
Solutions to Statistics 571 Midterm 1
Hanlon/Larget, Fall 2010

1.

Solution:

(a) The sum of the probabilities must be one, so the missing probability is 1− 0.15− 0.25− 0.2− 0.3 = 0.1.

Let k be the missing value. We are given

E(X) = 1.9 = (−5)(0.15) + (−1)(0.25) + (k)(0.2) + (4)(0.1) + (7)(0.3)

which simplifies to
1.9 = 1.5 + 0.2k

so k = 0.4/0.2 = 2.

(b) Use linearity of expectation.

E(3X + 7) = 3E(X) + 7 = 3(1.9) + 7 = 12.7

(c) One approach is to use the formula Var(X) = E(X2)− (E(X))2.

E(X2) = (−5)2(0.15) + (−1)2(0.25) + (2)2(0.2) + (4)2(0.1) + (7)2(0.3) = 21.1

So, Var(X) = 21.1−1.92 = 17.49. As a check, this means the standard deviation is a little more than 4, and
the points one standard deviation above and below the mean are about −2 and 6. Much of the probablity
is within this range and some is outside; the value is consistent with our understanding.

(d) Use the properties of variance.

Var(3X + 7) = Var(3X) = 9Var(X) = 157.41

2.

Solution:

(a) The distribution of individual fish lengths is N(54.0, 4.52). Let X be the length of a randomly chosen fish.

P(X > 60) = P

(
X − 54

4.5
>

60− 54
4.5

)
= P(Z > 1.33) .= 0.09176

using the table and a rounded Z score, or with R

> 1 - pnorm(60, 54, 4.5)

[1] 0.09121122

(b) The sampling distribution of X̄ is normal with mean 54.0 mm and standard deviation 4.5/
√

4 = 2.25.

Another way to say this is X̄ ∼ N(54, 4.52

4 ).

(c)

P(51 < X̄ < 60) = P

(
51− 54

2.25
<
X̄ − 54

2.25
<

60− 54
2.25

)
= P(−1.33 < Z < 2.67) = 1− 0.00379− 0.09176 = 0.90445

using the table and rounded z scores. With R,



> pnorm(60, 54, 2.25) - pnorm(51, 54, 2.25)

[1] 0.9049584

(d) In the table, the z-score closest to the 0.9 quantile (right tail area equals 0.10000) is z = 1.28. The 0.9
quantile is then 54 + 1.28(2.25) = 56.88. With R,

> qnorm(0.9, 54, 2.25)

[1] 56.88349

(e) The middle 80% is between the 0.1 and 0.9 quantiles. We already have the latter. The former is 54 −
1.28(2.25) = 51.12. Again, with R,

> qnorm(c(0.1, 0.9), 54, 2.25)

[1] 51.11651 56.88349

(f) No. By the central limit theorem, the distribution of X̄ is approximately normal even when the population
is not normal when n is large enough, but n = 4 is not a large sample.

3.

Solution: A solution might include a tree to guide the calculations.

(a) Use the law of total probability to add the probabilities of both paths through the tree that end with color
blind people.

(0.53)(0.02) + (0.47)(0.001) = 0.101107

(b) This is one path in the tree.
(0.47)(0.001) = 0.00047

(c) Use Bayes’ Theorem.

P(man | color blind) =
P(man ∩ color blind)

P(color blind)

=
P(man)P(color blind |man)

P(color blind)

=
(0.53)(0.02)

0.01107
.= 0.9575

4.

Solution:

(a) Of the 25 plants in the spider mite treatment group, 10 develop wilt disease. The observed proportion
is p̂ = 10/25 = 0.4 but we will use the recommended method which adjusts the observed proportion.
p′ = (10 + 2)/(25 + 4) .= 0.414. The estimated standard error with the adjusted data is

SE =

√
(0.414)(1− 0.414)

29
.= 0.09146

and the margin of error is 1.96 × 0.09146 = 0.179. The 95% confidence interval is 0.414 ± 0.179 or
0.235 < p < 0.593. In the context of the problem,

We are 95% confident that the proportion of cottom plants given the spider mite treatment that
will contract wilt disease after innoculation using the experimental conditions is between 0.235 and
0.593.



(b) It is sufficient to look at the graph and see that the curve reaches its highest point when p = 0.40, so
p̂ = 0.40 and that the height of the curve at this point is between −1.8 and −1.9, closer to −1.8, say about
−1.82.

