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1. Introduction and Summary
Let {X(t), t=...-1,0,1, ...} LbeapP? dimensional zero mean stationary

Gaussian time series,

/ X, ()

X(t) =) X, (%)
Xp(t)
we let R(t) = E X(t) X'(t+1), where R(t) ={Rij(1), i,j =1, 2, ... P}, and
o . P o0
Flw) = L e T R(t). It is assumed that z Z 1] |R.s(1)} < =,
o . b 4 ij
T==t 1,951 1=-o

and hence F(w) exists and the elements possess bounded derivatives. It is
further assumed that F(w) is strictly positive definite, all w. Knowledge
of F{w) serves to specify the process.

X

F(w), and §, the covariance matrix of x = , a kormal (0,5) random

¥
;P

vector are known to enjoy many analogous properties. (See [7].) To cite two

examples, the hypothesis that Xi(s) is independent of Xj(t) for 1 # 7 =

1,2, ... P, any s, t, is equivalent to the hypothesis that Flw) 1s diagonal,

all w, while the hypothesis that x. is independent of xj,lfor i#gj=1,2, ... P

is equivalent to tne hypothesis that & is diaponal. The conditional expectation

of x., gilven Xy eor Xp 1S

1
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X = g . =z | emmem e~

L(xllxz, oo %) = Sy, Sop , S 5==z
The corresponding regression problem for stationary Gausslan time series goes as
follows. If

E{Xl(t) | X,(s)s - Xp(s), s = ... -1, 0, 1, ...}

P oo
=) 1 bj(t-s) Xj(s)

j:2 gE—w

then B{w}), defined by

o

= - iws
B(w) = (By(w)> +-o Bpluwd) Bi(w) = Sz_m bi(s) e
satisfies |
£fo.{w)' F.(w)
B(w) = Fy (w) p;%(w), Flo) = | aity oot 22

?;1?571"?;5?&5
|

It is interesting to ask how well thcse and similar analogles carry over
to sampling theory and hypothesis testing. Goodman [3) gave a heuristic
argument to support the conclusion that %(mk), a suitably formed estimate of the
spectral density matrix F(wk) has the complex Wishart distribution. The question
is met here by the féllowing results. Firstly if %(ml), £ =1, 2, ... M
are estimates of the spectral density matrix, each consisting of averages of
{2n+l) periodograms based on a record of length T, with the wy equally spaced
and (2n+1)M :_%3 then it is possible to construct, on the same sample space as
X(t), M independent complex Wishart matricesti(mn), g = 1, 2, ... M such that
{%(mg), g4 =1, 2, ... M} converge simultaneously in mean square to
{i(ml), g =1, 2, ... M}, as n,M get large. Secondly, it is legitimate to use
the natural analopies from multivariate analysis to test hypotheses about time

series. One example 1s presented, as follows. The likelihood ratio test



b Lio
e oAn L.

A
where zij = E X, X%. {F(“p)}’ the sample spectral density matrices described
: . N
above based on a record of length T, are each of the form F(mg) = T-X 0 X'
where Q is a T x T circulant matrix with largest eigenvalue = T = % < .<T.
o (2nt1)

We define circulant matrices zij which approximate zij‘ and a random matrix X

on the sample space of X,

% K1), e XD
V)_(,: .. =
Xy t§2(l?, tﬁz(T)
with E Xi‘ﬁé = zij' The 2 T eigenvalues of the block circulant matrix
; L;ll (,Zl?
ot ;01 ;22

will be the 2 T eigenvalues of the T matrices {F(Z%l), j =1, 2, «un T}. The
- . . N 1w Ny
distribution of random matrices of the form-? X Q X' where Q is any circulant matrix a
relatively simple to investigate duc to the fact that all circulant matrices
commute, and their eigenvalues may be exhibited as simple functions of the
elements. Circulant cuadratic forms in random vectors with circulant covariance
matrices are well knowi in the literature, (See [1] and references cited there).
U1 Vo I P .
==X QX and Fy o= F ¥ O X' where Q is now any T x T (real or

