
iv

Chapter 1

The Gaussian Linear Model

Statistics 849 is part of a two-semester sequence, 849 & 850, on Theory and Applications of Regres-
sion and Analysis of Variance. In these courses we study statistical models that relate a response
to values of one or more covariates, which are variables that are observed in conjunction with the
response.

The statistical inferences are based on a probability model that characterizes the distribution
of the vector-valued random variable, Y, as it depends on values of the covariates. We build the
model based on observed values of the responses, represented by the vector y, and corresponding
values of the covariates.

All the models we will study are based on a linear predictor expression, Xβ, where the n × p
matrix X is the model matrix created from a model specification and the values of the covariates.
Here n is the number of observations and p is the dimension of the coefficient vector, β, The
coefficients are parameters in the model. We form estimates, β̂, of these parameters from the
observed data.

We assume that n ≥ p. That is, we have at least as many observations are we have coefficients
in the model.

1.1 Gaussian Linear Model

A basic model for a response, Y, that is measured on a continuous scale, is the Gaussian Linear
Model

Y ∼ N (XβT , σ
2In) (1.1)

where In is the n-dimensional identity matrix, βT is the“true”, but unknown, value of the coefficient
vector and N denotes the multivariate Gaussian (also called normal) distribution.

The probability density of Y,

fY(y) =
1

(2πσ2)n/2
exp

(
−‖y −XβT ‖2

2σ2

)
, (1.2)

is called a spherical normal density, because contours of constant density are concentric spheres
centered at XβT .

1

2 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

The likelihood, L(β, σ|y), of the parameters, β and σ, given the observed responses, y, and
the model matrix, X, is the same expression as the probability density, fY(y), but regarded as a
function of the parameters given the data, as opposed to the density, which is a function of y for
known values of the parameters.

L(β, σ|y) =
1

(2πσ2)n/2
exp

(
−‖y −Xβ‖2

2σ2

)
. (1.3)

The maximum likelihood estimates (mles) of the parameters are, as the name suggests, the values
of the parameters that maximize the likelihood(

β̂′, σ̂L

)′
= arg max

β,σ
L(β, σ|y) (1.4)

As often happens it is much easier to maximize the expression for the log-likelihood

`(β, σ|y) = log (L(β, σ|y)) = −n
2

log(2πσ2)− ‖y −Xβ‖
2

2σ2
(1.5)

than to maximize the likelihood. Because the logarithm function is monotonic increasing, the values
of the parameters that maximize the log-likelihood, written arg maxβ,σ `(β, σ|y), are exactly the
same as the values that maximize the likelihood, arg maxβ,σ L(β, σ|y).

The expression can be simplified further by converting to the deviance, which is negative twice
the log-likelihood,

d(β, σ|y) = −2`(β, σ|y) = n log(2πσ2) +
‖y −Xβ‖2

σ2
. (1.6)

Because of the negative sign, the mle’s are the values that minimize the deviance. For any fixed
value of σ2, the deviance is minimized with respect to β when the residual sum of squares,

S(β|y) = ‖y −Xβ‖2,

is minimized. Thus the mle of the coefficient vector, β̂, in the Gaussian linear model is the least
squares estimate

β̂ = arg min
β
‖y −Xβ‖2. (1.7)

1.2 Linear algebra of least squares

Because the Gaussian Linear Model, Y ∼ N (XβT , σ
2In), is intimately tied to the Euclidean

distance, ‖y − Xβ‖2, and because the set of all possible fitted values, {Xβ : β ∈ Rp}, which
is called the column span of X and written col(X), is a linear subspace of Rn, linear algebra,
especially as related to the model matrix, X, and the response vector, y, is fundamental to the
theory and practice of linear regression analysis.

We will concentrate on the theoretical and computational aspects of linear algebra as related
to the linear model and the implementation of such models in R.

1.3. MATRIX DECOMPOSITIONS 3

1.3 Matrix decompositions

1.3.1 Orthogonal matrices

An orthogonal n× n matrix, Q has the property that its transpose is its inverse,

Q′Q = QQ′ = In.

These properties imply that the columns of Q must be orthogonal to each other and must all have
unit length. The same is true for the rows.

An orthogonal matrix has a special property that it preserves lengths.

Preserving lengths

For any x ∈ Rn

‖Qx‖2 = (Qx)′Qx = x′Q′Qx = x′x = ‖x‖2

Thus the linear transformation determined byQ or byQ′ must be a rigid transformation, composed
of reflections or rotations.

Orthogonal transformations of the response space, Rn, will be important to us because they
preserve lengths and because the likelihood of the parameters, β, is related to the squared length
of the residual vector, ‖y −Xβ‖2.

1.3.2 The QR decomposition

Any n × p matrix X has a QR decomposition consisting of an orthogonal n × n matrix Q and a
p× p matrix R that is zero below the main diagonal (in other words, it is upper triangular). The
QR decomposition of the model matrix X is written

X = Q

[
R
0

]
=
[
Q1 Q2

] [R
0

]
= Q1R (1.8)

where Q1 is the first p columns of Q and Q2 is the last n− p columns of Q.

That fact that matrices Q and R must exist is proved by construction. The matrix Q is the
product of p Householder reflections (see the Wikipedia page for the QR decomposition). The
process of generating the upper triangular matrix R is similar to the Gram-Schmidt orthogonaliza-
tion process, but more flexible and more numerically stable. If the diagonal elements of R are all
non-zero (in practice this means that none of them are very small in absolute value) then X has
full column rank and the columns of Q1 form an orthonormal basis for col(X).

