●●● ●● ●● ●● ● ●●●● ●● ●● ●● ● ● ●●●● ● ●●● ● ● ●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●● ●● ●●● ● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●

7 T-tests and Confidence Intervals

We demonstrate using t.test() for one-sample confidence intervals and hypothesis tests using a
sample of 25 body temperatures.

> temp = read.table("temperature.txt", header = T)

> str(temp)

'data.frame': 25 obs. of 1 variable:

$ temperature: num 98.4 98.6 97.8 98.8 97.9 99 98.2 98.8 98.8 99 ...

The variable can be specified from the data frame with the $ operator. The mean of the null
hypothesis is set with mu=98.6 and the confidence level is set with conf.level=0.99 (this can be
shortened to conf.

> t.test(temp$temperature, mu = 98.6, conf = 0.99)

One Sample t-test

data: temp$temperature

t = -0.5606, df = 24, p-value = 0.5802

alternative hypothesis: true mean is not equal to 98.6

99 percent confidence interval:

9

98.14485 98.90315

sample estimates:

mean of x

98.524

8 The Bootstrap

We used the bootstrap to find a 95% confidence interval for the salmon data in lecture. Here is
the R code for this. The basic idea is to create a large matrix with B rows and n columns where
n is the sample size of the original data and B is the number of bootstrap data sets we wish to
replicate. We use matrix() to create the matrix and sample() with replace=T to sample data with
replacement. The function apply() with second argument 1 (the number one) and third argument
mean applies the function mean() to each row of the matrix. Finally, we use quantile() to find the
corresponding quantiles of the sample. Here is an application of the bootstrap using B = 10, 000.

> B = 10000

> n = length(salmon$mass)

> mass.boot = apply(matrix(sample(salmon$mass, size = n * B, replace = T),

+ nrow = B, ncol = n), 1, mean)

> quantile(mass.boot, c(0.025, 0.975))

2.5% 97.5%

1.959121 2.098378

A different bootstrap sample may differ a bit, but not a lot if B is large.

> mass.boot.2 = apply(matrix(sample(salmon$mass, size = n * B, replace = T),

+ nrow = B, ncol = n), 1, mean)

> quantile(mass.boot.2, c(0.025, 0.975))

2.5% 97.5%

1.959602 2.098689

Compare to the t-test.

> t.test(salmon$mass)

One Sample t-test

data: salmon$mass

t = 56.8042, df = 227, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

1.957804 2.098512

sample estimates:

mean of x

2.028158

The 95% confidence intervals are identical when rounded to two decimal places.

10

9 Randomization Test

In lecture on October 21, we explored the randomization test to test if two population means were
equal. Here is R code to read in the data set using read.csv() which expects a text file where the
first line is a header line with variable names and subsequent lines have data. Values on each line
are separated by commas.

> pscorp = read.csv("pseudoscorpions.csv")

> str(pscorp)

'data.frame': 36 obs. of 2 variables:

$ mating: Factor w/ 2 levels "Different","Same": 2 2 2 2 2 2 2 2 2 2 ...

$ broods: int 4 0 3 1 2 3 4 2 4 2 ...

To carry out the randomization test, we will write a special function that will compute the mean
of the first 20 observations, the mean of the next 16 observations, and return the difference.

> f = function(x) {

+ return(mean(x[1:20]) - mean(x[21:36]))

+ }

Next, we create an array to store the difference in means for each randomized data set. We will
do this R = 100, 000 times. We will the array with missing values (NA) which we will replace.

> R = 100000

> out = rep(NA, R)

The function sample() with only one argument consisting of an array returns a random permu-
tation of the elements of the array. We think of this as the first 20 elements being the one randomly
sampled group and the next 16 as the second group. This command rerandomizes one time and
calls f() to find the difference in means.

> f(sample(pscorp$broods))

[1] 0.9375

Now, we ask R to do this R = 100, 000 times with the for() command. The variable i is set to
each value from 1 to R, and the difference in means for that particular rerandomization is stored
in out[i]. The test statistic is found by applying f() to the original data (which works because
the data is ordered with the Same group having the first 20 observations and the Different group
having the final 16 observations). The p-value is the proportion of randomized differences in sample
means that are less than this test statistic.

> test.stat = f(pscorp$broods)

> for (i in 1:R) {

+ out[i] = f(sample(pscorp$broods))

+ }

> p.value = sum((out <= test.stat))/R

> p.value

[1] 0.01376

11

10 Two-sample T-test

Compare the previous result to the two-sample independent t-test.

> sample1 = with(pscorp, broods[mating == "Same"])

> sample2 = with(pscorp, broods[mating == "Different"])

> t.test(sample1, sample2, alternative = "less")

Welch Two Sample t-test

data: sample1 and sample2

t = -2.3424, df = 28.883, p-value = 0.01313

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -0.3911856

sample estimates:

mean of x mean of y

2.200 3.625

11 Graphs to Compare Distributions

The following graph compares the distribution of the number of broods for each group with his-
tograms. The vertical bar in the formula specifies the variable on the left to be split according
to the variable on the right and displayed in different panels. The layout argument specifies one
column and two rows (so the histograms are aligned vertically, making them easier to compare).

> plot(histogram(~broods | mating, data = pscorp, layout = c(1, 2),

+ breaks = seq(-0.5, 7.5)))

broods

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

0 2 4 6

Different
0

10

20

30
Same

12