,Q T 2 Q T

complex) quadratic form with largest absolute eigenvalue < gq. The main Theorem
<
allows the replacement of X by X in the analysis, and is, tnat under the

Let FX

assumptions on F(w) and R(z), for any T,

- r - s fet ¢
(1.1) ETr (Ty o= T% ) Ty~ o) <° %T

where ¢ is a constant depending only on Flw) and R(t). A lemma, esuventially

allowing the replacement of F(w) by a suitably chosen step-function, together



Since

2niv
1 T T {r-s-7)
5 z%-e =1 = (r-s) + 2T, £=0,%+1,+2, .-r;
V=
=0 otherwise ,
we have
*
(2nWD W1, o= g > r-s20
:qT_I(r_S)I, r -s<0

2ny

Remarks. Q Hermitian=%>K(—ir~ is real for all integers V,

Q real - K(?—%!) - K*(?ﬂ%ﬂ).

In the sequel we shall call @ the circulant matrix generated by
K(w).

lemma 2. Let R(t), Tt = ... -1, O, 1, be a doubly infinite

sequence of real numbers with

oo

Tl IR0

T=w00

g <o

il

’

let ()

L i ‘r'{('c)e-j'mT
21

T==00

and for fixed T, let Df be the T X T diagonel matrix with r,r-th entry

f(?-T’-‘-r—). et W be as in Lemma 1, and let

Lad Eard *
Z = {qu, “’ Vv = l, 2, seey T] = 2JtWDfW

= =1 2 "o =R - .
z » &) » T} qu (n-v)

{qu: Py V
For any matrices of the same dimensions, define

¢ (A-B) = Ev 2l A= eyl B =)



where W is the unitary matrix defined in iemma 1 and Dij ig the T X T

. . 2nr . 2nry _ 2n(T-r)
diagonal matrix with r,r-th entry fij( T Y. Since fii( T ) = fii( 7 )
2nry _ en(T-r), _ * 2 - S
and fij( =) = fij( 7 ) = fji( =) the 27 X 2T matrix Z given by

~ (%1 5
221 222

is real symmetric. It is readlly verified that upper and lower bounds for
the eigenvalues of % are given by A = max A(w) and A = min A(w) where
i w B

aw) and A(w) are the smallest and largest eigenvelues of F(w).

lemma 3. Let (Xl:XE) be a 2T dimensional zero mean Gaussian
random vector with covariance matrix £ adefined by (3.2). Let K(w)
pe & real function of @ defined on [0,2x] and let Q be the TXT
Hermitian circulant matrix generated by K(w). Let X be the 2 X T
~ i}_ \'

matrix X =1{ +*! . Then the random matrix

~

%

R X
FX = 7 X
is distributed as the random matrix
T
21 ¥ 2nr

where, for each T, zr is a 2 dimensional complex normal. [3] random
(column) vector with complex covariance

¥*3 2
E 2t T ¥ ;r), r=1,2, ..., T

with z_ = z* end z and z  independent for s £4r or T-r.
T T-r T 8
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j0+n
_ .1 2nr _
Flug) = f:'r,n(“o) " 2n+l E F(5)s wp = %
r=j,-n :

QHjO

Let », A defined above satisfy 0 < A <A<, and suppose
2 ® A .
z Z | ] ]Ri.('r)| = § <o, Then it is possible to construct an F(wo)
i,j=1 1=- 3 -
on the same sample space as Fg T

7 3

(mo) so that

(3.5) B or(Fy g (00) - Flug)) (B g () - Flug)"
<6 A 62 (2n+1)

Proof. From ILemma 3 and (3.4)

+n

~ l 'S |
FX,T,n(“’o) = 2oL L %

1 1/2,2nr ¥ _1/2.,2n0r
~FaT L it (5L, 7t/ =)

.1/

where the {gr =F (2_11,1;

T

*T .
vectors with complex covariance E grgr = IEXD' (Here, as in the sequel,

)zr} are independent complex normal random

. 2, s .
for A Hermitian or symmetric, Al/ is the Hermitian or symmetric square root).

