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Chapter 6

Regression Diagnostics

Chapter 10, “Departures from Assumptions: Diagnosis and Remedies” describes the use of residuals
and influence measures in diagnosing situations in which the assumptions on the Gaussian linear
model, Y ∼ N (Xβ, σ2In), are called into question.

For the purposes of examining residuals, it is convenient to express the distribution, Y ∼
N (Xβ, σ2In), in a “signal plus noise” form. Although this is a useful separation in linear regression
models, it is not universally applicable. In particular, it does not help to write a generalized linear
model in this way — but that doesn’t stop people from trying it.

Back to the Gaussian linear model, if we subtract the expected value of Y, which is Xβ, we are
left with a “white noise” vector, ε. That is,

Y = Xβ + ε where ε ∼ N (0, σ2In).

The distribution of ε is described as “white noise” because it has no signal left it in. Its elements
are independent, constant variance, mean zero, normally distributed random variables.

Given the observed data, y, from which we estimate the coefficients, β̂, our estimate of the
“signal” component is ŷ = Xβ̂ and our estimate of the noise component is the residual vector,
ê = y − ŷ. We want to check the Gauss-Markov assumptions

E[ε] = 0

Var(ε) = σ2In

Although not strictly part of the Gauss-Markov assumptions, we also usually check for a normal
or Gaussian distribution. Together these provide the desired distribution, ε ∼ N (0, σ2In).

As is frequently the case, checking for normality is either difficult or redundant. With a small
sample size it is difficult to tell much about the distribution. With a large sample size, the Central
Limit Theorem takes over, more-or-less, because the estimates of the coefficients, β̂, which are
linear combinations of the responses, tend towards a normal distribution. This is a rather loose
statement and there should be some conditions imposed to ensure that the central limit effect will
be in force but the general idea is that linear combinations behave somewhat like sample means.
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90 CHAPTER 6. REGRESSION DIAGNOSTICS

6.1 Plots of the residuals

We use residual plots to check for the following possible violations of the assumptions:

1. Non-constant variance

2. Outliers

3. Non-normal distribution

4. Incorrect specification of the “signal” part, Xβ.

6.1.1 Basic, “canned” residual plots

Plots that are always of interest are:

1. (Raw) residuals, ê = y − ŷ, versus the fitted values, ŷ = Xβ̂.

2. A normal quantile-quantile plot (also called a normal probability plot) of the standardized
residuals.

Canned versions of these plots are available as plot(lm1, which=1), for the residuals versus fitted
plot, and plot(lm1, which=2), for the normal quantile-quantile plot of the standardized residuals.
You can obtain both plots in a horizontal layout by changing the default layout, calling the plot
method with which=1:2, and restoring the layout. The idiom is

> opar <- par(mfrow=c(1,2), las=1)

> plot(lm1, which=1:2)

> par(opar)

The first call to par sets the layout to be 1 row and 2 columns and adjusts the label style for
horizontal axis labels. The old values of the graphical parameters are saved for later restoration.
It is a good idea always to restore graphical parameters to the default state after finishing a plot.
That way you are always starting from a known state.

For the model,

> lm2 <- lm(log(Volume) ~ 1 + log(Girth) + log(Height), trees)

these plots are shown in Fig. 6.1
The plot of the residuals versus the fitted values should show points scattered within a horizontal

band. In any model with an intercept term the residuals will sum to zero and we must have both
positive and negative residuals. The reference line y = 0 is drawn on the plot as is a scatterplot
smoother curve showing the general trend in the residuals as they depend on the fitted values.
Extreme residuals are marked with the row number in the original data set or the row names, if
available.

The foremost purpose of this plot is to evaluate whether the variability about the fitted model
increases as the level of the response increases. Although this is only one way in which the variance
of the noise term can fail to be constant, it is by far the most common violation of constant variance.
Recall model av3
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Figure 6.1: Residual plots for the model lm2.

> summary(av3 <- aov(breaks ~ wool * tension, warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 450.7 450.67 3.7653 0.0582130

tension 2 2034.3 1017.13 8.4980 0.0006926

wool:tension 2 1002.8 501.39 4.1891 0.0210442

Residuals 48 5745.1 119.69

The residual plots for this model, Fig. 6.2, show such a pattern. All the extreme residuals are from
the larger fitted values and the vertical spread of the points in the right hand side of the plot is
noticeably greater than for those on the left.