The implementation of the QR decomposition in R guarantees that any elements on the diagonal
of R that are considered effectively zero are rearranged by column permutation to occur in the
trailing columns. That is, if the rank of X is k < p then the first k columns of Q form an
orthonormal basis for col(XP) where P is a p × p permutation matrix, which means that it is a
rearrangement of the columns of Ip.

http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/Gram-Schmidt_process
http://en.wikipedia.org/wiki/Gram-Schmidt_process
http://en.wikipedia.org/wiki/Permutation_matrix

4 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

Our text often mentions rank-deficient cases where rank(X) = k < p. In practice the rank
deficient case rarely occurs because the process of building the model matrix in R involves a consid-
erable amount of analysis of the model formula to remove the most common cases of rank deficiency.
Nevertheless, rank deficiency can occur and is detected and handled in the lm function in R.

Because multiplication by an orthogonal matrix like Q′ preserves lengths we can write

β̂ = arg min
β
‖y −Xβ‖2

= arg min
β
‖Q′(y −Xβ)‖2

= arg min
β
‖Q′y −Q′Xβ‖2

= arg min
β
‖c1 −Rβ‖2 + ‖c2‖2

(1.9)

where c1 = Q′1y is the first p elements of Q′y and c2 = Q′2y is the last n − p elements. If

rank(X) = p then rank(R) = p and R−1 exists so we can write β̂ = R−1c1 (although you don’t
actually calculate R−1 to solve the triangular linear system Rβ̂ = c1 for β̂).

In a model fit by the lm() or aov() functions in R there is a component $effects which is Q′y.
The component $qr is a condensed form of the QR decomposition of the model matrix X. The
matrix R is embedded in there but the matrix Q is a virtual matrix represented as a product of
Householder reflections and not usually evaluated explicitly.

R Exercise: To see this theory in action, we will start with a very simple linear model. The
Formaldehyde data are six observations from a calibration experiment. The response, optden, is the
optical density. Only one covariate, carb, which is the carbohydrate concentration, is included in
the data frame.

> str(Formaldehyde)

'data.frame': 6 obs. of 2 variables:

$ carb : num 0.1 0.3 0.5 0.6 0.7 0.9

$ optden: num 0.086 0.269 0.446 0.538 0.626 0.782

The model.matrix() function extracts the model matrix, X, from a fitted linear model object

> (X <- model.matrix(lm1 <- lm(optden ~ 1 + carb, Formaldehyde)))

(Intercept) carb

1 1 0.1

2 1 0.3

3 1 0.5

4 1 0.6

5 1 0.7

6 1 0.9

attr(,"assign")

[1] 0 1

1.3. MATRIX DECOMPOSITIONS 5

The $qr component is an object of class "qr"

> class(qrlm1 <- lm1$qr)

[1] "qr"

for which there are many extractor functions and methods (see ?qr).

> (R <- qr.R(qrlm1))

(Intercept) carb

1 -2.449490 -1.2655697

2 0.000000 0.6390097

produces the R matrix while

> (Q1 <- qr.Q(qrlm1))

[,1] [,2]

[1,] -0.4082483 -0.65205066

[2,] -0.4082483 -0.33906635

[3,] -0.4082483 -0.02608203

[4,] -0.4082483 0.13041013

[5,] -0.4082483 0.28690229

[6,] -0.4082483 0.59988661

by default produces Q1. First we should check that their product is indeed X

> (Q1R <- Q1 %*% R)

(Intercept) carb

[1,] 1 0.1

[2,] 1 0.3

[3,] 1 0.5

[4,] 1 0.6

[5,] 1 0.7

[6,] 1 0.9

It seems to be the same, although as in all floating point calculations on a computer, there may
be some small imprecision caused by round-off error in the calculations. This is why we don’t use
exact comparisons on the results of floating point calculations

> all(X == Q1R)

[1] FALSE

but instead compare results using

> all.equal(X, Q1R, check.attr = FALSE)

6 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

[1] TRUE

(As a model matrix, X has some additional attributes that are not present in the product Q1R, which
is why we turn off checking of the attributes of the two objects.)

Notice that X and y are not explicitly part of the fitted model object, lm1.

> names(lm1)

[1] "coefficients" "residuals" "effects" "rank" "fitted.values"

[6] "assign" "qr" "df.residual" "xlevels" "call"

[11] "terms" "model"

Both are generated from the model.frame, which is stored as the component $model. Althought this
is getting into more detail than is needed at present, the reason for introducing the model frame is
to say that the safe way of extracting the response vector, y, is

> (y <- model.response(model.frame(lm1)))

1 2 3 4 5 6

0.086 0.269 0.446 0.538 0.626 0.782

We have already seen that model.matrix returns the matrix X from the fitted model object.

We can produce the full n×n orthogonal matrixQ from qr.Q() by setting the optional argument
complete=TRUE. We do this for illustration only. In practice the matrix Q is never explicitly created
— it is a “virtual” matrix in the sense that it is a product of Householder reflections that are stored
much more compactly than Q would be stored.

