
Stat 849: Accessing data with R

Douglas Bates

2010-10-04

Outline

Contents

1 Data in Packages

Data sets from R packages

� Many of the sample data sets that we will use are available in R packages on CRAN, the
Comprehensive R Archive Network.

� For example, we will use data from the alr3 package created by Sanford Weisberg to
supplement his 2005 book Applied Linear Regression (3rd edition)

� We attach a package with the library() function. (Another option is the require()

function.) Many sources on R show that you must use data() to access a particular data
set after attaching the package. For most recent packages this is no longer necessary.

1 library(alr3)

� A brief description of the data sets and functions in a package is available as help(package
= <pkgname>).

Checking the structure of a data set

� It is always a good idea to check the structure of a particular data set before trying to
use it. A frequently-used example data set, available as the brains data in the alr3

package, is the data collected by Allison and Cicchetti on average brain weight versus
average body weight for 62 species of animal.

1 str(brains)

'data.frame': 62 obs. of 2 variables:

$ BrainWt: num 44.5 15.5 8.1 423 119.5 ...

$ BodyWt : num 3.38 0.48 1.35 464.98 36.33 ...

� Also see the help page for the data, accessed as ?brains

1

Checking a summary

� Another function to apply routinely to data frames is summary(). Sometimes the output
is too wordy to be helpful (the str() output is designed to be very concise) but in general
summary() is a good idea.

1 summary(brains)

BrainWt BodyWt

Min. : 0.14 Min. : 0.005

1st Qu.: 4.25 1st Qu.: 0.600

Median : 17.25 Median : 3.342

Mean : 283.14 Mean : 198.794

3rd Qu.: 166.00 3rd Qu.: 48.201

Max. :5711.86 Max. :6654.180

When categorical data is not stored as a factor

� One bad practice to watch for, even in data packages created by professional statisticians,
is failure to represent categorical variables as factors. Consider the ais data from alr3

1 str(ais)

'data.frame': 202 obs. of 14 variables:

$ Sex : int 1 1 1 1 1 1 1 1 1 1 ...

$ Ht : num 196 190 178 185 185 ...

$ Wt : num 78.9 74.4 69.1 74.9 64.6 63.7 75.2 62.3 66.5 62...

$ LBM : num 63.3 58.5 55.4 57.2 53.2 ...

$ RCC : num 3.96 4.41 4.14 4.11 4.45 4.1 4.31 4.42 4.3 4.51 ..

$ WCC : num 7.5 8.3 5 5.3 6.8 4.4 5.3 5.7 8.9 4.4 ...

$ Hc : num 37.5 38.2 36.4 37.3 41.5 37.4 39.6 39.9 41.1 41...

$ Hg : num 12.3 12.7 11.6 12.6 14 12.5 12.8 13.2 13.5 12.7 ..

$ Ferr : int 60 68 21 69 29 42 73 44 41 44 ...

$ BMI : num 20.6 20.7 21.9 21.9 19 ...

$ SSF : num 109.1 102.8 104.6 126.4 80.3 ...

$ Bfat : num 19.8 21.3 19.9 23.7 17.6 ...

$ Label: Factor w/ 17 levels "f-b_ball","f-field",..: 1 1 1 1 ..

$ Sport: Factor w/ 10 levels "b_ball","field",..: 1 1 1 1 1 1 ..

Summaries of categorical variables

� A summary of a categorical variable should be (the leading part of) a frequency table. If
you get a ��ve number� summary instead, the data are stored in a numeric format (int
or num).

1 summary(ais$Sport)

b_ball field gym netball row swim t_400m t_sprnt

25 19 4 23 37 22 29 15

tennis w_polo

11 17

1 summary(ais$Sex)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 0.000 0.000 0.495 1.000 1.000

2

Conversion of categorical variables to factors

� For the ais data we need to read the documentation, ?ais, to �nd that Sex has the
coding of 0 for male and 1 for female.

� We can use the within function to do the conversion and store the modi�ed version. To
avoid confusion it is best to give the modi�ed data set a new name.