Hence
. R ' L Jo+n
Fg m,n(%) ~ F(9o) + 5T L o
r=j.-n
0
where
} j +n
)
N G 1 _1/2 *1] _1/2
(3.6) Flog) =zp F7(wg) | . B8 ) E (wg) ~ W (E(w,),2,20%1)
r=j.~n
0
and

6, = PM2EEye ¢t FREE) - 2ot ek F3(a)
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%t z 3
Using the facts that E Tr Ger = Tr(FO—Eﬂ) - F(m ))(F(—E—J - F(m ),

“

j0+n j0+n
e ] I (P - Be)) (MER) - Dlu)*' = 0
2 - =3 - - 1
(2n+l1) r=j -p s3j,-n
j0+n
1w T 3D - Be)EEE) - P
(2n+1)2 r=j,-n
gives the Inequality
j - : +
Joz-i-n 1 JO‘;—..H \l*' 1 jzn ( .*t)
(3.7) E Tr 5= clle==r ¥ 6 <z= LTr(G G ) -
2n+l r=J5-n r| | 2n+l r=j " r) @n+LFr=j -n r T
Observe now that
9 .
an
o(F3ED) - Fle)) < max D1 G - £ ()
T om(§,-nM/T e < 2n(§an)/T 4,51 1
<8 nggil , Since, for ]w - ng-£| < 2r 532}51 ,
o (2ﬂir - )T ( -
T 2n+l)
2, G- 2 ol s 5 T IRg4()] Ta-e | <352 T Jelirg (ol
T==c0 T==o2

Lemma A.4 of the appendix then yields the inequality

(3.8) Tr(G G ) < [max eigenvalue . EE. ]2'A(2n+l)292*(“g i )2 A 2n+l)2 92

Observing that Engl\LL = 6, and putting together (3.7) and (3.8) gives the

result.

4. Asymptotic Behavior of Ouadratic Forms in Stationary Gaussian Processes.

We first prove a lemma which puts a bound on the mean squere difference
between a general quadratic form in a normel vector Y and the same

guadratic form in ?, a normal random vector approximating Y.
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lemma 5. Let Y ~ n(0,5), let A be any (real or complex} quadratic
£ orm with q2 the largest eigenvalue of AA*'. Iet S be a symmetric
positive definite matrix of the same dimensions as S, let @(S-g) < 6, and
let A and A be common upper and lower bounds for the eigenvalues of S
and 5, 0<A<A<w. Let if:YS'l'/2 592 men
IE

2.2

(4.1) E|YAY® - YAV <(1+2 %)q e .

Proof.

lyay:- $a%1|° = |¥(A- g-1/2g1/2 ) gl/2g-1/2yy, 2

letting H =A - S-l/2§l/2A_§l/ES-l/d, we have, using the relations

b etween 4th order mixed moments of Gaussian random variables

(4.2) glym+|? = (Tr BS)Z + 2 Tr HEH'S ,
(4.3) (Tr HS)2 = (Tr A(S-g))2 < [1argest absolute entry of A X cp(S-g)]2
< q292 )

~ ~ ! - - ~ ~ -
(h.4) T HSH'S = Tr(a-s" /282, 325 Y25 (s s 1/2g1/2 , g1/25-1/2y g
. Tr(Sl/aA SJh/a__nsal/aA 'S-'l/e)(sl/E’A gl/2 gl/EA §1/2), .

Using Lemma A.4 of the appendix on the right-hend side of (4.4) yields the

inequality

(4.5) - Tr HSH'S 5% e .

Combining (4.2), (4.3) and (4.5) gives the result.
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Theorem 1. Let X(t), t = ... -1, 0, 1, ..; be a two dimensional
stationary zero mean Gaﬁssian stochastic process possessing a spectral
density metrix F(w). Suppose:

1. O < A < eigenvalues of F(w) <A <o ;

2 co
2. b 5 |t R (1) =6<=.
A -
i,j=1 1=~

For each T, let X be defined as in Section 1. Let X and X

J ij

it
Il

be T-dimensional zero mean Gaussian (row) vectors with E X!
i

X
1, j = 1, 2, defined in (3.1), let X = &} and let Q be any T X T

%

quadratic form with largest absclute eigenvalue < q.
Iet

i h 4
Fyq =1 X

and

~

e
Fﬁ:Q =T X .