> (Q <- qr.Q(qrlm1, complete=TRUE))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.4082483 -0.65205066 -0.37370452 -0.3405290 -0.3073534 -0.2410023

[2,] -0.4082483 -0.33906635 0.05460995 0.2207196 0.3868293 0.7190487

[3,] -0.4082483 -0.02608203 0.86857638 -0.1439791 -0.1565346 -0.1816455

[4,] -0.4082483 0.13041013 -0.15359661 0.8125532 -0.2212971 -0.2889976

[5,] -0.4082483 0.28690229 -0.17576960 -0.2309146 0.7139404 -0.3963496

[6,] -0.4082483 0.59988661 -0.22011559 -0.3178501 -0.4155847 0.3889463

The $effects vector should be the product Q′y but it happens that they are stored differently.
The $effects vector is a vector of length n and the product Q′y is an n × 1 matrix. To compare
them, we need to make $effects an n× 1 matrix or make Q′y into a vector. A convenient way of
making an n × 1 matrix from an n-vector is the function cbind(), which creates matrices or data
frames by binding columns together. If we give it a single vector argument it creates an n × 1
matrix

> str(cbind(lm1$effects))

1.3. MATRIX DECOMPOSITIONS 7

num [1:6, 1] -1.12146 0.55996 0.00514 0.00992 0.01069 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:6] "(Intercept)" "carb" "" "" ...

..$: NULL

> str(crossprod(Q, y))

num [1:6, 1] -1.12146 0.55996 0.00514 0.00992 0.01069 ...

> all.equal(cbind(lm1$effects), crossprod(Q, y), check.attr=FALSE)

[1] TRUE

(The function crossprod(A,B) creates A′B directly, without creating A′ from A. It is most com-
monly used to create matrices like X ′X as

> crossprod(X)

(Intercept) carb

(Intercept) 6.0 3.10

carb 3.1 2.01

The companion function, tcrossprod, creates XX ′.)
If we wish to do the comparison by converting Q′y to a vector, we can use

> all.equal(lm1$effects, as.vector(crossprod(Q, y)), check.attr=FALSE)

[1] TRUE

I find cbind easier to type than as.vector.
Another way of generating Q′y is with the function qr.qty()

> all.equal(lm1$effects, qr.qty(qrlm1, y), check.attr=FALSE)

[1] TRUE

We should check that Q is indeed orthogonal and that Q′1Q1 = Ip. The matrix Ik is generated
by diag(nrow=k).

> all.equal(crossprod(Q1), diag(nrow=ncol(Q1)))

[1] TRUE

> all.equal(crossprod(Q), diag(nrow=nrow(Q)))

[1] TRUE

> all.equal(tcrossprod(Q), diag(nrow=nrow(Q)))

8 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

[1] TRUE

When we print a matrix that may have negligibly small non-zero values in it

> crossprod(Q1)

[,1] [,2]

[1,] 1.000000e+00 1.197637e-16

[2,] 1.197637e-16 1.000000e+00

we can clean up the output with zapsmall() which, as the name suggests, zeros the very small
values.

> zapsmall(crossprod(Q1))

[,1] [,2]

[1,] 1 0

[2,] 0 1

> zapsmall(crossprod(Q))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

Because the diagonal elements of R are all safely non-zero, we can solve the system Rβ̂ = Q′1y

for the coefficient estimates, β̂. We could use the function solve() to do this but it us better to
use backsolve() for the solution to upper triangular systems,

> coef(lm1)

(Intercept) carb

0.005085714 0.876285714

> backsolve(R, crossprod(Q1, y))

[,1]

[1,] 0.005085714

[2,] 0.876285714

> all.equal(coef(lm1), as.vector(backsolve(R, crossprod(Q1, y))), check.attr=FALSE)

[1] TRUE

The function qr.coef combines the multiplication of y by Q′1 and the backsolve step

> qr.coef(qrlm1, y)

(Intercept) carb

0.005085714 0.876285714

1.3. MATRIX DECOMPOSITIONS 9

R Exercise: As seen above, a linear model is specified as a model formula and the data frame in
which to evaluate the formula. Because the formula is analyzed for conditions that may introduce
rank deficiency and consequently removes those conditions, rank deficient cases occur infrequently.
Of course, it is possible to artificially generate data with a built-in rank dependency

> set.seed(1234) # allow for reproducible "random" numbers

> badDat <- within(data.frame(x1=1:20, x2=rnorm(20,mean=6,sd=0.2),

+ x4=rexp(20,rate=0.02),

+ y=runif(20,min=18,max=24)),

+ x3 <- x1 + 2*x2) # create linear combination

> (summary(lm2 <- lm(y ~ x1 + x2 + x3 + x4, badDat)))

Call:

lm(formula = y ~ x1 + x2 + x3 + x4, data = badDat)

Residuals:

Min 1Q Median 3Q Max

-2.3444 -1.7670 -0.3585 1.6159 3.0292

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.793e+01 1.390e+01 1.290 0.215

x1 4.140e-02 8.553e-02 0.484 0.635

x2 3.822e-01 2.358e+00 0.162 0.873

x3 NA NA NA NA

x4 3.901e-05 8.680e-03 0.004 0.996

Residual standard error: 2.02 on 16 degrees of freedom

Multiple R-squared: 0.021, Adjusted R-squared: -0.1626

F-statistic: 0.1144 on 3 and 16 DF, p-value: 0.9504

> (lm2qr <- lm2$qr)$rank

[1] 4

> qr.R(lm2qr) # the columns are rearranged

(Intercept) x1 x2 x4 x3

1 -4.472136 -46.95743 -26.6086150 -182.87421 -1.001747e+02

2 0.000000 25.78759 0.1721295 83.85993 2.613185e+01

3 0.000000 0.00000 -0.8668932 35.62409 -1.733786e+00

4 0.000000 0.00000 0.0000000 232.75139 2.005660e-15

5 0.000000 0.00000 0.0000000 0.00000 5.179752e-15

> lm2qr$pivot # the permutation vector

[1] 1 2 3 5 4

10 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

but we don’t do this in practice.
The common case of an analysis of variance model which, when written as

yi,j = µ+ αi + εi,j i = 1, . . . , I, j = 1, . . . , ni

would generate linearly dependent columns for µ and the αi, i = 1, . . . , I is analyzed and represented
by the intercept column and I − 1 columns for the factor.

