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Abstract

Let xl(t)g

be a P-dimensional zero-mean stationary Gaussian time series

possesing a spectral density matrix

Sl St
F(w) = {fij (w)}i,jzl

satisfying some mild regularity conditions. Let F(wg),
fim e By vz My F(wg)mffij(wl)} be suitably defined sample spectral
density matrices for M values of w, based on a record of length

T >> M. We consider the following (null) hypotheses

Hy: X, (t), X5 (s) independent if i # j, all s, t

H2: Xl(t) independent of Xj(s), 32 B, sse B, 811 5, &

Hy: X, (), X; (t+1) independent all t £ 0

Approximate likelihood ratio tests are derived and the test

statistics Ai, i =1, 2, 3 are found to be functions of the



{g(wﬁ)}f=l' The {g(wg)} are shown to converge in mean square

to a family of independent complex Wishart matrices. Using this
fact, log Al and log Az are shown to converge in first mean to
random variables whose null densities can be given explicitly,
being distributed as the logs of products of independent beta
random variables with integer indices. Under the null hypothesis
AB is distributed exactly as 5 where A, is Bartletts statistic
for homogeneity of variances. The distributions of log Ai'

i =1, 2, 3 under the alternative are discussed. Under the
alternative, log A3 tends in first mean to log 53. A power
series expansion for the characteristic function of log 5

under the alternative is given.
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1. Introduction

Let Xl(t)
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be a P-dimensional zero mean stationary Gaussian time series,
possesing a strictly positive definite spectral density matrix
F(w) satisfying regularity conditions to be stated. The observ-
ed data consists of a single record of length T.

In this note we consider asymptotic likelihood ratio tests
for the following three null hypotheses against the above general
alternative.

'Hl: Xi(t), Xj(s) independent if i # j, all s, t

H2: Xl(t) independent of Xj(s), 2y ewws Pgo8dl S5 B

H3: Xl(t), Xl(t+1) independent all 1 # 0 ("white noise").
These hypotheses are equivalently stated as

Hl: F(w) diagonal, all o
H2: flj(w) = 0, j = 2, .., P, all o

H3: fll(m) = constant




where

Flw) = {£; ()}, = (1.1)
Ll 5 -iwT |

lj(w) = o Tz_m e Rij(r) (1.2)

Rij(T) = E[Xi(t) Xj(t+'r)] (1. 3)

First observe that, in the case of H, and H values of

1 2
PT random variables are observed, where as the hypotheses involve
a countably infinite number of parameters. In fact, the number
of parameters involved in the joint density of X(t), t‘= 1y, 24 vue P ads
PT + (2T-~1) P(P-1)/2. To have the problem make sense, then we
must assume that some of the parameters are negligible. In this
paper we always assume
w P
Condition A ) .Z, |Rij(r)|[T[ =0 < ® (1.4)
T=-% j,j=1
This_condition insures that the entries fij(w) of the spectral

density matrix exist and have derivatives bounded by 6, and that
Afw) < A/2T1 < = (1.5a)
where A(w) is the largest eigenvalue of F(w). We also assume

Condition B Aw) > A/27 > 0 (1.5b)



where X (w) is the smallest eigenvalue of F(w). Condition B
guarantees that the process is non-degenerate.

Utilizing the assumption of boundedness of the derivatives
of the entries, we will approximate F(w) by a matrix of step
functions F(w) which involves a reduced number of parameters,
and then consider hypothesis tests involving F(w). This is done
as follows. Choose n, M and T integers satisfying (2n+1)M = (T-1)/2

(T is odd, without appreciable loss of generality). Let

jg = (2-1)(2n+l) + (n+1), £ =1, 2, ... M, let wy = 2ﬂj2/T and
define Fn,M,T(wQ) = F(wn) as
1 n
Flug) = 5= jz_n Flw,+273/T) , &=1,2, ... M (1.6)

Extend F(wll to a matrix F(w) of step functions on 0 < w < 27

by letting F be continuous from the left, say on 0 < w < m and

defined by
F(w) = ?(wg) all w 7 [m—w£| < min ]w—wjl, 0 < w<wm
iFL
F(w) = F*(2m-w) T<w< 2T (1.7)
F(0) = F(2m) = F(0)

Thus F(w) is a step function approximation to F(w) where the

"steps", except at the end, are of width 2w (2n+1/T) = w/M.



F(w) provides an approximation F(w) which is everywhere good to
an accuracy of at least 26(2n+l)/T and hence |F(w)-F(w)| tends
uniformly to 0 as M + », Next, let X be the P x T matrix of
random variables with i, s-th entry Xi(s), i=1; 24 «us P,

s =1, 2, ... T. For each n, M, we will define, on the same
sample space as X, a P x T matrix of normal, zero mean random
variables X = {gi(s) 1= L, 25 sns Py 82 T, 24 ssx TF which will
approximate X in a suitable sense, and whose joint density de-

pends only on the M matrices ﬁ(wg), £ =1, 2, ... M, Consider

the "approximate" hypotheses

H

1! F(w) diagonal 0 < w < 27 1

§2: flj(w) =0, =2, ... P, 0 <uw < 27 (18)

§3: fll(w) constant 0 < w < 2.

Where we have written F(w) = {fij(m), i, 7 % 1y 2; ws= P WHe
first find the likelihood ratio statistics Ai(§), i=11, 2, 3,

for H, . based on X. These statistics have well known analogues

in ordinary multivariate analysis. We discuss their distributions
in Section 7. The random matrix X is not observable, however,
since its construction involves unknown parameters. Let

Ai(x) be the same statistic calculated from the observations X.

_;J To avoid uninteresting difficulties which are negligible we

omit w = 0 here.



The major result, which renders Ai(X) useful is the following theorem.
Theorem 2. Suppose conditions A and B be satisfied, and
suppose n, M + « in such a way that (log M)/n - 0. Let

c;l = c;l(n,M) be the standard deviation of log XA, (X). Then

E c; |log X;(X) - log v >0, i =1, 2, 3. (1.9)

For Y = {Yi(s), 1= 1; 2; 2. Bp8=21; 2; s T} aP xT

matrix of random variables, define the sample spectral density

matrices F(w,,n,M,¥) = F(wﬂ,Y) as

L
Flw,,¥) = L€ (u,, ¥
L TRV A p,v=1
(1.10)
i 1 % 1 % is(m£+2ﬂj/T) —it(w£+2wj/T)
f? (w,,Y) = v —— Y (s)e Y (t)e

The sample spectral density matrices so defined correspond
to taking averages of 2n+l neighboring periodograms. The random

matrix X is defined to have the property that

{Flwg,X)}, 2=1,2, ... M



are a set of independent Complex Wishart distributed random
matrices. The Complex Wishart distribution, firsf introduced by
Goodman [4], has properties analoguous to the usual (real)
Wishart distribution and is described in Section 4. To obtain
Theorem 2, we use Theorem 1, of independent interest.
Theorem 1. Under conditions A and B,
M

. o 2 2 =
E T, ggl [(Flwy,X) = Flwg,X)1[(F(wy,X) - F(uw,X)]

= 0[(log M)/n?] (1.11)

Using the properties of the Complex Wishart distribution, it
will follow that the likelihood ratio statistics li(x) = Ai(X,n,M)

for Hi' i=1, 2, 3, are given by

Hy: Aq (X) m (1.12a)
~1T LR e
- M | F (0, ,X) | \ . - }P
Hth=TF = =
i Al = ~ rT22 ij’, .
2=1 | £, (0, ,X) |F22(w2,§)| } I i,5=2

(1.125)
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E (w X)\
L1200 5t )
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H

Hyt A5(X) =

~

fll(mn'§)>

= n 2 =

)

Each term in the product in Al(X) and Az(x) has a well
known real multivariate analogue, as follows. Suppose

X = (xl, Xog one xP) is a normal random vector with mean 0 and

A ~
covariance matrix S(Pxp)' and let S = {Sij} be the sample co-
variance matrix based on n in dependent observations on x.