Some of you figured out how to calculate this, although this was not necessary. As n = 25, if p̂ = 0.4 then
X = 10. The log-likelihood is the natural logarithm of the binomial probability for 10 successes when n = 25
and k = 10:

` = ln
{(

25
10

)
(0.4)10(0.6)15

}
.= −1.825

(c) The observed and expected counts are

Observed Counts
Mites No mites Total

Wilt disease 10 20 30
No wilt disease 15 5 20

Total 25 25 50

Expected Counts
Mites No mites Total

Wilt disease 15 15 30
No wilt disease 10 10 20

Total 25 25 50

where the upper left expected count is found by (30)(25)/50 = 15 and others are found similarly. The test
statistic is

G = 2
(
10 ln(10/15)+15 ln(15/10)+20 ln(20/15)+5 ln(5/10)

) .= 2(−4.055+6.082+5.754−3.466) .= 8.63

There are (2 − 1)(2 − 1) = 1 degrees of freedom, so the G statistic should be compared to the χ2(1)
distribution. From the table of quantiles, the p-value is 1− 0.995 = 0.005 when G = 7.88 and 1− 0.999 =
0.001 when G = 10.83. As the actual G is between these values, 0.001 < p-value < 0.005.

As an aside, as a χ2(1) distribution is the same as a standard normal random variable squared, with a normal
table we could have found the p-value as follows:

P(X2 > 8.63) = 2P(Z >
√

8.63) .= 2P(Z > 2.94) .= 0.0033

The factor of 2 comes from P(Z >
√

8.63) = P(Z < −
√

8.63) and either corresponds to Z2 > 8.63. This
trick only works when there is one degree of freedom.

The mean of a χ2(1) random variable is 1, and G = 8.63 is quite a bit bigger. The small p-value is evidence
against the null hypothesis of independence. In the context of the problem (and following the models from
lecture notes),

There is strong evidence (G = 8.63, p < 0.005, df=1, n=50, G-test for independence) that the
spider mite treatment affects the probability of leaf wilt in the experimental conditions.

Soap box speech.— As biologists, we wish to summarize the strength of statistical evidence relevant
to hypotheses of interest in order to persuade the informed and interested reader that our conclusions are
supported. Keeping track whether or not a specific hypothesis is rejected or not at some arbitrary α level
such as α = 0.05 is unimportant. At the end of your academic career, there will be no one with a scorecard
who tells you that, yes, you only failed to reject 5 percent of all of the true null hypotheses that you ever
tested, and presents you with a gold star and a certificate of proper statistical decision making. People will
care when they read your work if there is sufficient statistical evidence to back up the conclusions you draw
in the context of the data and your analysis for that single problem. Do not think that drawing conclusions
on the basis of a single number is sufficient for this purpose. Your conclusions will be based on the statistical
analysis in part, but also other qualitative judments about the study design and background and information
not directly included in the analysis. When summarizing results of a hypothesis test, it is better to report a
p-value as a summary of the information from the hypothesis test than to make a statement whether or not
the test is rejected.



5.

Solution:

(a) The population is Americans between the ages of 40 and 75 with osteoarthritis of the knee and severe pain
when walking (50–90 on a 100 point scale).

(b) The sample is not random—all subjects are volunteers recruited from one of 46 study centers.

(c) Correct answers are bold.

Explanatory Categorical Experimental
Variable or Response or Quantitative or Observational
Treatment Group Explan. or Resp. Cat. or Quant. Exper. or Obs.

Age Explan. or Resp. Cat. or Quant. Exper. or Obs.

Dose of Tanezumab Explan. or Resp. Cat. or Quant. Exper. or Obs.

Change in WOMAC Explan. or Resp. Cat. or Quant. Exper. or Obs.
pain subscore

Response to therapy Explan. or Resp. Cat. or Quant. Exper. or Obs.

Notes:

• The first three variables are used to model changes in the last last two.

• Treatment group is the categorical variable version of quantitative variable dose.

• Age is used to define the population of interest, but it is observational because the researchers cannot
assign a given subject to a specific age.

• As described in the footnote to the second table, response to therapy is a categorical designation based
on a threshhold of the quantitative variable change in WOMAC pain score.