> str(InsectSprays)

'data.frame': 72 obs. of 2 variables:

$ count: num 10 7 20 14 14 12 10 23 17 20 ...

$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

> unique(mm <- model.matrix(lm3 <- lm(count ~ spray, InsectSprays)))

(Intercept) sprayB sprayC sprayD sprayE sprayF

1 1 0 0 0 0 0

13 1 1 0 0 0 0

25 1 0 1 0 0 0

37 1 0 0 1 0 0

49 1 0 0 0 1 0

61 1 0 0 0 0 1

> attr(mm, "assign")

[1] 0 1 1 1 1 1

> qr.R(lm3[["qr"]])

(Intercept) sprayB sprayC sprayD sprayE sprayF

1 -8.485281 -1.414214 -1.4142136 -1.4142136 -1.4142136 -1.4142136

2 0.000000 3.162278 -0.6324555 -0.6324555 -0.6324555 -0.6324555

3 0.000000 0.000000 3.0983867 -0.7745967 -0.7745967 -0.7745967

4 0.000000 0.000000 0.0000000 3.0000000 -1.0000000 -1.0000000

5 0.000000 0.000000 0.0000000 0.0000000 2.8284271 -1.4142136

6 0.000000 0.000000 0.0000000 0.0000000 0.0000000 2.4494897

This shows only the unique rows in the model matrix. The six levels of the spray factor are
represented by 5 indicator columns.

Because we are discussing an analysis of variance model we also show the "assign" attribute
of the model matrix. This indicates that the first column is associated with the 0th term, which
is the intercept, and the second through sixth columns are associated with the first term, which is
spray.

In general, a factor with I levels is converted to a set of I−1 columns. These are called contrasts,
but be warned that these do not fulfill the definition of contrasts as used in some texts. You should
think of them as being a set of columns representing changes between levels of the factor.

The type of contrasts generated is controlled by the option called "contrasts".

1.3. MATRIX DECOMPOSITIONS 11

> getOption("contrasts")

unordered ordered

"contr.treatment" "contr.poly"

(By the way, plotting these data first would show that this is not a good model. The count

variable is, not surprisingly, a count and does not have constant variance. A better model would
use the square root of the count as a response.)

The determinant of an orthogonal matrix

As described on its Wikipedia page, the determinant, |A|, of the k × k square matrix, A, is the
volume of the parallelepiped spanned by its columns (or, equivalently, the volume spanned by its
rows). Because we can consider either the rows or the columns when evaluating the determinant,
we must have

|A| = |A′|.

We can regard |A| as the magnification factor in the transformation x → Ax from Rk to
Rk. This transformation takes the unit cube to a parallelopiped with volume |A|. Composing
transformations will just multiply the magnification factors so we must have

|AB| = |A| |B|

We know that the columns of an orthogonal matrix Q are orthonormal hence they span a unit
volume. That is, for an n× n matrix Q

Q′Q = In ⇒ |Q| = ±1.

The sign indicates whether the transformation preserves orientation. In two dimensions a rotation
preserves orientation and a reflection reverses orientation.

Furthermore, the determinant of a diagonal matrix or a triangular matrix is simply the product
of its diagonal elements. (For a triangular matrix, first consider the 2 × 2 case and the shape of
the parallelogram spanned by the columns. The width of the parallelogram is the (1,1) element
and the height is the (2,2) element so the area is the product of the diagonal elements (up to sign).
Then convince yourself that this property scales to a parellelopiped in k dimensions.)

From these properties we can formally derive

1 = |In| = |QQ′| = |Q||Q′| = |Q|2 ⇒ |Q| = ±1.

Interestingly, one way that the determinant, |A| is evaluated in practice is by forming the QR
decomposition of A, taking the product of the diagonal elements of R, and determining whether
|Q| has a plus or a minus sign.

http://en.wikipedia.org/wiki/Determinant

12 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

R Exercise: The det() function evaluates the determinant of a square matrix (although if you
check its definition you will find that it just calls another function determinant, which is the preferred
approach).

> all.equal(det(R), prod(diag(R)))

[1] TRUE

> det(crossprod(Q1))

[1] 1

> det(crossprod(Q))

[1] 1

1.3.3 Comparison to the usual text-book formulas

Most text books state that the least squares estimates are

β̂ = (X ′X)−1X ′y (1.10)

giving the impression that β̂ is calculated this way. It isn’t.
If you substitute X = Q1R in eqn. 1.10 you get

(X ′X)−1X ′y = (R′R)−1R′Q′1y = R−1(R′)−1R′Q′1y = R−1Q′1y,

our previous result.
Whenever you see X ′X in a formula you should mentally replace it by R′R and similarly

replace (X ′X)−1 by R−1(R′)−1 then see if you can simplify the result.
For example, the variance of the least squares estimator β̂ is

Var(β̂) = σ2(X ′X) = σ2R−1(R−1)′

The R function chol2inv calculates R−1(R−1)′ directly from R without evaluating R−1 explicitly
(not a big deal in most cases but when p is very large it should be faster and more accurate than
evaluating R−1 explicitly).