Then the likelihood ratio statistic v, for Az S diagonal is

. ) (1.13. a)

3=l

and the likelihood ration statistic v, for A2: Sij 0 3 2. 3, ewe

is
[“[ 5 1oad 1 BaEn
v, = = ; S ={---- -—- (1.13.%)
. $1118,1 A i 6] '
\ 12'; 3. !
(See e.g. Anderson [1l]). This similarity is not surprising, since

F(w) and S share a number of theoretical properties [see [7]].
Under Al and Az,'these statistios are well known to be distributed
as products of independent Beta random variables, with, in general,

non-integer indices [1]; numerous authors [for example [3], [8])

have discussed methods for approximating the densities. 1In going

from the real to the complex case, we generally find




that the number of degrees of freedom is doubled, here, each
term in the product in (1.12a) and (1.12b) may be shown to be
distributed as the product of indpendent Beta random variables
with integer indices. A simple procedure is used to exhibit
the exact null moments and densities of log ll(§) and log A2(§),
and the asymtotic means and variances (large n) of log ll(g)

and log lz(g) under the alternative are given.

It is shown that k3(§) = &3 is distributed as Bartlett's
statistic for homogeneity of variances, with the appropriate
choices of degrees of freedom. This statistic has been dis-
cussed by numerous authors. Under the null hypothesis‘a is dis-

tributed (in general) as a product of independent Beta random

variables with non-integer indices. Wilks [11] gave the moments

of A;l under the alternative, Whittle [10] discussed A3 in the
context of H3 and gave the null characteristic function and
cumulants for log A, with n = 1. Very little seems to be known

~3
aboﬁt the form of the alternative density. The characteristic
function of log 5 under the alternative is here expressed as an
infinite weighted sum of characteristic functions. A nearby
alternative may be defined as one for which var fll(w)/[-f_ll(w)]2

"is small, where

L = 2
var fll(w) s é (fll(m) - fll) dw
_ 1 217 '
fll = o= S f(w) dw



For a -nearby alternative the first few terms in the expression
for the characteristic function of log A, should suffice.
An approximate expression for the first two moments of log A

for nearby alternatives is given.

2. Circulant Matrices

In this section we give two lemmas about circulant matrices
which will be used in the éequel. Lemma 2.1, which is well known,
shows that all circulant matrices commute, and exhibits the

eigenvalues in terms of the elements. Lemma 2.2 will be used

.

in approximating a Toeplitz matrix by a circulant matrix.

Lemma 2.1. Let C (circulant, real or complex) be of the form

S\ ™=
=
By \cl

.\\

i

P-1 .

“Let K(w) = f% z c.e le, let W be the T x T unitary matrix with
=0 ;

r, s—-th element QL‘eZNlrS/T and let DK be the T x T diagonal

YT

matrix with r, r-th element K(EE£) Then

*
C = 2WWDKW
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Proof.

. ,r-s
T 2mi(—=)v
o _2m T 21V
[21TWDKW ]r,S = —-T-- \)El e K(—.T__
1 T T-1 2w1(£%§)v __Zv;vr
=f e e CT
v=1 1=0
L T=1 el EilyN
_ T
=z 1l c. ] e .
=0 v=1
Since
1 T 2ﬁ;v (r-s-t)
= L e =1 1= (r-s) + T, 2=0,+1, +2, ...,
v=1
=0 otherwise,
we have
*
= - >
[2 WDKW }r,s cr—s' r s >0,
= cT—I(r-s)[' r - s < 0.
A 2TV . ;
Remarks. C Hermitian => K(—T-) is real for all integers v,

i 2TV, L ® 20 (P-y)
C real —>K(*—."Ir'") = K (—T—- Via

Lemma 2.2 Let R(t), T = ... -1, 0, 1, be a doubly infinite
sequence of real numbers with

o0

!t IR(D)] = 8 < =,

T==00



=1 7=
let

A 5%_ -1lwT

lt~18

R(T)e
T [ee]

and for fixed T, let De be the T x T diagonal matrix with r, r-th

entry f(z%E). Let W be as in Lemma 1, and let

*
I={o ,u,v=1l, 2, ..., T} = 2ﬁWDfW

u-\)' . 8w F T} Gu\) = R(U-\))-
Note that I and I, are (general) circulant and Toeplitz matrices,
respectively. For any matrices of the same dimensions, define

¢ (A=B) = la -b |, A={a }, B-= {bu }.

Y Tuv v

- [~

Then



3l

%y

Proof. By a calculation similar to that of Lemma 2.1,

oo

J R(u-v+LT)

H

==cc
T ~ T-1 ©
} lowowl o 2 @it 1T RGean |
H,v=l1 250
T=1 o
< ¥ (T-|t]) 7} IR (T+2T) |
T=-(T-1) f==-e
L#0
(o T-1 T-1 0 )
<T) ] I IRGeam |+ ] R+ | + ] |R(t-T) ]!
| A== =-(T-1) =0 == (T-1)
L 2#0,-1,+1
-1 T-1
+ ) (T=]t]) |[R(z+D)| + § (T-|T]) R(1-T)
T==(T=1) =1
T-1 %
£ 27 ] IrR(T)] + ) It IR(D)] < 2§ |t] |R(T)] = 26
|T|>T == (T-1) o™

Two random matrices approximating X

Let Xi, i=1l, 2, ... P be the i-th row of X, that is

Xi = (Xi(l)r Xi(z): e Xi(T))



o} B
Define the T x T matrices zij’ i, =1, 2, ... P by

E X} Xy =] (3x1)

3 ij
(Zij has u,vth  entry Rij(u-v).) Let ] be the PT x PT block Toeplitz
matrix with PxP blocks of dimension TxT, with Zij in the ij-th block.
Let Dij be the T x T diagonal matrix with r r-th element
fij(2ﬂr/T), i, =1, 2, ... P and define the T x T circulant

matrix Zij by

o~

o *
= 27 WDi.W (3.2)

ij j

Let J be the PT x PT matrix of P x P blocks of dimension T x T with

Zij in the ij-th block. Let X; = (X;(1), X;(2), ... X, (1)),
i=1,2, ... P be the PT random variables defined by

- =1/2 ~1/2
gr +ee Xp) = (X5, Xy, ... X5) ¥ 3 (3.3)

where, for A real (or Hermitian) strictly positive definite,
1/2

A is the symmetric (or Hermitian) square root. [Condition B
insures that j is imvertible, see [ 5 ]. We have that

M = j i 2 s s s i
EXin zij' The covariance matrix | of (X1, Xy, Xp) is

‘close" to the covariance matrix E of (Xl, X2, -+« Xp), since

condition A and Lemma 2.2 insure that

¢ (J-7) < 26 (3.4)
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independently of T, where ¢(*) is defined in section 2 and 6

is given by (1.4). The random matrix X whose is-th entry

is xi(s), i=1, 2, .. P, 8=1, 2, ... T, will be used in the
proof of Theorem 1.