Then for each T, it is possible to cons truct an X independent of

Q@ on the sample space of X such that

2
-~ /\~ ~ _/\N * 1 é &— 2
(4.6) E Tr(FX,Q-FX’Q)(FX,Q FX,Q) < h(1+2 h)(TE)(ee) .
Proof. Let
. (211 210
=| ,
E21 2o

where the zij are as in Section 1. It follows, by application of an

argument directly enalogous to [u#], p- 6k, that the eigenvalues of % are

bounded sbove and below by A and A.



=

Iet the 2T dimensional vector (il:§2) be given by

¥ .5 - ) -1/2 ~1/2
(xl.xg) = (xlfxg)z / b / s

?

then E X'% =% . Applying Lemma 2 to each of the blocks Z,, - Z.., of
14 1J id iJ

2 eo
o8 <2 Y ¥ ldl IRyl =26 .

1,J=1 T==c

Now

~ vy

& Tr(Fy oFx o) (Fx,o7%,0)

2

l . ~ ~ ~. 2
= —=F X : - : :
=z 1,%:1 | (xp:Xp)0 5 (X, 180" = (g %y )ay (X %) |

where Qij is the 2T X 2T metrix with Q in the i,j-th block (of dimension
T X T) and zeroes elsewhere; with the largest eigenvalue of QijQﬁ% < q2.
Applying Lemma 5 with Y = (Xl:XQ)’ € = L and S =% gives the resuit.

An application of this theorem will allow us to show that M sample spectral

densitv matrices, calculated at M appropriately spaced frequencies converge

jointly in mean square to M independent complex Wishart matrices, even

, - =1 ' = the
though M be large. Let FX,T,n(mi)’ = F X QT,n(mE) X', £ =1, 2, ... M be the
sample spectral density matrices formed from the average of ?n+l periodograms
27
e

centered at w, = T where the jg ape chosen so that the M sets of integers
1,

+ 2, «.. % nt, £ =1, 2, ... M, are disjeint, and

£
{3, +3,3=0, ¢ +
Qﬁ(ﬁg—n) 2ﬂ(j2+n)

0 < T < 7 < m. We have necessarily (2n+l) M :_%u

- ot

- w1 [
1t will be convenient to define X, a 2x T random matrix by Z = XW, where the

th v e .
r~ column 2 of 2 is given by



i he

~1/2,2 | L))

v 1/2 . .
(4.7) zr= /(m)l‘ (T)z’]l_rliriji',’r“'wz:—"f_'
[ ] ‘e l
z = 2% s=T-1r
s r
Lt .
z = 2 ' - otherwise
r r
jorm
. - 1 2nr . v .
with Eﬂmi) = EEY ]Z F(—TFJ, and z, defined from X as in the proof
2

of Lemma 3. Then Py (w ) = T-X QT (m ) X' for each & = 1, 2, ... M are

XT,n

constructed exactly as the F(mo) of (3.6) and, by Lemmas 3 and 4 are a set
.of independent Wc(fﬁml), 2, 2n+l) random matrices.

We have the following

Corollary 1 Under the conditions of the theorem, { X,T, n(wg) L =1, 2, ... M},

where w, are chosen as above, jointly converge in mean square to M independent

wc(ffwz), 2, 2n+l) matrices, as n, M, T + =, provided only that log2 M <n,

More precisely, let {Px T n(mz) be the M independent complex Wishart matrices

defined above. Then

M
4.8) E T - £ F - ¥ TPLA
( ‘ R-z-:l r (FX,T,H(NQ) PgaTan(wﬂ))(FX,Tsn(wg—)' FxsTgn(wz))}
log, M
5(121"-9?—) ntlM  op v 2y 2% Lo
T2 (2n+l)2

Proof. Using lemma A.l, the left hand side of (4.8) is less than

M

(h.9) (2 221 E Tr (FX T’n(mﬂ) - F;gT (wz))(TX’T,n(wz) - F;‘E',T,n(%))*')