Also, the determinant of X ′X is

|X ′X| = |R′R| = |R|2 =

(
p∏
i=1

ri,i

)2

The fitted values ŷ areQ1Q
′
1y and thus the hat matrix (which puts a“hat”on y by transforming

it to ŷ) is the n × n matrix Q1Q
′
1. Often we are interested in the diagonal elements of the hat

matrix, which are the sums of the squares of rows of Q1. (In practice you don’t want to calculate
the entire n× n hat matrix just to get the diagonal elements when n could be very large.)

1.3. MATRIX DECOMPOSITIONS 13

The residuals, ê = y − ŷ, are calculated as ê = Q2Q
′
2y.

The matrices Q1Q
′
1 and Q2Q

′
2 are projection matrices, which means that they are symmetric

and idempotent. (A square matrix A is idempotent if AA = A.) When rank(X) = p, the hat
matrix Q1Q

′
1 projects any vector in Rn onto the column span of X. The other projection, Q2Q

′
2,

is onto the subspace orthogonal to the column span of X (see the figure on the front cover of the
text).

R Exercise: We have already seen that β̂ can be calculated as

> backsolve(R, crossprod(Q1, y))

[,1]

[1,] 0.005085714

[2,] 0.876285714

or as

> qr.coef(qrlm1, y)

(Intercept) carb

0.005085714 0.876285714

The functions qr.fitted() and qr.fitted() perform projection onto col(X) and onto its or-
thogonal complement, respectively.

The fitted values are, unsurprisingly, calculated as

> qr.fitted(qrlm1, y)

1 2 3 4 5 6

0.09271429 0.26797143 0.44322857 0.53085714 0.61848571 0.79374286

> all.equal(qr.fitted(qrlm1, y), fitted(lm1))

[1] TRUE

and the residuals as

> qr.resid(qrlm1, y)

1 2 3 4 5 6

-0.006714286 0.001028571 0.002771429 0.007142857 0.007514286 -0.011742857

> all.equal(qr.resid(qrlm1, y), residuals(lm1))

[1] TRUE

We use the explicit calculations for illustration only. In practice, use of the “extractor” methods,
fitted() and residuals(), is preferred.

If we wanted the projection matrices P1 for projection onto colX and onto the residual space
we could form them as

14 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

> (P1 <- tcrossprod(Q1))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.59183673 0.38775510 0.1836735 0.08163265 -0.02040816 -0.22448980

[2,] 0.38775510 0.28163265 0.1755102 0.12244898 0.06938776 -0.03673469

[3,] 0.18367347 0.17551020 0.1673469 0.16326531 0.15918367 0.15102041

[4,] 0.08163265 0.12244898 0.1632653 0.18367347 0.20408163 0.24489796

[5,] -0.02040816 0.06938776 0.1591837 0.20408163 0.24897959 0.33877551

[6,] -0.22448980 -0.03673469 0.1510204 0.24489796 0.33877551 0.52653061

and

> (P2 <- tcrossprod(Q[, -(1:2)]))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.40816327 -0.38775510 -0.1836735 -0.08163265 0.02040816 0.22448980

[2,] -0.38775510 0.71836735 -0.1755102 -0.12244898 -0.06938776 0.03673469

[3,] -0.18367347 -0.17551020 0.8326531 -0.16326531 -0.15918367 -0.15102041

[4,] -0.08163265 -0.12244898 -0.1632653 0.81632653 -0.20408163 -0.24489796

[5,] 0.02040816 -0.06938776 -0.1591837 -0.20408163 0.75102041 -0.33877551

[6,] 0.22448980 0.03673469 -0.1510204 -0.24489796 -0.33877551 0.47346939

respectively (the expression Q[, -(1:2)] drops the first two columns of Q producing Q2). (And, of
course, we don’t do this in practice, especially if n is large. Instead we use qr.fitted or qr.resid

if we want to project vectors other than y.)
We can check that P1 and P2 are projection matrices. They are obviously symmetric by con-

struction so we check the idempotent property

> all.equal(P1 %*% P1, P1)

[1] TRUE

> all.equal(P2 %*% P2, P2)

[1] TRUE

Because P1 is projection onto col(X) it should take X to itself

> all.equal(P1 %*% X, X, check.attr=FALSE)

[1] TRUE

and P2 should take X to zeros, although in practice we expect very small but possibly non-zero
values.

> all.equal(P2 %*% X, 0 * X, check.attr=FALSE)

[1] TRUE

1.3. MATRIX DECOMPOSITIONS 15

(The weird construction, 0 * X, create a matrix of zeros that is the same size as X.)
Because P1 is the hat matrix, we can get its diagonal elements as

> diag(P1)

[1] 0.5918367 0.2816327 0.1673469 0.1836735 0.2489796 0.5265306

As mentioned, the alternative calculation is

> rowSums(Q1^2)

[1] 0.5918367 0.2816327 0.1673469 0.1836735 0.2489796 0.5265306

and a third way, preferred in practice, is

> hatvalues(lm1)

1 2 3 4 5 6

0.5918367 0.2816327 0.1673469 0.1836735 0.2489796 0.5265306

rank(X), which is the number of linearly independent columns in X, is calculated during the
decomposition and also stored as the $rank component of the fitted model

> lm1$rank

[1] 2

> qrlm1$rank

[1] 2

1.3.4 R functions related to the QR decomposition

To review, every time you fit a linear model with lm or aov or lm.fit, the returned object contains
a $qr component. This is a condensed form of the QR decomposition of X, only slightly larger
than X itself. Its class is "qr".