Let Dij be the T x T diagonal matrix with r r-th element
2L
i3
defined by (1.7), {Eij(w)} = F(w). Let Zij be defined by

£ i, =1, 2, ... P, where fij(w) = fij(m,n,M,T) is

~

*
Zij = 27 mgijw , (3.5)

and let ]} be the PT x PT matrix of P x P blocks of dimension

T x T with zij in the i, j-th block. Let

gi = (§i(l)’ Ei(Z), oo gi(T)), i=1, 2, ... P, be the PT

random variables defined by

- ” ~ ~=1/2 1/2

(Xy, X (3.6)

N
1]
|
=
-
"
[N
>
"U\.’
10~

Hence the covariance matrix of (§l, §2, - §P) is Z. Loosely
speaking, ) is "close" to i, since F(w) is "close" to F(w).
Letting X be the P x T random matrix whose i-th row is Ei’ we
have the joint density of X depends only on the parameters
F(w,), £ =1, 2, ... M, and F(0). We will derive the likelihood
ratio statistics for gi’ based on %. To do this we need the
notions of complex Normal and complex Wishart distributions,

which are described in the next section. For later reference,

note that
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172 =-1/2

X)) = ) (K., &

~2I . = @ ~P x ) (3.7)

gr Sgr ey Bg

|

4, Likelihood ratio statistics for gi’ based on 5.

Restating ideas introduced by Goodman [4] we first describe
the complex Normal random vector and the complex Wishart random
matrist. 7 = (Zl, Zz, p— ZP)l = U + iV is said to be a P
dimensional complex normal random vector (with zero mean) if
U = (Ul’ Uz, .o Up)' and V = (Vl' V2, o VP)'are two real P
dimensional normal random vectors with the following special

covariance structure

1 1 0

EUJVk EU Vk =5 e fkk At 3=k =1, 2y «us
L
-~ 7.7

EULVy EVSV, = % Ik 1k i+ k (4.1)
93k S5k

It is shown in [4] that
el

EZZ =PF (4.2)

where F is the hermitian matrix with jk-th entry fkk’ j = k,

and fjk = cjk + lqjk’ J < ki (qjk

function for the 2 P random variables Z may be written

= —qkj),and that the density




s

i ] - 1
pz) = A 1 T F Uz

(ﬁ)P m

. (4.3)

Given 2n+1 independent samples Zr' E=d; 2y s 20%); £ron

the density P(Z);'tﬁe maximum likelihood estimate F for F is

~ & n "
gﬁﬁ"2n+l z % : (4.4)

~

F is a sufficient sta;istié for F and has the complex Wishart

distribution, denoted WC(F, P, 2n+l), with density

X

A = P(P-1) ]
P(F) = (n° I'(P+2n+l) ... I(l+2n+1) |p|PF2ntly
~ 2n+l  —tr Pl
7| - (4.5)
The joint density of X is given by
: i:] ,
2.0 51K (4.6)
P(x) = (2nP7/2 |711/2)71  © 143

i3 -1
where ]  is the (i,3)th block in } . Let Zj be the complex

random vector defined by

Zy = (2500, 2502), ..oz (™) =X

. W 4.7
; X5 W, (4.7)

*
we have §j(r) = Zj(T-r). Zj(T) and, if T is even, Zij(T/Z)
are real. For T odd the transformation (4.7) between the T

components of Xj and the (T-1)/2 real parts of Zj(r), ol R (T—l)/frg




] T

the (T-1)/2 complex parts of Zj{r), Zj(T) is orthogonal.
Let Z(r) be the P-dimensional (column) vector given by the

r-th column of X W, that is,

\
2(x) = [ z,(x) | (4.8)

It follows (T odd) from (3.5) (4.6), (4.7) and (4.8) and
1/2 . e A2
the fact (see [4]) that |2 = |27F (2m) | m |2nF (2mx/T) |,
r=1
that the joint density of z(r), r = 1, 2, sus (T-1}/2, T, is

given by

(P=1)72
WP(T——l)/z “
r=1

(T-1)/2 , ) -1,
- J Z (r) (2mF(27r/T))  Z (r)

r=1
e X

-1
P(Z(r) ,r=1,2,..,(T-1)/2,T) = ( |2nF (21e/T) |)  x

2

1§*(T) <

l ] — -
-2z (1) (27F (2m))
((2m)P|2nF (2m) |)"1/2 o 2%

(4.9)

2| The apparently artificial definition of F(2m) = F(2m) is to
guarantee that F(2m) is real here. The statements of gi excluding
F(2m) are to avoid laborious but uninteresting complications due
to the fact that %(T) is real.
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We may rewrite (4.9) slightly, using the definition of F(w), as

M5 _ ={2n+1)
P(Z(r), r=1,2,...(T-1)/2,T) = = (w'IZwF(wg)l) X

=1
n

- LG erF )’

*
1, (3,+v)

e

_% g’(T)(sz(zw))'lz*ma

(2m) ¥ 2nF (2m) | 1/2 o

It follows from the remarks at the beginning of this section
concerning complex normal vectors, that sufficient statistics for
F(wg), £ =1, 2, ... M are the so-called sample complex co-

variance matrices,

L1 5 ' * 4 g =1, 2
2? (‘2—n'+_l) Z %(Jg""\’) % (J£+v)f = r e e M

By observing that the v-th component of Z(jE+v) is

T 2ni(j,+v)s
L 7 x.(s) e %
VT g=1 ~
we have
1 n % A
2T (2n+1) ) Z(j,+v) 2 (3g#+v) = Fu,,X) (4.11)

-~

where F(wQ,Y) is defined by 1.10.
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Furthermore, the {F(mﬁ,x),}§=l are M independent complex Wishart
matrices, Wc(F(wQ), P, 2n+l). Following the differentiation
argument of Khatri [5], Section 3, the likelihood ratio statistics

for Hl, H2 and H, based on the random variables X are

M / |F (wy,X) |
Hy: A, (n,M,X) = A\, (X) = 7 = y (4.12)
St g ~ T ¥ g=1l P = ,

| om £oi(wy,X) |
j=1 ]3] ~

F(w,,X) = {fij(w£,§), i, j=1,2,...P}

M IF(N‘Q‘!X) l X
Hy: Ay(n,M,X) = A, (X) = m - 1 (4.13)

~ ~

F22(w2'¥) ~ {flj (w2r§)r ir j=2131---P}
M
™

p \
or F1 (g X))

Hyt Ay(n,M,X) = Ag(X) = W (4.14)

~

1
y )
El £11 (wg,X)

|
&

The random variables X are not observable, since the trans-
formation from X to X defined by (3.7) is unknown. Hence
Ai(§) is not computable. Let Ai(X) be the (computable) statistics
defined by (4.12), (4.13) and (4.14) with X replaced by X.