This pattern of increasing variability with increasing fitted response indicates a need for trans-
formation of the response using the type of transformation that squeezes large values together and
stretches small values apart. The inverse transformation that we used in model av3a

> summary(av3a <- aov(1/breaks ~ wool * tension, warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 0.0002403 0.00024035 0.9001 0.347511

tension 2 0.0033455 0.00167274 6.2642 0.003826

wool:tension 2 0.0012088 0.00060442 2.2635 0.114978

Residuals 48 0.0128174 0.00026703
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Figure 6.2: Residual plots for the model av3.

is such a transformation. John Tukey’s “ladder of reexpression” gives successively more extreme
versions of such transformations (when applied to positive values of the response, which is commonly
the case). Writing y∗ for the transformed value, this set of transformations is

original scale y∗ = y

square root y∗ =
√
y

logarithm y∗ = log(y)

inverse square root y∗ = (y)−1/2

inverse y∗ = 1/y

All of these transformations are contained within the Box-Cox family of transformations pro-
posed by George Box and Sir David Cox. This is a parameterized family of transformations,
depending on a parameter λ and defined as

y(λ) =

{
yλ−1
λ λ 6= 0

log(y) λ = 0

Not only is this family continuous in y > 0 for a fixed λ, it is also continuous in λ for a fixed y,
even at λ = 0. The continuity at λ = 0 can be verified using l’Hôpital’s rule.

http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
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Given a model form, Xβ, we can evaluate the parameter estimates for various values of λ
and determine which λ value maximizes the log-likelihood. The log-likelihood at the optimal β
and σ for each value of λ is called the profiled log-likelihood. If we write the optimal value as λ̂
then a likelihood ratio test of H0 : λ = λ0 versus Ha : λ 6= λ0 consists of comparing the profiled
log-likelihood at λ̂ to that at λ0.

The boxcox function from the MASS package automates this procedure and, by default, creates a
plot of the profiled log-likelihood, Fig. 6.3

> library(MASS)

> boxcox(av3)
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Figure 6.3: Profiled log-likelihood for λ in the Box-Cox transformation family applied to model av3.
The left panel shows the default range of λ from -2 to 2. In the right panel the range is restricted
to -0.6 to 0.6.

In this figure the plot of the profiled log-likelihood is shown twice, once on the default range of
(−2, 2) and then on the restricted range (−0.6, 0.6) which more closely bounds the 95% confidence
interval on λ.

Interestingly, the optimal value λ̂ is very close to zero, indicating the logarithmic transformation
will be a good choice. The inverse transformation, which we chose based on comparative boxplots,
corresponding to λ = −1, is not in the confidence interval. Refitting the model with the logarithmic
transformation,

> summary(av3e <- aov(log(breaks) ~ tension * wool, warpbreaks))
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Df Sum Sq Mean Sq F value Pr(>F)

tension 2 2.1762 1.08808 7.7792 0.001185

wool 1 0.3125 0.31253 2.2344 0.141511

tension:wool 2 0.9131 0.45657 3.2642 0.046863

Residuals 48 6.7138 0.13987

provides a p-value just under 5% for the interaction term. If we chose to strictly follow the 5%
significance level we would keep the interaction term and, hence, each of the main effects.

Box and Cox noted that frequently the transformation that produces a stable variance also
produces a simpler model form. In fact, we found that on the reciprocal scale the model can be
reduced to two coefficients, the intercept and a linear term in tension. On the logarithmic scale it
may not be possible to simplify to that extent.

6.2 Verbatim notes from Brittany Schwefel

Check Gauss-Markov assumptions on error vector using graphical and numerical methods.

• E(ε) = 0

• V ar(ε) = σ2In

• ε ∼ N(0, σ2In)

For large sample size, the Central Limit Theorem applies.

6.3 Residuals

Regression function is linear, but with following possible violations

• Error terms do not have constant variance

• Outliers

• Error terms are not normally distributed

Plots to check:

• Residuals vs. Predictor Variables

• |Residuals| vs. Predictor Variables

• Residuals vs. Time (Or person collecting data, other systematic ways of collecting data, etc.)

• Residuals vs. Omitted predictor variables

• Boxplots of residuals

How to deal with violation of residual plot
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• Weighted least squares

• Transformation of variables (response or predictors)

• Changing linear model

QQ-plots - Deviation

Are errors independent?