1 str(AIS <- within(ais , Sex <- factor(Sex ,

2 labels=c("M","F"))))

'data.frame': 202 obs. of 14 variables:

$ Sex : Factor w/ 2 levels "M","F": 2 2 2 2 2 2 2 2 2 2 ...

$ Ht : num 196 190 178 185 185 ...

$ Wt : num 78.9 74.4 69.1 74.9 64.6 63.7 75.2 62.3 66.5 62...

$ LBM : num 63.3 58.5 55.4 57.2 53.2 ...

$ RCC : num 3.96 4.41 4.14 4.11 4.45 4.1 4.31 4.42 4.3 4.51 ..

$ WCC : num 7.5 8.3 5 5.3 6.8 4.4 5.3 5.7 8.9 4.4 ...

$ Hc : num 37.5 38.2 36.4 37.3 41.5 37.4 39.6 39.9 41.1 41...

$ Hg : num 12.3 12.7 11.6 12.6 14 12.5 12.8 13.2 13.5 12.7 ..

$ Ferr : int 60 68 21 69 29 42 73 44 41 44 ...

$ BMI : num 20.6 20.7 21.9 21.9 19 ...

$ SSF : num 109.1 102.8 104.6 126.4 80.3 ...

$ Bfat : num 19.8 21.3 19.9 23.7 17.6 ...

$ Label: Factor w/ 17 levels "f-b_ball","f-field",..: 1 1 1 1 ..

$ Sport: Factor w/ 10 levels "b_ball","field",..: 1 1 1 1 1 1 ..

Summary after conversion

1 summary(AIS)

Sex Ht Wt LBM

M:102 Min. :148.9 Min. : 37.80 Min. : 34.36

F:100 1st Qu.:174.0 1st Qu.: 66.53 1st Qu.: 54.67

Median :179.7 Median : 74.40 Median : 63.03

Mean :180.1 Mean : 75.01 Mean : 64.87

3rd Qu.:186.2 3rd Qu.: 84.12 3rd Qu.: 74.75

Max. :209.4 Max. :123.20 Max. :106.00

RCC WCC Hc

Min. :3.800 Min. : 3.300 Min. :35.90

1st Qu.:4.372 1st Qu.: 5.900 1st Qu.:40.60

Median :4.755 Median : 6.850 Median :43.50

Mean :4.719 Mean : 7.109 Mean :43.09

3rd Qu.:5.030 3rd Qu.: 8.275 3rd Qu.:45.58

Max. :6.720 Max. :14.300 Max. :59.70

Hg Ferr BMI

Min. :11.60 Min. : 8.00 Min. :16.75

1st Qu.:13.50 1st Qu.: 41.25 1st Qu.:21.08

Median :14.70 Median : 65.50 Median :22.72

Mean :14.57 Mean : 76.88 Mean :22.96

3rd Qu.:15.57 3rd Qu.: 97.00 3rd Qu.:24.46

Max. :19.20 Max. :234.00 Max. :34.42

3

SSF Bfat Label Sport

Min. : 28.00 Min. : 5.630 f-netball:23 row :37

1st Qu.: 43.85 1st Qu.: 8.545 f-row :22 t_400m :29

Median : 58.60 Median :11.650 m-t_400m :18 b_ball :25

Mean : 69.02 Mean :13.507 m-w_polo :17 netball:23

3rd Qu.: 90.35 3rd Qu.:18.080 m-row :15 swim :22

Max. :200.80 Max. :35.520 f-b_ball :13 field :19

(Other) :94 (Other):47

Checking for consistency of coding of Sex

� Notice that the Label column includes information about the sport and whether these
are men's or women's teams.

� An easy way to check for consistency in coding is to obtain the unique combinations of
Sex, Label and Sport. The number of rows should be the number of levels of Label.

1 str(sp <- unique(subset(AIS , select=c(Sex ,Label ,Sport))))

'data.frame': 17 obs. of 3 variables:

$ Sex : Factor w/ 2 levels "M","F": 2 2 2 2 2 2 2 2 2 1 ...

$ Label: Factor w/ 17 levels "f-b_ball","f-field",..: 1 5 4 6 ..

$ Sport: Factor w/ 10 levels "b_ball","field",..: 1 5 4 6 2 7 ..