Towards our goal of proving Theorem 2:
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E c; |log A; (X)) = log A, (X)] > 0,

in the next section we prove that {F(mz,x) - F(mz,g), £ = 1,2, s M)

in a suitable sense.

5. {F(wg,x)}f=l are asymptotically complex Wishart.

The arguments of this paper rest on Theorem 1, below,
which is proved in this section.

Theorem 1 Let X(t), t= ... -1, 0, 1, ... be a P-dimensional
stationary stochastic process whose covariance function and spectral den-
sity matrix satisfy conditions A and B of (1.4) and (1.5). Choose
n, M and T integers so that (2n+l1)M = (T-1)/2, and let
{g(mg'X)}%gl be the sample spectral density matrices, defined by
(1.10) based on X, the random matrix with i, s-th entry Xi(s),
i=1,2, ... P, s=1,2, ... T. Let {Flu,,X)}'_| be the u
independent complex Wishart Wc(ﬁ(wﬂ)’ P, 2n+l) matrices based on

X, where X is defined by (3.7).

Then

f '1 ~ ~ ~ ~ 1)
BTr J(Flug,X) = Flog,X) (F(u,,X) - Flu,,X)" (5.1)
p=1 -

< 822 (1+24/0)6% log, M/ (2m 2 (2n+1) 2

+ 12 (A/2) 02 Mn/T2
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where 6, A and A are given, respectively by (1.4), (l1.5a) and

{l+5Db]) »

Proof: Let {F(mR,X)}f=l be the M random matrices defined
by (1.10) based on X, where X is defined by (3.7). We prove
Lemma 5.1.

E Tr (F (0, ,X) - E(wg,i))(ﬁ(ml,x) - Flu,, X))’

e~

=1

< P2 (1+20/1) 407 log, M/ (2m) 2 (2n+1)2

(5.2)

and
Lemma 5.2

B Tr(Flug,X) = Flug,X)) (Flu,,X) - Floy,x))* < 62(A/2)en/2?

(5+3)

Applying Lemma A.l of the Appendix to Lemmas 5.1 and 5.2 will
then give the theorem.

In order to prove Lemma 5.1 we will need Lemma 5.3. TLet
Vv ~ n(0,Z), let A be any (real or complex) quadratic form with
q2 the largest eigenvalue of AA*'. Let E be a symmetric positive

definite matrix of the same dimensions as J, letg(]-J) < 8



- s

and let Aand A be common upper and lower bounds for the eigen-

values of ) and i, 0<A <o LetVs= Vz_l/z Zwl/z. Then

2.2

' oM B A
E |[V'AV - vV AV]® < (1+2 3) a6 (5.4)

The proof of this lemma is left to Appendix A.

Proof of Lemma 5.1.

Let QR = Qﬂ(n,M,T) be the T x T matrix defined by

*
wp,w , 2 =1; 2; sne M 15.5)

1
Q = 37 TnsD) WPy

%

where W is the unitary matrix given in Section 2, and D, = Dg(n,M,T)

L
is the T x T diagonal matrix with ones in the rr-th position

for jz -m s r L j2 + n, = (2-1) (2n+1) + n+l, and zeros

iy
elsewhere. Le Q = Q(n,M,T,sl,sz,...sM) be defined by

M

Then, from the definitions

M A A ~ ] ~ o~
mzl s, (F(w,,X) - F(w,,X)) = XOX - X0X (B 73
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Now let Qij be the PT x PT matrix with the T X T matrix O in
the ij-th block (of dimension T x T) and zeros elsewhere.
We then have, from the definitions

LI

M ~ ~ W A A -~
E S,8, E Tr(F(w,,X) = F(w,,X)) (Flo,,X) - F(w,,X))

|(xl:xzz...xp)gij(xl:xzz...xp)

58]
where Xi and Xi are as before, the i-th rows of X and X respectively.
Since, by construction, {2ﬂ(2n+l)Q2}%=l are a family of
*
orthogonal projections, the largest eigenvalue of Q0 and hence

*

for every i, j, is bounded by mzx |32|2/(2ﬂ)2(2n+l)2.

It may be shown, by an argument directly analogous to [5] p. 64,
that the eigenvalues of Z are bounded above and below by A and A,
of (1.5), and this is clearly true for i. By Lemma 2.2 applied
to each block of (Z—S), we have ¢(Z-i) < 26 where 6 is given by
(1.4) .We may therefore apply lemma 5.3 to each of the P2 terms

on the right of (5.6) to obtain

M & & _ n -
*
. k£1 SpS, E Tr(F(wg,X) - Flwy,X)) (Flw, ,X) - F(w,X))

e~ =

< P2 (1+2A/1) 462 max 5,12/ (2m) 2 (2n+1) 2 (5.9)
g



il

Now let A be the (non-negative definite) M x M matrix with
£, k-th element aij given by

ag = E Tr(g(wg,X) . F(mR,X))(E(wk,X) - ﬁ(mk,x))* (5.10)

Then we may rewrite (5.9) as

5 M 2 2 2 2 3
) s,a;. s, < P°(1+2A/1)20° max Is,|“/(2m)“ (2n+1) (5.11)
921 kep 2Tk = . L

Using Lemma A.6 of the appendix, we see that (5.11)
implies that
M

~ ~ e ~ ~ ~ *
21 E Tr(F(wg,X) - F(wR,X))(F(wg,X) - F(wg,X))

TrA

A

P2 (1424 /1) 462 log, M/ (2m)? (2n+1) 2. (5.12)

Proof of Lemma 5.2.

Let Z(r) be the P-dimensional (column) vector given by the
r-th column of XW, and, as in (4.8), let Z(r) be the P-dimensional
column vector given by the r-th column of Xw. We have

A ~ 1 n ~ . ~ gt )
Flw,,X) = (27T (Zar Ly vz Z(3,+v) % (j +v) (5.13)

The density of (4.10) implies that z(r), r = 1, 2, ... (T-1)/2

are (T-1)/2 independent complex normal random vectors with
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- gy
E Z(r)2 (r) = ZWF(Z%£). We have

~ n
_ 1 . X
Flogd) = mpmmrry L 20 20 () 5 1)

where Z(r) is as in Section 4 the r-th column of X W. Using

(3.6), it can be shown that

N

(ml) F “(2mr/T) E(r). {(5.15)

Letting Gr be the random matrix

| =

1 1
2

G, = 2(r)z” (r) - F (0,)F 2re/mz(e) 2 () F

1
72 (27r/T) F 2(w2)

(5:16)

we wish to show

1
(27) 2 (2n+1) 2

(L&) 2
E Tr ng+v> )} G. 4y S 6P(A/X)Bn/T".

y=-n Ja

T
o
Il ~13

{(5.17)