M
+(2 J ETr (FX Ton (w,) - F§ 1 n(m ))(FwT n( ) - rm‘ rwp))*')

2=1 x,T
0? (2 1t )Dl

By lemma 4, the second term in (%.39) is bounded by 12 = T
T2
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To bound the first term, let Q = QT,n(Sl’ By een “M) = pzi S (“g)
Then
M ~ l “n vl
- [ - ' 1
(4.10) ﬂzl s (rx 7 n( 2) FX,Tﬁn(wR)) X QX X QX").
. \ . ?n+l .
Since, by the choice of w,, 5 (= QT n( Y, ¢ =1, 2, ... Mlare a family of

orthogonal projections, the largest eigenvalue of 00% is equal to

max ISZIZ (2 Y2. Applying Theorem 1 to (4.10) then gives

; n+l
MM A . R
(4.22)  J ] s, 5 ETe(Fy g (o) - Py p a(we) ) (Fy g ole) - FQ'T (w,))

p=1 k=1

< u1 + 2H20)2 —2— max |s |2

(2n+1)2 [

Now let A be the (non-negative definite) M x M matrix with gkth element

3 - T - _.Am P
ay, given by a,, = E IrlFy o (w)) Fx .0l N(E, rnlo) = FE o oatey))

k4

Using Lemma A.5, we see that (4.11) implies that

M

= . - Am - - A"” s
Tr A R’)-:l C TI‘(F ,n(tul) FX,T,n(wg))(FK,T,n(wz) FX._.T,H(m!L)) =

log, M

11+ 5Ly (20)2
(2n+1)?2

Let {R(1) = %-X UT X', 1=0,1, 2, ... L < T} be the sample circularized
autocorrelation matrices, where UT is the symmetric circulant matrix with %
down the T-th and T - tth diagonal and zeroes elsewhcre on and above diagonal
{with U = I). As is well known (and obvious from Lemma 3},
{R(T) "-X U X‘, £ =0, 1,2, ... L} are jointly distributed as the L

random malrices
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L
T

1
1 %
z :os(—qu) 2 t=1, 2, ... b
s % %

where zr z z% o zP and zs are independent, for s # ror T -7, complex
. ot 27
normal vectors with & 2 Z%° = FL—~—) We have

Corollary 2

P Te (R() - REONR(TD) - BN <L +2 1) (203 2, T=0, 1,2, oo L
T

5, Applications To Hypothesis Testing For Stationary Time Series.

A

Supposc we observed a 2 x T random matrix distributed as X. Recall that

X is an approximation to the random matrix X, which is a record of length T
of the process X(t) where the approximation proceeded in two steps, first by

circularizing X to get ?: and then by replacing F(w) by Flw) = Ejmﬂ) for

anz—n 2nj2+n

<w < — (Here we let the union of the intervais

anm-n 2nj2+n - T
{L . 1} cover the points {—El , =1, 2, ... [z1}). The hypothesis
T T T ?

s

that the 2 rows of X are independent is equivalent to the hypothesis that

Flw) is diaponal, all w, which represents an approximation to the hypothesis
that the two time series Xl(t) and Xz(s) are independent, i.e. |f12(m)|2 =0

all w. Considering ﬁi the iikelihood ratio statistic for the hypothesis

F(w) = diagonal, all w may be readily gotten by examining the well known results

(2] in the analogous situation of testing for the diagonality of the covariance

matrix of a (real) normal random vector. It is

[F? Tt (m )l -1
L E ) £, (mJ

Ha=

A 1
- é‘.{(wg)ﬂﬂ

||== =

L

56>



where

~

= s (w )

Ile(w£)|2 .
2 , {F e )Y s o o R ‘
wi] & i,j =1, ¢ X, T,u ¢

g(wg) =

-Ell( wg,) }:22(052)

This suggests using » to test the hypothesis of independence Xl(t) and X?(s),

where
Y
M - M
= -
A Egl (1 d(mg)ﬂ >
l%.(w )|?
- _ 12°7¢ -
W(ml) = = ~ s {fij(”g)} i9=1,2 FX,T,n(mz)

fll(wst) fzz(wg)

Under the null hypothesis, g(mk), k=1, 2, ... ¥ are distributed as M
independent 8, random variables, hence Var -2n/ﬁ'log:% = 1, and under
the alternmative, for large M, n, Var - /o M log é' + constant. (See [3] for
the density of.g(mk)).