There are several extractor functions for a "qr" object: qr.R(). qr.Q() and qr.X(), which
regenerates the original matrix. By default qr.Q() returns the matrix called Q1 above with p
columns but you can specify the number of columns desired. Typical alternative choices are n or
rank(X).

The $rank component of a "qr" object is the computed rank of X (and, hence, of R). The
$pivot component is the permutation applied to the columns. It will be 1:p when rank(X) = p
but when rank(X) < p it may be other than the identity permutation.

Several functions are applied to a "qr" object and a vector or matrix. These include qr.coef(),
qr.qy(), qr.qty(), qr.resid() and qr.fitted(). The qr.qy() and qr.qty() functions multiply an
n-vector or an n ×m matrix by Q or Q′ without ever forming Q. Similarly, qr.fitted() creates
Q1Q

′
1x and qr.resid() creates Q2Q

′
2x without forming Q.

The is.qr() function tests an object to determine if it is of class "qr".

16 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

1.4 Related matrix decompositions

1.4.1 The Cholesky decomposition

The Cholesky decomposition of a positive definite symmetric matrix, which means a p×p symmetric
matrix A such that x′Ax > 0 for all non-zero x ∈ Rp is of the form

A = R′R = LL′

where R is an upper triangular p × p matrix and L = R′ is lower triangular. The two forms are
the same decomposition: it is just a matter of whether you want R, the factor on the right, or L,
the factor on the left. Generally statisticians write the decomposition as R′R.

The decomposition is only determined up to changes in sign of the rows of R (or, equivalently,
the columns of L). For definiteness we require positive diagonal elements in R.

When rank(X) = p the Cholesky decomposition R of X ′X is the equal to the matrix R
from the QR decomposition up to changes in sign of rows. The matrix X ′X matrix is obviously
symmetric and it is positive definite because

x′(X ′X)x = x′(R′R)x = ‖Rx‖2 ≥ 0

with equality only when Rx = 0, which, when rank(R) = p, implies that x = 0.

1.4.2 Evaluation of the Cholesky decomposition

The R function chol() evaluates the Cholesky decomposition. As mentioned above chol2inv()

creates (X ′X)−1 directly from the Cholesky decomposition of X ′X.

Generally the QR decomposition is preferred to the Cholesky decomposition for least squares
problems because there is a certain loss of precision when forming X ′X. However, when n is very
large you may want to build up X ′X using blocks of rows. Also, if X is sparse it is an advantage
to use sparse matrix techniques to evaluate and store the Cholesky decomposition.

The Matrix package for R provides even more capabilities related to the Cholesky decomposition,
especially for sparse matrices.

For everything we will do in Statistics 849 the QR decomposition should be the method of
choice.

R Exercises:

> chol(crossprod(X))

(Intercept) carb

(Intercept) 2.449490 1.2655697

carb 0.000000 0.6390097

http://en.wikipedia.org/wiki/Cholesky_decomposition

1.4. RELATED MATRIX DECOMPOSITIONS 17

1.4.3 The singular value decomposition

Another decomposition related to orthogonal matrices is the singular value decomposition (or SVD)
in which the matrix X is reduced to a diagonal form

X = U1DV
′ = U

[
D
0

]
V ′ (1.11)

where U is an n × n orthogonal matrix, D is a p × p diagonal matrix with non-negative diagonal
elements (which are called the singular values of X) and V is a p× p orthogonal matrix. As for Q
and Q1, U1 consists of the first p columns of U . For definiteness we order the diagonal elements of
D, which must be non-negative, in decreasing order.

Just like Q1, the columns of U1 form an orthonormal basis for col(X) when X has full column
rank (which means that the singular values are all safely positive). If rank(X) = r < p then the
first r columns of U form the orthonormal basis.

One way to visualize the singular value decomposition of X is to remember that a p-sphere
in Rp will get mapped to an ellipsoid in col(X) by X. The singular values are the lengths of the
principal axes of this ellipsoid. The right singular vectors (columns of V) are the directions in the
parameter space that map onto the principal axes of the ellipsoid. The first rank(X) left singular
vectors (columns of U) are the principal axes of the ellipsoid.

The singular value decomposition of X is related to the eigendecomposition or spectral decom-
position of X ′X because

X ′X = V DU ′1U1DV
′ = V D2V ′

implying that the eigenvalues of X ′X are the squares of the singular values of X and the right
singular vectors, which are the columns of V , are also the eigenvectors of X ′X

Calculation of the SVD is an iterative (as opposed to a direct) computation and potentially
more computing intensive than the QR decomposition, although modern methods for evaluating
the SVD are very good indeed.

Symbolically we can write the least squares solution in the full-rank case as

β̂ = V D−1U ′1y

where D−1 is a diagonal matrix whose diagonal elements are the inverses of the diagonal elements
of D.

The pseudo-inverse or generalized inverse of X, written X−, is calculated from the pseudo-
inverse of the diagonal matrix, D. In theory the diagonal elements of D− are 1/di,i when di,i 6= 0
and 0 when di,i = 0. However, we can’t count on di,i being 0 even when, in theory, it should be.
We need to decide when the singular values are close to zero, which is actually a very difficult
problem. At best we can use some heuristics, based on the ratio of di,i/d1,1, to decide when a
diagonal element is “effectively zero”.