~ ~

Since Z(r), Z(s) are independent, r # s < (T-1)/2, we

have

: 2Tr 27ns

* 2 - - *
E TrG G, = (2m Tr(F(55) - Fluwy)) (F(5) - Flwy)) ', r ¢ s,

{5.18)
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Furthermore, since, by the definition of F(mz),

jg+n ]R+n
- * !
—— T ) ] A - Fu) EE - Fwunt = o
(2n+1) U=j£—n u=j£—n
(5:1.9)
and, also,
j£+n
L, ] @AY - ) FRDY) - Flw,)) " >0
(2n+1) v=j£—n
(5.20)
we have
1 n ) 1 i *a
ETr ((2w)(2n+1} vz_n Gj2+v ( (2m) (2n+1) E_n GjR+U)
< 1 Y Eere. .a " (5.21)
r G : .
= (2m%(2n+1) % v=-n 1t Jgte
Since E(r) is complex normal with E é(r) E(r)*' = 2mF(27r/T)
we may replace E(r) in (5.16) by
z(r) = (2m) Y22 onemyE(r), re=1,2,...(T-1)/2 (5.22)

where £(r), r=1,2,...(T-1)/2 are independent 0 mean complex
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*1

normal random vectors with E £(r) & (r) = IPXP' where IPxP
is the P x P identity matrix. This substitution does not
change the distribution of Gr'

We have
*
Tr GrGr = (5.23)
2m vz 12 2rr/m g (e M P2 are/m) - B 20 Emem Y 2 )))

1/2 3 '

2 er/memem” 2 em/m - B2 w)emem F 2 w))

Now observe that, for jg—n <r < j2+n,

P
¢ (F(21r/T) = F(w,)) = i,§=l [£552me/T) - B s(wp) | <
P
max £..(2 Ty = £::(w)] < (28n/T 5.24
] ["E - G o) i,§=l| 15 (2T/T) - £ 5w | < (26n/T) (5.24)

where 6 is given by 1.4. This follows, since, for

|w=(2mx/T) | < (47n/T),

lfij(Zﬂr/T) = fij(M)l

I A

5% ) lRij(T)I’l-e[(znir/T)-w]Tl

T=—

| A

(2n/T) § !Rij(T)flT' (5.25)

T==00

Using Lemma A.4 of appendix A yields the inequality

Tr G G_ < (2m)? [max eigenvalue £(r)&(r)* 12 (A/A) (26n/T)>

(5.26)
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Observing that E[[E(r)llz

3P, and putting together (5.21) and

(5.26) gives the result.

6. Asymptotic behavior of ki(X).

Let li(n,M,§) = Ai(g), i=1, 2, 3 be defined by (4.12),
(4.13) and (4.14), and let Ai(n,M,X) = Ai(X) be the same
statistics based on X, i.e. defined by (4.12), (4.13) and (4.14)
with X replaced by X. It will be shown in section 7, that, under
the general alternative, F(w) general, F(w) and R(t) satisfy
conditions A and B, that var(log Ai(§)) = 0M/n), i =1, 2, 3.
It will be shown that, under Hi’ var (log Ai(g)) = O(M/nz) i=1, 2.
Under H3, we may, without loss of generality, take P = 1 and
Y =1I. 1In this case I = § and A3(X) = A3(§). We have

Theorem 2. As n,M + « in such a way that (log2 M)/n »+ 0,

1/2

E (n/M) | 1og A (X) - log li(x)[ * 0, 4=1; 2, 3, (6.1)

If Hi' i =1, 2 are true, then

B(n/MY?) |log A, (X) - log A, ()] » 0, i=1, 2. (6.2)

The proof will be carried out for i = 2, The proof in the

~

\J
"1.2,3...p00p %)y
the sample multiple coherence between the first and the other

other cases is carried out in the same way. Define

P-1 components of X by
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~ ~

(6.3)
where
Flogeyd = [ £1500p0¥) 1 Fyplwy,¥) |
ks £ ‘ }
W(wﬁ,y) satisfies [see 4]
IF(mng)| ~
=1 - W(w?’,y) >0 (6.4)

Using the fact that, for 0 < u, v < 1, |log(l-u) - log(l-v)| <

fu-v| | T%E > T%G | gives



o B i

B (/M) [log A, (X) - log A,(x) |
173 % . .
< (n/M) ) E[log(l—W(mQ,X) - log (1-W(w,,X)) |
- =1 -
M P A 5
1/2
< (n/M) E g(w,) [ £, .(w,,X) - £..(w %) 1
— Rgl L i,§=l ij'er'. ij°8
M
< amt? 7 (e g?,)11/?
=1

A . > # ¥ 172
[E T (F(w,,X) - F(u,,X)) (Flu,,X) = Flw,,x))" ]

{6:5)
where E gz(wg) is bounded by a constant depending only on F (w).
We can thus conclude that

142

E(n/M) | 1og A2(§) - log 12(X)[

I A

L " - > - 1/2
const. nt/2 | X E(Tr (F(wy,X) - Flw,,X)) (F(w,,X) - F(w,,X))]
2=1

< const n'2 [log M/ (2n+1)2 + mn/7211/2 5 g (6.6)
p ~
When H, is true j£2 lflj(wz'§), + lflj(wl'x)' is

factored out of g(wg) to get an expression of the form
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E(n/MY2) |1log A, (X) = log A, (x) |

P A A
< const (nm/2 7 g h ()14 £} £5 5 (g, 0I* + 1£55 g0 | H 4,
j=2 :

f=1

C B TE(Fg,X) - Flog,%)) (Fluy,X) - Fo,,x))L/2 (6.7)

where E h4(w2) is bounded by a constant depending only on F ().
Using the facts that Elj(wﬂ’§) and %lj(wﬂ,x) are quadratic forms
in normal random variables, and for such quadratic forms t,

E t4 e (B t2)2 where ¢ is a universal constant, and, under the
null hypothesis E lglj(wg'§)|2 and E Iglj(mz,x)lz are bounded
by a constant x 1/(2n+l), the result is

2

E (n/MY72) |1og Ay (X) = log A, (X) |

< const (n/Ml/z) n~1/2 [log M/(2n+l)2 + 1"111/T2]l/2 >0

(6.8)
7. Distribution Theory
7.1 Distribution theory for Al(§) and 12(5).
Let
~ P .
Ao = [P, x| / j:l £y, %) (7.1)
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Aoy = [P0/ £ (0, %) [Fyy(0,,X) | (723
2=1,2,...M
M
and let Ai(§) = §i = éiﬁ' i=1.,2;
=1
Suppose § = {Sij} is a P x P real Wishart matrix estimated

on n'degrees of freedom, say a sample covariance matrix,

S ~ W(L,P,n'")

Let
o 511 T ®13
g = e ey mbpey 4
~ [ S
]
832 | Syp¢

As is well known, [See 1], the likelihood ratio statistics

ny and n, for the hypotheses

S diagonal
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And, when Al and A2, respectively are true, it is well

known that Al and Az are distributed as

P~1

A, ~ m B

NN e
3=l 5n'-3),5]