' We have the following

log. M
-+ 0

Corollary 3. As n, M, T » », in such a way that

E | /o1 (log } = 1log Ay | -0

If [fy,(w)] 2 0, then
E | n /™ (log A - log A | » 0

Proof.

. 1 1
Using the fact that | Loz (1-u) - log (1-v)} < |u-v| lm + ml For
0 < u, v« 1, and rewriting }j(m?) - W(u;l) in terms of the entrics of

~ ":: £l 1 A _ A-:_‘"’ N b s
Fx,T,n(wQ)’ FX,T,n(‘“ﬂ,) ¢ (rX,T,n(mR) IX,T,n(wz))’ we ‘ay obtain
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M - .
E ¥YnM |logé\' - log Al f-j% gzl £ |log(l - &«w(“’z)) - log{l - w(wg)|

M 2 R : -~
<[5V Elale,) (] |£.:C0,) = Foolw,)])]
-/ ¥ 951 g/ i1 zij 4 ijroeft
¥ 1/2
(5.1} < const % ) [E gz(mg)]
. g=1
B (P () = P )(Fy o () = TF g (wy))E 1t
. X,T,0t%8 IR N REALH S AN X,T,n %

where E gz(wz) is bounded by a constant depending only on M{w). Observe that
an inequality of the type (5.1) applies to a fairly general class of A's

~

formed from products of functions of F (w,). This results in
X, T,n" ¢

E /o ¥ [log A - log A

e
=

~

s Tr(F g F T 2172
< const n [ E Tr{F (mﬂ,) - FX,T,n(wﬂ.))(F (N}L) FX,T,II(MQ)) ]

$l [~

X,T,n X, T,n

2=1
log,. H

. . A .-
which, by Corollary 1 is less than coust /n ( 2 ~ 4 M(on+1)
(2n+1)? T2

)1/2

-+ 0 as

log2 M

M, n -+« in such a way that + 0.

When the null hypothesis is true, ]‘fl?(mg)l + fl"(mf')l may be factored

out of g(wp) to get an expression of the form
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En /M |lop é - log A

M

1/4 p - 1/4
< constant 7“__}; 121 (E h”(mz)) (E Iglz(‘”g)lu + E [flz(wg)lq) x
(B Tr(Fy g ,(ug) - P p e ) (Fy g n{0g) = FE g nleg))*]

where Lk h”(mg) is bounded by a constant depending only on F(w}. Using the
facts that £12(m£) and le(mﬂ,) are quadratic forms in normal random variables,
and for such quadratic forms t, E t* < ¢ (E t2)?, where c is a universal

constant, and under the null hypothesis, E lle(wﬂ,)lz and E Iﬁlz(wzﬂz are

bounded by a constant * q—%—— , the result is
Z2n+l
En/ﬁ|log3\.-logﬂ
log, M
< constant - n 73 2 M(2n+1) )1/2 + 0.
(2n+1) (2n+1)? T2
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Appendix

In Lemmas A.1-A.3, A and B are strictly positive definite
matrices, U, Ui and V are any square matrices, and ?\.Z, A'Z are the
smallest and largest eigenvalues of the matrix Z. The fact that

ATr B<Tr AB<ATRB is repeatedly used.