• Sequence plot - pattern

• Residuals vs. predictor

Omission of Important Predictor Variables - Residuals against variables omitted from model
- Does not mean that the model is wrong, it can just be improved

6.3.1 Added Variable (Partial Regression Plots)

Ŷ (X1) = β̂0 + β̂1X1

ε̂(Y |X1) = Y − Ŷ (X1)

X̂2(X1) = β̂∗0 + β̂∗1X1

ε̂(X2|X1) = X2 − X̂2(X1)

Would reveal whether we need X2 in the model. X2 would show pattern for the residuals Y ∼ X1

vs X2 ∼ X1. If there is a pattern, we must transform X2
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6.3.2 Overfitting

Overfitting - using too many parameters

Y = Xβ + ε Xj = jthvariable X(j)design matrix without jth variable

Examine Y ∼ X(j)β̂(j) vs. Xj ∼ β(j)X(j)

Y = X(j)β(j) + βjXj + ε

H(j) = X(j)(X
′
(j)X(j))

−1X ′(j)

[I −H(j)]Y = [I −H(j)]X(j)β(j) + [I −H(j)]βjXj ⇒ Residuals forX(j) = Y −X(j)β(j)

[I −H(j)]Xjβj = Xj −X(j)(X
′
(j)X(j))

−1X ′(j)Xj = Xj −X(j)β(j)

The slope of added variable plot is value for βj

6.4 Outliers and Influential Points

1. Regression outliers ⇒ unusual Y values

2. High leverage points ⇒ unusual X values

3. Influential points - affect fit of data

Are outliers due to data collection or data entry?

6.4.1 Leverages

P = H = X(X ′X)−1X ′ Projection Matrix

hii → leverage for the ith data point

Yi = β0 + β1Xi1 + . . . βpXip + εi i = 1, . . . , n

= α+ β1(Xi1 − X̄1) + · · ·+ βp(Xip − X̄p) + εi

X̄j =

∑
Xij

n
α = β0 + β1X̄1 + · · ·+ βpX̄p
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Y =
[
1 . . . Xc

]

α
β1
...
βc

+ ε βc =
[
β1 . . . βp

]′

Proof.

X =

1 X11 . . . X1p
...

...
...

...
1 Xn1 . . . Xnp

 Xc = (I − 1

n
J)

X11 . . . X1p
...

...
...

Xn1 . . . Xnp

 J =

1 . . . 1
...

...
...

1 . . . 1


Hc = Xc(X

′
cXc)

−1X ′C Ŷ − Ȳj +Xc(X
′
cXc)

−1X ′cY = [
1

n
J +Hc]Y

Theorem 10. X is a n x (p+1) of rank(p+ 1) < n. X[, 1] = j. Then hij of H = X(XTX)−1XT

has the following properties:

1.
1

n
≤ hii ≤ 1 i = 1, . . . , n

2.

−1

2
≤ hij ≤

1

2
∀ i 6= j

3.

hii =
1

n
+ (X1i − Z)′(X ′cXc)

−1(X1i − Z)

ith row - X1i = (X1i . . . Xip)
′ with covariate vector for the ith data point Z = (X̄1 . . . X̄p)

Proof. Part 1: H =
1

n
J +Xc(X

′
cXc)

−1X ′c where Xc(X
′
cXc)

−1X ′c is positive definite

min(hii) =
1

n
H = H2 hii = h′ihi = (hi1 . . . hin)

hi1...
hin

 =
n∑
j=1

h2ij

hii = h2ii +
∑
j 6=i

h2ij ⇒ 1 = hii +
∑
j 6=i

h2ij
hii
≥ 0

Proof. Part 2: hii = h2ii + h2ij +
∑
r 6=i,j

h2ir ⇒ hii − h2ir ≤ h2ij hii − h2ir max when hii =
1

2
⇒

h2ij ≤
1

4
⇒ hij ∈ [−.5, .5]

Proof. Read off ith diagonal of H from Xc(X
′
cXc)

−1X ′c
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6.5 Types of Residuals