A, ~ B
¢ Tdpmrepeyy. lipe
3(n'-(P-1), S(p-1)

where BU 5 Are independent Beta random variables with p and v

r

degrees of freedomn. By the same techniques used in [1] it is

straight forward to show, that, when Hl’ H2, respectively,

are true,

P-1
b0 " jz Bn'-j,j b=1,2, ... M (7.3)
220~ Pri-(p-1), (p-1) £=1,2, ... M (7.4)
where we have written n' = 2n+1. (The distribution of Azg under

the null and alternative is given in [4] by Goodman.) Since

the characteristic function o) (s) of - log B is
U,V M,V

_ _ T (u+v) T (u-is) 7.5)
¢u,v(5) ~ T'(u) T (u+v-is) ’ (
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and {All}?xl are independent, we have that the characteristic

. 1 . :
function @l(s) of tj= - i log El is given by

$ s lg:M
PHl '(n'-j M)

. (s) = C i .
1 M,n',P j=1 F(n'—iE)M
M
T P-1 : e i
o _s_is, (P~9)M
= %Mmn' e I T0T-3-) | (7.6)
L J=1 <
A _ I"(nl) (P"l)M
M'n' 'P P_l M ¢
| I I'in*-j) ‘
j=1 -
@1(5) may be inverted by standard formulae [2]. For example,
& . . . '
for P = 3 the density fl(x) for t1 = M log él is
o1y X
2M om-g, ~ (0"

M { %M M Meg-2

— ' ' =
£,(x) = (n'-1)""(n'-2) by =) T Com1 ) &

i - nt=g) ¥ -
M (—I)Mi (2M+2-2) 1 %\ M~ (n'-2)5 7
-1 ‘MW ® iow BED

ke s (7.7)

Similarly, the characteristic function ¢2(s) of t, =-log A2

2
is given by
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| {F(n'—(P—l)—ig - M
M,n',P | ‘

!
o

o, (s) .
: T
P-1 .

1 r(n'-j—iﬁ)
j=1

-M
M,n',pP (7.8)

Where

r(n')4

D
Pin' = (Be1)

M,n',P

The density f2(x) for t2 = - % log A2 may be formed by *the same

formulae, the result for P = 3 is

X,M-2

MFg-2) 1 x,
M

-1 i1

M
£,(x) = (-1 (a'-2)" §

-(n'-1)% : -(n'-2)
x {(--l)M e ik + (1) " e

=[N
| SR |

(7:9)

Using (6.6) and (6.8) the null means and variances of ty

and t, are given by
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P- i
E +. = Xl _{P-3)
1 . (n'-15)
J=d
P-1 §
var t= 5 § B oo (6.10)
j=1 (n'-7) Mn'
BP~=1
1
Et,= ]} =
2 j=1 (n'-3)
P-1
var t, = % e L 5 = 0( 12)
j=1 (n'-j) Mn'

Choose n large fixed, then let M + =, t. and t., are both

1 2
then asymptotically normal by the central limit theorem. Ex-
pressions for the mean and variance of t2 under the alternative
may be obtained using the density of Aoy given by Goodman. The
expressions are unwieldy and will not be reproduced here,.

A simpler procedure seems to be to consider M large fixed,

and let n' » «», Then, under the general alternative to Hl, we

have, by Theorem 4.2.5 [1], that

lg(wk)] u

/At [— T log A, + (7.11)

M

2=

| =
I,_l
O
Q0

P -—
1o fyq loy)

is asymptotically normal with zero mean. Carrying out the

differentiation required by that theorem, it is possible to show




that the asymptotic variance is

W S|
l“ij(wl)l 2nM

[+
o=
OSSN

_Z. |Wij(w)[dw {6.12)
1<]

N

M” 2=1 igj
= = 2 - -

where Wij(wg) = [fij(mz)l / Ei(wy) fij(mg) and Wij(w), the

coherence between the two time series Xl(t) and Xz(t) is given

% 2
by W;4(w) = lfij(m)l / fi5 ) £i00).

Under the general alternative to H2, for M(large) fixed,

we have, again by Theorem 4.2.5, [l], as Bt = &, EHat

) r M
Vol (P | 1 = ]
n L. if log Ay ¥ £ E loq]w1.2,3,...,P(wk)[J (7.13)
k=1
is asymptotically normal for large n', with 0 mean,
where Wl.2,3,...P(w) is given by
ﬁ1.2'3".'P(m) = [Flo)]| /7 £, () [Fyu)] . (7.14)
[ B ol 1 Poola]d
= / ik i ‘
F(w) = }'_1.' “T';lg T
\Flz(w) 1 Fz(w) /
The asymptotic variance can be shown to be
2 M 1 27
5 LWy o pley) s L Wy, 5 p () du, (72 132
bl . 7 o e e [ O o Lap F e e L

=
o
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where Wl P(wg), the partial coherence between Xl(t) and

#2553

{Xl(t), j =2, 3, ... P} is given by W (w

1.2,3,...p W)
[Pl | /7 £ (w)) Folwy) ],

"12 (@2) IE%

11(?,) ki

* 1

F(wg) = g | !
\F1  Foplug) ]

7.2 Distribution Theory for A3(x)

Let
Mo
Ay = 250X = i
) ) - i £ x)M
(....
oL, 11

where, according to (4.5) and the properties of complex Wishart
matrices, we have {2(2n+1) £, (w,,X) / fiilw), 2 =1,2,...M}

5 : ; 2 . :
are distributed independently as_x2{2n+l). Consider M in de-
pendent populations, the f2-th population beingfnful,sg), £ =1,2,...]

. ~2 G ; .
Estimate si by SR, the sample variance, estimated with 2(2n+1)

degrees of freedom. Then V, where

. M . 20+l
i 1l si
v =21 (7.1
“1 M ~g M -16)
¢
| 2=
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is, except for a constant, the well known is Bartlett's statistic

for hoTogeneity of variances. Hence Ay is distributed as

M" v the joint density of £19(0,.X) = £, 2 = 1,2,...M is
" (gz)n - ~£y/%y
P(Ey,Eyrenefy) = 1 - B (7.17)
t=1r(n') E,
where n' = 2n+l and f2 = fll(wz)'
Now let ¢, = 1/f , ¢ = l‘-[max cy + min ¢.] and let
2 25 P
g, =cf,, b, = (c-c,)/c, where |b,[<l, 2 =1,2,...M. Then,

since the distribution of §3 is invariant under a constant multi-
plicative factor applied to £,r1og A3 is distributed as
M

1 M
log (1 &) / L gy (7.18)
1=

where the joint density of {Eg}f=l is given by

)n' 1 n'-1 a v 1 "v=1

g

p(gl,gz,...sM)
(7.19)

In appendix B it is shown that the characteristic function ®3(s)
of log §3 is given hy

is log A
?3(s) E e = ¢,(s) g(s)



s A s

where

isM T(Mn') T (is+n')M"

b8} =N e T{Hsn N
is the characteristic function of log Ag undexr the null
hypothesis and
M i =
. g(s) = 1 (1-b) I v (s)e, (s) (7.20b)
vl k=0
where
fay = I'((is4+n')M) I (Mn'+k)
Yk 18} T FrEs I eK) T 0
and ek(s) is defined by
s o o - (is+n')
. 6, (s)t” = 1T (1-b t) ] « 3 (7.204)
k=0 v=l ¥