A A
Lemma A.l
N N g% N,
hZU) (Z U] < NTr(Z AN B
Fro R I F =T j=1
Proof.
Tr U U = Tr U0
{j=l 3) (3=1 J S Ok
N N
l *t 1
< Tr jgl kgl (U U+ 0,0, )
. {i R
- NTr vy, | .
& 01
Lemmg A.2
Tr(A-B)° < 1 . pr(a-5%)° .
(Mg i0g)
Proof.
(hyhg) Tr(a-B)® < mr(a-B)?(a+B) = Tr(a-B)(A+)(A-B)

(\,#ag) Tx(8-B)(a+B)(A-B) < Tr(A-B)(A+B)(A-B)(A+B)

giving

(?\.A+);B)2 Tr(A-B)2 < Tr(A-B)(A+B)(A-B)(A+B) .
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Tr(A-B) (A+B) (A-B) (A+B) = Tr(a2-BA+AB-B°) (A2-BA+AB-B°)
- mead - a%pa + A7B - A%BF . RAD + BABA - BAAB + BAB® + ABA
- ARBA + ABAB - ABD - BoA° + 594 - 2B + 31

Ik

Tr[A -ll-BA +2BABA+B]

Now,
Tr BABA < Tr A°EC
hence
rr[ak 452a%+ opaBA + BH) < Te[at- 2 Tr A%B° +%) = (A 8202 .

Combining these last inequalities gives the lemma. It is easy to

see that equality is obteined for A =al, B = bl.

Iemma A.5
Tr(U-v)(U-v)*' < [cp(U—V')]2
Proof.
2 2
U U WD W O L [): o vl B = Lo @NI°

B,V

Lemma A4 Let A be any (réal or complex) quadratic form with q?
the largest elgenvalue of AA*'. Iet S, S be strictly positive (real or
complex) matrices of the same dimension as A and let O <A <A<e be
common lower and upper bounds for the eigenvalues of & and E, and suppose

9(8-9}, defined in Lemma 2 satisfies o(s-5) < 6. Then

Tr(sl/EASl/E_ Sl/2 AS]./E) (Sl/EASl/E__ Sl/2ASl/2)*' <z a6 .

Proof.
Tr(sl/EASl/E_gl/z‘Agl/E ) (Sl/EASl/E‘_gl/eAgl/E y*

- re[(sY/2 Y2y psl/2 gl/EA(Sl/E_gl/E)][(Sl/a_g]_/g)AS]_/z+g1/2A(Sl/2-,S..l/2)]*
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which by Lemms A.l1 is less than

> msl/zfs“l/e)(sl/i’..gl/a)*' (asa™ ' +a82" )

1~ ~
< uqu Tr(sl,2_81/2)(81/2_81/2)*'

lemmas A.2 and A.3 give

TI‘(S]'/E-EL/E ) (511/2_51/2 )*'

L ey oL w2 _ 1 2
< 5 Tr(8-8)(s-5) Spie(s-9)1" =1 e

which gives the result.

Lemma A.5 Let A be a non-negative definite M x M matrix, and suppose it is
- 2 -
known that, for any s = (Sl’ Spy ve SM), s As' < mgx [szlz ¢?. Then, if

M= 2k for some k, Tr A < c?2. 1In general, Tr A < (logzM) cZ.

Proof. We use the fact, that if yl, yz, .o yM are any orthonormal set of

. . k '

M dimensional (row) vectors, then Tr A = Ly A yk ., IfM=2", for scme
k=1

integer k, then there exists a set of M orthonormal vectors, each of the

form yk = —-;_-: (y};, yz, y]:d) where y];, 2 =1, 2, ... Mis + 1. In this case,
M ' 2
the hypothesis gives yk A yk i%cr and Tr A € c?. 1In general, if
4 :

2k <M< 2k+l, write ¥ = Z 0. 2° where 8
v=0 v
v=0,1l, 2, +.. kel. Let 2 be the number of non-zero Bv's. An M x M

land9v=00rl,

orthogonal matrix can be constructed with % non-zero blocks down the diagonal,
th ’m \)m
the n- block of dimension 2 x2® m=1, 2, ... %, where Vv corresponds

to the mth non-zero Gv. In the mth block place an orthogonal matrix with

=+ 1. Now let

; 1
rows of the form 7;; (ul, Upy ees U vm) where u,

yl, yz, ... y be the rows of this matrix. If part of yk is contained in
' 2 v
the mJCh block, yk Ay < Cv , and there are 2 ™ such yk's. Hence
/ m
$ Vm 2
Tr A < ):2-_\-’_=9.c2_<_kc2_<_(log,2M)c2.
n=1 m

2
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