Printing the unique combinations

1 print(sp , row.names=FALSE)

Sex Label Sport

F f-b_ball b_ball

F f-row row

F f-netball netball

F f-swim swim

F f-field field

F f-t_400m t_400m

F f-t_sprnt t_sprnt

F f-tennis tennis

F f-gym gym

M m-swim swim

M m-row row

M m-b_ball b_ball

M m-t_400m t_400m

M m-field field

M m-t_sprnt t_sprnt

M m-w_polo w_polo

M m-tennis tennis

4

2 Data from a local �le

Reading from a �le

� Data stored with a rectangular structure (columns are variables, rows are cases) in a
text �le are read with read.table or one of its special purpose variants, read.delim, for
tab-separated values, or read.csv, for comma-separated values.

� Generally you can read �les of a few thousand records or less using the default settings.
You may need to change the logical argument header according to the structure of your
�le.

� On Windows it can be di�cult to get the form of a �le name exactly right. Use
file.choose to bring up a �chooser� panel.

� Before trying to read a very large �le you should read the manual R Data Import/Export
manual to learn settings that can make read.table faster and less memory intensive.

� The count.fields function is useful in tracking down problems in reading �les. See also
chapter 4 of Gentleman (2008).

An example

� A data �le from the Spring `08 Masters Exam is stored as /p/stat/Data/MS.exam/s08/dietary_intake.txt.
A glance at the �rst few lines shows a whitespace-delimited data �le with column headers.
For convenience I copied the �le to my /tmp directory.

1 str(diet <- read.table("/tmp/dietary_intake.txt",

2 header=TRUE))

'data.frame': 60 obs. of 9 variables:

$ ID : int 14 14 14 19 26 31 41 68 77 77 ...

$ sex : int 2 2 2 2 2 1 1 2 1 1 ...

$ age : num 5.5 6.2 7.1 6.6 7.1 7.1 7.2 7.4 5.7 6.2 ...

$ TEE : int 1332 1616 1252 1421 1767 1881 1758 1537 1401 ..

$ EER : int 1398 1451 1539 1419 1672 1692 2068 1453 1508 ..

$ EI_FFQ : int 2847 2528 2164 3028 2925 1713 2929 1763 1937 ..

$ EI_FR : num 1478 1593 1382 1328 2034 ...

$ VitA_FFA: num 1688 1372 1086 1583 1125 ...

$ VitA_FR : num 528 9044 749 11371 4427 ...

3 Data from the web

Reading from remote �les

� R supports http and ftp transfers via �connections� (naturally you must be connected to
the net to use this feature).

� For functions like read.table() and friends you can use a URL instead of a �le name.
Sometimes if the URL is very long I split it into pieces and use paste with the optional
argument sep set to the empty string to reconstruct the name.

5

http://cran.us.r-project.org/doc/manuals/R-data.html

� To read the grocery_retailer.txt �le from the Stat 849 data directory I use

1 Data849 <- "http://www.stat.wisc.edu/~st849 -1/data/"

2 str(groc <-

3 read.table(paste(Data849 , "grocery_retailer.txt",

4 sep=""), header=TRUE))

'data.frame': 52 obs. of 4 variables:

$ Y : int 4264 4496 4317 4292 4945 4325 4110 4111 4161 4560 ...

$ X1: int 305657 328476 317164 366745 265518 301995 269334 26..

$ X2: num 7.17 6.2 4.61 7.02 8.61 6.88 7.23 6.27 6.49 6.37 ...

$ X3: int 0 0 0 0 1 0 0 0 0 0 ...

4 Summary

Summary

� Data can be accessed as stored data sets in R package or read from local �les or from
�les accessible on the web.

� Always check the structure of the data after reading it. Watch for categorical variables
stored as numeric values. Also check for missing value codes that may have gone un-
detected. (The argument na.strings is used to specify missing value codes other than
NA.)

� Check the data set summary to see if it is as expected.

� If a variable should have been numeric but ends up as a factor with weird levels, check
for undetected missing value codes.

� Another occasional problem is the use of unmatched quote character in strings. (Frequent
culprits in genomic data are 3' and 5'.)

6