¢ (s) for n = 1 was given by Whittle in 1950, [10] where he

(7.20a)

(7.20c)

suggests the use of A, (with n = 1) as a statistic for testing the

independence of residuals after model fitting. Using the dup-

lication formula for the gamma function [9]

¥ :
LMz 5(M-1) -1 M-1

r(Mz) = [M (27) © ] I (z) !‘(Z-%-g:-[)... F(Z-l‘—-ﬂ—“)



it follows from (7.5) and (7.20a) that A, under the null hypothesis,

is distributed as

v d
1 0 g (7.21)

M . 5
where {Sn';j/M}i:O are M independent Bn',j/M random variables.
The moments of log §3, under the null hypothesis are
readily obtainable by using the formula for the logarithmic de-

rivative of the gamma function [9], which gives

o 1 s 1
)

— - [ —1

j=0 (m+3)Y =0 (Mn+9) *

: M
I' (is+n)
) log 77 (Is4n)M)

R 1
= (=m0 | [—=
b1

(7.22)

Although Bartletts statistic has been with us since 1937,
itsrdistribution theory does not seem to be in a completely
satisfactory state. Let wl = 52'. An asymptotic expansion,
for the c.d.f. of log Wl, for large n', in terms of X2 c.4.E, s
is given.in Anderson [1] (p-225, Eq. (7).), which should suffice
for practical purposes.

For sufficiently small bu, log g(s) can be expanded up to

the second order in {bv} as
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log g(s) = log n(1-b )" + log(L + [ ¥, (s)o, (s))
|

v

12

constant + wl(s)el(s)+¢2(s)82(s)+...—%[wl(S)el(s)]2+...

(Mn+1)Mn =

s 2
2M ((1s+n")M+1) vél(b”—b) A ti73])

It

constant +

where b = % ) b,. Hence, for lbv]'sufficiently small,

- 2 M
E loq ?_‘3 uo '2—@:/1—1':14_1) (E U£1 (b\.’—b) )
: : 3 M )
2 M™n 1 =2,
Var log 33 B i T e (ﬁ zl(bvnb) ) = 0(M/n) (7.24)

(Mn+1) v

where Mo and ag, the null mean and variance are, from (7.22),

Mn-1 1

u_o=M(log M - ] )

(o) o b 3
j=1 (n+3j) j=0 (Mn+3j)

It is possible to show that the neglected terms in f7.24) are

0(M/n) times higher order terms in {bv},the details are omitted.

]
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For sufficiently small {bv}’

M 27w
3 - o2 3 -2 p= 2
i L. BT s 5 (£ ()-F17 / (D)F) dw (7.25)
v=1 0
where
) . 1 2m
f = ﬁé f(UJ) dw., . (7.26)

A detailed examination of the power of this test against near
by alternatives might begin with equation (B.6), where 9318)

is expressed as a weighted sum of characteristic functions, the
weights being a constant multiple of terms in the power series

M

1]
expansion of I (l-—bv)n . This investigation is omitted.
v=1
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Appendix A

Lemmas A.5 and A.6 are used in the proof of Theorem 1.
Lemmas A.1-1.3 are used in the proof of Lemma A.4, which is needed
for Lemma A.5.

In Lemmas A.l-A.3, A and B are strictly positive definite
77 AZ are the
smallest and largest eigenvalues of the matrix Z. The fact that

matrices, U, Ui and V are any square matrices, and A

AATr B £ Tr AB < AATR B is repeatedly used.

Lemma A.1l

N , N /N -
| F U {ZU.} <NTr | }J U.U .
L g=1 Lj=1 I g=1
Proof.
, N v/ N 0 N N e
e | J ou.) (I U] =Tr J 7 ULU,
V=1 I/ g1 3 j=1 k=1 J
N N
1 x 1 * 1
<Tr )} ) (U.U. +U U, )
- 421 k=12 33 kk
N %* T
= N Tr | L5 % 0 §
373

e o
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Lemma A.2

1

Tr(A~B)2 <
(1A+A

5 Tr(Az-—BZ)2 .
B)

Proof.

(O, +hg) Tr(a-B)2 < Tr(a-B)?(a+B) = Tr(a-B) (A+B) (a-B)
(A,*Ag) Tr(A-B) (A+B) (A-B) < Tr(A-B) (A+B) (A-B) (A+B)

giving

0, +25) 2 Tr(A-B)? < Tr(a-B) (a+B) (A-B) (A+B).

Tr (A-B) (A+B) (A-B) (A+B) = Tr (A%-Ba+aR-B2) (A2-BA+AB-B2)

'I‘r[A4 - AZBA + A3B = A2B2 = BA3 + BABA - BAAB + BAB2 + ABA2

I

- ABBA + ABAR - AB3 = B2A2 + B3A = B2AB +B4]

= 'I‘r[A4 & 4B2A2 + 2BABA + B4].

Now ,

Tr BABA < Tr A2B2 ’

hence

rr(a*-48%a%42marasn?] < Triat-2 Tr a28%48Y) = Tr(a?-52)2 |
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Combining these last inequalities gives the lemma. It

is easy to see that equality is obtained for A = aI, B = bI.

Lemma A.3

* 2
Tr (U-V) (U-V) < [$(U-V)]° .

Proof.

%V 2
Tr (U-V) (U-V) = ] (w -v. )" 1 ) |uw—v
HrV U,V

W11 = wen?,

Lemma A.4 Let A be any (real or complex) guadratic form with

% =
q2 the largest eigenvalue of AA . Let S, S be strictly positive

definite (real or complex) matrices of the same dimension as A
and let 0 < X < A < » be common lower and upper bounds for the

eigenvalues of S and S, and suppose ¢ (S-S), defined in Lemma 2

satisfies ¢ (5-9) < 9. Then

A 2.2
i'X'GG.

S

Tr(Sl/zASl/z—él/zAél/z) (Sl/2ASl/2_él/2Aél/2)*'

Proof.

Tr(Sl/zASl/z—él/zAél/z)(Sl/zASl/z—él/zAél/z)*'

- Tr[(Sl/z—él/zfAsl/2+él/2A(Sl/z—él/z)}[(Sl/z—él/z)ASl/2+él/2A(51/2—é1/2)]*l
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which by Lemma A.l is less than

~ ~ ] L] -~ ]
2 Tr(Sl/z—Sl/z)(81/2-51/2)* (ASA* +ASA* )

2 Tr(Sl/z—él/z)(81/2—51/2)*'.

< 4a

Lemmas A.2 and A.3 give

rr (s1/2-51/2) (g1/2_g1/2y*!

13 a o | pAge: S N
L Y Tr (S-S) (S-5) £ [¢ (5S=-8)]° = Y =

which gives the result.

Lemma A.5. Let Y ~?1(O,S), let A be any (real or complex)

aguadratic form with q2 the largest eigenvalue of AA* Let é
be a symmetric positive definite matrix of the same dimensions
as S, let ¢(S-é) < 8, and let A and X be common upper and lower
bounds for the eigenvalues of S and é, 0 <2 <A < =, Let

v = vs /2512 gnen

E|lvav'-vyav' |2 < (1 + 2 %)qzez .