1. Regular ε̂i = Yi − Ŷi

2. Internally standardized residuals ri =
ε̂i

σ̂
√

1− hii
V ar(β̂) = σ2(XTX)−1

3. Externally standardized residuals ri =
ε̂i

σ̂(i)
√

1− hii
where (i) represents the estimate with

the ith entry deleted

4. Deleted/Jackknife Residuals
Y(i) − Ŷ(i)

σ̂(i)
√

1 +X ′i(X
′
(i)X(i))−1Xi

whereX(i) is the design matrix with-

out the ith row and Xi is the ith row of the design matrix

Ŷ(i) : obtained by estimating β̂ based on 1,..., i-1, i+1, ..., n data points

V ar(Yi − Ŷi) = V ar(Yi) + V ar(Ŷ(i))

= σ2 +X ′iV ar(β̂(i))Xi

= σ2(1 +X ′i(X
′
(i)X(i))

−1Xi)

ε̂(i) = Yi −Xiβ̂(i)

Theorem 11.

β̂(i) = β̂ − ε̂i
1−Xii

(X ′X)−1Xi

β̂(i) obtained by excluding the ith observation

Proof. 1. Show that X ′X = X ′(i)X(i) +XiX
′
i.

2. Show that X ′Y = X ′(i)Y(i) +XiYi.

3. Show that (X ′X)−1X ′(i)Y(i) = β̂ − (X ′X)−1XiYi

4. β̂(i) = ((X ′X)−1 +
(X ′X)−1XiX

′
i(X

′X)−1

1− hii
)(X ′(i)Y(i))

Hint: if B is nonsingular, square matrix, and c is vector, [B −CC ′]−1 = B−1 +
B−1CC ′B−1

1− C ′B−1C

5. Put 3 and 4 together to obtain the result



6.5. TYPES OF RESIDUALS 99

ε̂(i) =
εi

1− hii

Proof.

ε̂(i) = Yi −Xiβ̂(i) = Yi −X ′i[β̂ −
ε̂i

1− hii
(X ′X)−1Xi]

= Yi −Xiβ̂ +
X ′i ε̂i(X

′X)−1Xi

1− hii

= Yi − Ŷi +
ε̂i

1− hii
X ′i(X

′X)−1Xi

= ε̂i +
εihii

1− hii

Show that
ε̂i

ε̂(i)
√

1− hii
=

ε̂(i)√
ˆV ar(ε̂(i))

where
√

ˆV ar(ε̂(i)) = σ̂(i)
√

1 +X ′i(X
′
(i)X(i))−1Xi

V ar(ε̂(i)) = V ar(
ε̂

1− hii
) =

1

(1− hii)2
V ar(ε̂i) =

σ2(1− hii)
(1− hii)2

=
σ2

1− hii
which is estimated by

σ2(i)

1− hii

ε̂(i)√
ˆV ar(ε̂(i))

=
ε̂i

1− hii

√
1− hii
σ̂(i)

=
ε̂i

σ̂(i)
√

1− hii

6.5.1 Hypothesis Testing with Residuals

H0 : ith data point (externally studentized residual) not an outlier
HA : not so

ε̂i

ˆσ(i)
√

1− hii
∼ tn−p−1,α/(2n) = t(n−1)−p

(n− p)σ̂2

σ2
∼ χ2

n−p
(n− p)σ̂2(i)

σ2
∼ χ2

n−p−1

High leverage point >
2p

n

6.5.2 Residuals in R

• Regular residuals: residuals(mod1)

• Internally standardized residuals: rstandard(mod1)
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• Externally studentized residuals: rstudent(mod1)

• Leverage values: hatvalues(mod1)

• Cook’s Distance: cooks.distance(mod1)

6.6 Cook’s Distance

Di :=
(β̂ − β̂(i))

′X ′X(β̂ − β̂(i))

pσ̂2
=

n∑
j=1

(Ŷj − Ŷj(i))2

pσ2

If ri :=
ε̂i

σ̂
√

1− hii
, then Cook’s Distance =

r2i
p

(
hii

1− hii
). Di is an abnormal value if Di >

4

n− p

6.7 Box Cox Transformation

Y - original response

Y (λ) =


Y λ − 1

λ
if λ 6= 0

log(y) if λ = 0

then the resulting Y is normally distributed. Y (λ) ∼ N(Xβ, σ2I). λ is unknown. Found
through likelihood and maximization.

f(Yi, Xi, i = 1, . . . , n|λ, β0, β1, σ2) =
n∏
i=1

1√
2πσ2

exp{ −1

2σ2
(Yi(λ)− β0 − β1Xi)}

Maximize λ, β0, β1, σ
2
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