The use of the pseudo-inverse seems to be a convenient way to handle rank-deficient X matrices
but, as mentioned above, the best way to handle rank-deficient X matrices is not to produce them
in the first place. Even when a rank-deficient X is produced we use a pivoted QR decomposition
rather than a pseudo-inverse.

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://en.wikipedia.org/wiki/Spectral_decomposition
http://en.wikipedia.org/wiki/Spectral_decomposition
http://en.wikipedia.org/wiki/Pseudo-inverse

18 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

R Exercises: The SVD of our model matrix X is

> str(Xsv <- svd(X))

List of 3

$ d: num [1:2] 2.773 0.564

$ u: num [1:6, 1:2] 0.334 0.368 0.403 0.42 0.437 ...

$ v: num [1:2, 1:2] 0.878 0.479 -0.479 0.878

We see that, by default, the svd() function produces the diagonal of D, the matrix U1 and the
matrix V . We should check that X = U1DV

′, as advertised. We could form a diagonal matrix
D from the $d component of Xsv but multiplication of a matrix on the left by a diagonal matrix
corresponds to scaling its rows, so we write the reconstruction as

> Xsv$u %*% (Xsv$d * t(Xsv$v))

[,1] [,2]

[1,] 1 0.1

[2,] 1 0.3

[3,] 1 0.5

[4,] 1 0.6

[5,] 1 0.7

[6,] 1 0.9

> all.equal(Xsv$u %*% (Xsv$d * t(Xsv$v)), X, check.attr=FALSE)

[1] TRUE

We check that the matrix U1 has orthonormal columns and that V is orthogonal

> zapsmall(crossprod(Xsv$u))

[,1] [,2]

[1,] 1 0

[2,] 0 1

> zapsmall(crossprod(Xsv$v))

[,1] [,2]

[1,] 1 0

[2,] 0 1

The squares of the singular values should be the eigenvalues of X ′X and the eigenvectors of
X ′X should be the columns of V , up to changes in sign along columns. (The eigenvectors, which
are really just directions, are only determined up to changes in sign, and in the case of repeated
eigenvalues, only up to orthogonal transformation within the repeated eigenvalue’s eigenspace.)

> str(ev <- eigen(crossprod(X)))

1.4. RELATED MATRIX DECOMPOSITIONS 19

List of 2

$ values : num [1:2] 7.691 0.319

$ vectors: num [1:2, 1:2] -0.878 -0.479 0.479 -0.878

> Xsv$d^2

[1] 7.6914651 0.3185349

> all.equal(ev$values, Xsv$d^2)

[1] TRUE

> ev$vectors

[,1] [,2]

[1,] -0.8778294 0.4789735

[2,] -0.4789735 -0.8778294

> Xsv$v

[,1] [,2]

[1,] 0.8778294 -0.4789735

[2,] 0.4789735 0.8778294

> all.equal(-Xsvv, evvectors)

[1] TRUE

In practice, you never need to calculate the eigenvalues and eigenvectors of X ′X. It is more
effective and more stable to calculate the singular value decomposition of X and use the squares of
the singular values and the $v component (assuming that you really do need the eigenvalues and
eigenvectors which, most of the time, you don’t).

The reason that it is preferable to work with decompositions of X rather than forming X ′X
is related to the condition number of these matrices. As described on the Wikipedia page, the
condition number of a matrix, written κ(X), is the ratio of its largest and smallest singular values.
Obviously we must have κ(X) ≥ 1. A matrix with κ close to 1 is well-conditioned. A matrix
with a very large condition number is close to being singular, in that spheres are mapped to highly
elongated ellipsoids.

An orthogonal matrix or a rectangular matrix with orthonormal columns must have a condition
number of 1 because it maps a sphere to a sphere. (Recall that, for us, rectangular matrices like
X have more rows than columns. In the opposite case, more columns than rows, it would be the
rows that are orthonormal.) In fact, all the singular values of an orthogonal matrix must be unity
because it preserves lengths so the unit sphere gets mapped to the unit sphere.

We can check that matrices like Q, Q1 and U1 have a condition number of 1.

> svd(Q, nu=0, nv=0)$d

http://en.wikipedia.org/wiki/Condition_number

20 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

[1] 1 1 1 1 1 1

> kappa(Q)

[1] 1

> svd(Q1, nu=0, nv=0)$d

[1] 1 1

> kappa(Q1)

[1] 1

> kappa(Xsv$u)

[1] 1

The condition number of X can be explicitly calculated as

> Xsv$d

[1] 2.773349 0.564389

> (kappaX <- Xsv$d[1]/Xsv$d[length(Xsv$d)])

[1] 4.913897

(The complicated expression in the last line is to generalize the calculation. It will give the
correct answer when there are more than two singular values.) The kappa() function, by default,
produces an upper bound on the condition number, because this upper bound can be calculated
directly. To get the exact value set the optional argument exact=TRUE.

> kappa(X)

[1] 5.1073

> kappa(X, exact=TRUE)

[1] 4.913897

In practice we usually calculate the reciprocal of the condition number because its value is in
[0, 1] and it is easier to decide when it is close to zero instead of trying to decide when κ(X) is
“close to”∞. We compare the reciprocal condition number to the relative machine precision,

> .Machine$double.eps

[1] 2.220446e-16

http://en.wikipedia.org/wiki/Machine_epsilon

1.5. THEORETICAL RESULTS ON THE EIGENDECOMPOSITION 21

−0.5

0.0

0.5

−3 −2 −1 0 1 2 3

U

−3 −2 −1 0 1 2 3

Q

Figure 1.1: The image of the unit circle in R2 after mapping by U ′1X (left panel) and by Q′1X
(right panel)

A matrix is considered computationally singular when its reciprocal condition number is within
some multiple, typical values are 10 or 100, of this number.