Proof.

|vay'-vay' |2 = |y (a-s™1/251/2pg1/2571/2) 0 2



B

Letting H = A - S—l/2él/2Aél/28-l/2’ we have, using the relations

between 4th order mixed moments of Gaussian random wvariables

E|YHY']2 = (Tr HS)Z + 2 Tr HSH'S, (A.5.1)
35 HS)2 = (Tr A(S—é))2 ¢ [largest absolute entry of
A x ¢(S-§)]2 < q282 ’ (A.5.2)

Tr(81/21%81/2_51/2;{81/2)(81/22&81/2_51/2}%1/2),.

(A.5.3)

Using Lemma A.4 on the right-hand side of (A.5.3) yields the in-

quality

Tr HSH'S < % a%e? .

Combining (A.5.1), (A.5.2) and (A.5.4) gives the result.

Lemma A.6 Let A be a non-negative definite M x M matrix, and

suppose it is known that, for any s = (sl, Syr o se EM),

2 2 2
| ¢

s A s' < max Is . Then, if M = 2k for some k, Tr A < c.

L
L
In general, Tr A < (logzM) c2.
. 1 2 M
Proof. We use the fact, that if y~, y°, ... vy are any orthonormal

M '
set of M dimensional (row) vectors, then Tr C = ] veey®' . 1f
k=1
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k

M = 27, for some integer k, then there exists a set of M
orthonormal vectors, each of the form yk = L (yk, yk, —_ yk)
/i 1 2 M
where yt, £ =1, 2, ... Mis + 1. 1In this case, the hypothesis
2
1
gives ka yk < %T and Tr A < c2. In general, if Zk <M < 2k+1,
k
write M = [ 0 2" where 8, = 1 and 6,=0o0r 1, v=0,1, 2, ... k-1,
v=0

Let £ be the number of non-zero Bu's. An M x M orthogonal matrix

can be constructed with £ non-zero blocks down the diagonal,
v v

m m

the n-th block of dimension 2 x2 7, m=1, 2, ... &, where vm

corresponds to the m-th non-zero ev. In the m-th block place

an orthogonal matrix with rows of the form = (ul, Ugs eee U )
evm 5 M
where u. =+ 1. Now let yl, yz, .o yM be the rows of this matrix.
2
1)
If part of yk is contained in the m-th block, yk A yk < —%— i
m
Yo i 2
and there are 2 such y "'s. Hence

¢® < (logm) c2.

Il o~
N
=
9]
i
o
9]
o
A
~

e & < —=
m=1 m
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Appendix B.

The Characteristic function of log A

Let Xyr v = l, 2, ... M be independent with the density

of X.. given by

v
(l—bv)n - (1-b )X .
fg (K) = g e s X 50 |bU| <1, v=1,2,...M,
=0 otherwise v
and let
M
Il Xv
A - v=1
3 1 % M
(& X))
M e v
is log A 5
- B is
®3(s) =B e = E(A3)
| -1X _+)b_X
v M e o o : . z \Y) vV
o MlSM 1 (l—bv)nP(n) M f___f(vnxv)ls+n l(ZXv) isM " v V
v=1 0 0 v
(13.1)})
_ v
Making the change of variables Yv = Z Xv' v=1l,2, ..., M
j=1
and Zv = Yv/Yv+l’ v=11,2, ..., M-1, ZM = YM gives




=B : .

M
X, = (1-2,_1) sz Zgr Zy=0,v=1,2, ..., M
M .
-1
max. = 1 zY™ 4 az
AV v=1 Vv AY)
and
3 M oo -7
o.(s) = MM 1 (1op \Ppn)y My gMnTL o M g, (B.2)
T T az g Uisv-l o dsn-l
U=l 0 v AV] Vv g
% M
E b (1-2. .) I gz
X e v=1 v P L=v Q}

Expand the second exponential in a power series, the k-th

term of which is

1 ( ? M k
= B (12 ) I 2 )
1 -
ki g=j vl TR
o 9 9 I 8
The coefficient of b b eee by ] g, =k-in the expansion
L 2 M v=l V
of this term is given by
E
q
M L 2 M-1 Sq.,,
oo | Zi 1 I (l—Z\)) \le (B.3)

A leeeay! o .|
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93
1

pansion of the term in brackets in (B.2) is

C 9@ 9% ¥ ;
and the coefficient of b,~ b, covby 9 ] gy =k in the ex-
v=1

v

v
e Mii— Tk Med 3 (1s+n)v—l+_zlqj . is+n-l+qv+l
sfaz, 2. oz ) az (B. 4)
B v=1 0
Now, for lbv[ <1, =1,2, ... M, |t] <1, we have
M L - M  is+n-l+qg q
T (1-p )~ S¥R) oy ke g P, © . (B.5)
=1 : k=0 M, v=1 v :

where Z is the sum over all partitions (ql'qZ""qM) of k such
5 ;
k

M
that § d4, = k. It follows from (B.4) and (B.7) with s = 0,
v=1

that we may write

. M M n-l+g q
: M n \Y) v
¢i(s) =" 1 (1-b )™ T T e (s) T ( )b
3 u=1 e k=0 My ql'qZ' qM v=1 qv b
""" (B.6)
where 9 s) is given b
qqu2r---qM( ) K Y
M-1 islogz (1-2 )
gey v

) (s) = I Ee
Gprdpre--9y v=1
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with 2 distributed as B8 , with £ =
iy \ g,M

s

v
vn + .Z Qe M =N+ g .

=1
Performing the integration in (B.4)

q q S
coefficient of b, b 2 !

we find that (B.4), the
]
e i " q. =M is
1 2 M i Y

v
M=1 F((is+n)v+'z

q.)T (is+n+q )
I' (Mn+k) I =1 J v+1 . Ty
o - ow=l v+1 :
i gl F((is+n)v+1+ § q.)
\Y) X j
v=1 j=1
M ] y
£ I T(is+n+qv)
ad (Mn+k) v=] (B 8)
Ty TldstmyMek)
qy°
v=1

@O(s), the characteristic function of l3 under M3 is, from

(B.2) and (B.10) with |b,] = 0,
isM T (is+m)M I' (Mn)
¢O(s) = M S (B.9)
T{n) 'M(is+n))
. 3 e o 91 .. %2 Iy
By using (B.8), the coefficient of bl b2 .. bM in ®3(s),
M
Z qv = k, may be written
v=1
M n M is+n"l+qv
II ¢O(S) (l"bu) wk(s) I ( ) (B.10)
n=1 v=1 q



S

where

= I((is+n)M) I' (Mn+k)
Wkgs) - T T (Mn) F((is+n)M+Kk) (B.11)

s

We have, using (B.5)

¥(s) = ¢ (s) NI (1-b )™ ¥, (s) 6, (s) B.12
o et u k£0 k k ( )
where Bk(s) is defined by
E 6 (s3¢k = 0 T (1, gy LASHR) :
i . vt : (B.13)

k=0 Ty
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