Getting back to the question of why we prefer to work with X directly, instead of forming X ′X,
it is because κ(X ′X) = κ(X)2. If κ(X) = 106, which is large but not catastrophically so, then
κ(X ′X) will be 1012, which means it is very close to being singular.

Finally, let’s revisit the idea of the singular values being the lengths of the principal axes of the
image of the unit sphere in the map β → Xβ. When p = 2 the unit sphere is the circle of radius
1 centered at the origin and the ellipsoid mentioned above will be an ellipse.

A convenient way of creating a 2×N matrix whose columns are the points on the unit circle is
to start with a sequence of values from 0 to 2π and use its sines and cosines

> str(rad <- seq(0, 2*pi, len=201))

num [1:201] 0 0.0314 0.0628 0.0942 0.1257 ...

> str(circ <- rbind(cos(rad), sin(rad)))

num [1:2, 1:201] 1 0 0.9995 0.0314 0.998 ...

The n-dimensional response vectors corresponding to these points on the circle are

> fits <- X %*% circ

To plot the this image in two dimensions (Fig. 1.1) we need to represent these points with
respect to an orthogonal basis for col(X). Fortunately we have two such bases: the columns of Q1

and of U1. In the U1 basis the principal axes of the ellipse correspond to the coordinate axes. In
the Q1 basis the principal axes are skewed.

1.5 Theoretical results on the eigendecomposition

1.5.1 Eigenvalues and Eigenvectors

For any k × k matrix A, the roots of the kth degree polynomial equation in λ, |λIk − A| = 0,
which we will write as λ1, . . . , λk are called the eigenvalues of A. The polynomial is called the

22 CHAPTER 1. THE GAUSSIAN LINEAR MODEL

characteristic polynomial of A.

Any nonzero n× 1 vector vi 6= 0 such that Avi = λivi is an eigenvector of A corresponding to
the eigenvalue λi.

For any diagonal matrix D = diag(d1, . . . , dk), |λIk −D| =
∏k
i=1(λ − di) = 0 has roots di,

therefore the diagonal elements di, i = 1, . . . , n are the eigenvalues of D

If Q is an orthogonal matrix, then QAQ′ and A have the same eigenvalues.

Proof.

|λI −QAQ′| = |λQQ′ −QAQ′|
= |Q||λQ′ −AQ′|
= |Q||λI −A||Q′|
= |Q|2|λI −A| = 1|λI −A|
= |λI −A|

(1.12)

Note: Although the eigenvalues are defined as the roots of the characteristic polynomial, in
practice they are not calculated this way. In fact, if you check the documentation for function
solve.polynomial() in the polynom package for R you will find that it uses the numerical methods
for evaluating the eigenvalues of the companion matrix of a polynomial to solve for the polynomial’s
roots.

1.5.2 Diagonalization of a Symmetric Matrix

For any k × k symmetric matrix A (i.e. A′ = A), there exists an orthogonal matrix Q such
that QAQ′ is a diagonal matrix Λ = diag(λ1, . . . , λn) where λi are the eigenvalues of A. The
corresponding eigenvectors of A are the column vectors of Q

Proof. Let ei, i = 1, . . . , n be n × 1 unit vectors that form the canonical basis of Rn, (i.e. ei =
(0, . . . , 1, . . . , 0)′ where the 1 is in the ith position) and qi be the ith column ofQ. That is, qi = Qei.
Then

Q′AQ = Λ⇒ Q′AQei = Λei = λiei

Multiplying on the left by Q produces

Aqi = QQ′︸︷︷︸
I

AQei = λiQei = λ1qi.

http://en.wikipedia.org/wiki/Characteristic_polynomial
http://en.wikipedia.org/wiki/Companion_matrix

1.5. THEORETICAL RESULTS ON THE EIGENDECOMPOSITION 23

1.5.3 Spectral Decomposition

From the relationship Q′AQ = Λ just established for a k×k symmetric matrix A we can compute
its spectral decomposition,

A = QΛQ′ =
k∑
i=1

λiqiq
′
i

where qi is the ith column of Q.

QQ′ =
k∑
i=1

qiq
′
i = I

1.5.4 Trace and Determinant of A

The relationship Q′AQ = Λ for symmetric A implies that the trace, tr(A), and the determinant,
|A|, are the same as those of Λ.

tr(A) = tr(QΛQ′) = tr(ΛQQ′) = tr(Λ) =

k∑
i=1

λi

where we have used the property that tr(CD) = tr(D) for any conformable matrices C and D
(meaning that if C is m× n then D must be n×m).

|A| = |QΛQ′| = |Q||Λ||Q′| = |Q|2|Λ| =
k∏
i=1

λi

http://en.wikipedia.org/wiki/Spectral_decomposition_%28Matrix%29

	The Gaussian Linear Model
	Gaussian Linear Model
	Linear algebra of least squares
	Matrix decompositions
	Orthogonal matrices
	The QR decomposition
	Comparison to the usual text-book formulas
	R functions related to the QR decomposition

	Related matrix decompositions
	The Cholesky decomposition
	Evaluation of the Cholesky decomposition
	The singular value decomposition

	Theoretical results on the eigendecomposition
	Eigenvalues and Eigenvectors
	Diagonalization of a Symmetric Matrix
	Spectral Decomposition
	Trace and Determinant of A

