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ON THE NUMERICAL SOLUTION OF FREDHOLM INTEGRAL EQUATIONS OF
THE FIRST KIND
by

Grace Wahba

1. Introduction

1.1 Statement and Some History of the Problem

We are interested in the numerical solution of a Fred-

holm integral equation of the first kind, namely

wiit) T =iy Ke(Ehm)azi(s)ds teT (1.1)
S
where S, T are intervals, K(t,s) is a given kernel on
T x S with appropriate properties and u(t) is given for

t = t c’tn' tiET-

l,t2,..
It has been noted by a number of authors (see for ex-
ample [71, [111, [14]) that replacing the integral in (l.l)
by a quadrature approximation and inverting the resulting
matrix does not give satisfactory results. No matter how
large n is, there are many functions 2z, including highly

oscillatory ones, such that

u(t,) = f K(t,,s)z(s)ds, i = 1pXp.. 0 CL.22) 5
i s |

A discrete approximation of one of these functions is

obtained by the matrix inversion
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technique. Which one is actually obtained, apparently de-
pends more on the quadrature procedure than anything else.
Two methods in the literature seem to have resulted in satis-
factorv numerical examples. The first method, called the
method of regularization of Tihonov [12] [13] and studied
experimentally by Tihonov and Glasko [14], goes as follows:

Let

M®(z,u) = f (o(t)-u(t))?dt+a f (L_z(s))%ds (1.3a)

~

where u is a given function in LZ(T), u, depending on z is

given by
a(t) = £ Rit,s)2(s)ds, (1.3b)
S

@ > 0, and Lm is an mth order linear differential operator
with continuous positive coefficients. Assume K(t,s) is

continuous, and that
0 = f K(t,s)z(s)ds, teT (1.4)
S

implies that z(s) = 0, seS.
Then, it is shown in [13], that, for every fixed

ueLZ[T], and every a > 0, there exists a unigue 2m times

~

differentiable function z = z, which minimizes Mg(z,u).



Tihonov and Glasko [14] provide an argument that Lm defined

by
Lmz = z! (1.5)

fits into the general theory if K > 0 on T x S. They then

experiment with a numerical algorithm based on finding z to

minimize M;(z,u) as follows. Quadrature points {si}k i

j=1
s.eS, and {t.}n , t.eT are chosen. Let t_be the left
i 5| jeu1 3 o
boundary of T, define
z = (zl,zz,...,zk)
u = (u(tl),u(tz),...,U(tn))
and Eo = 0.u is a given vector. Define ﬁ%(E,G) as
ds1oui n k = 5
Moz a) = 5 a0 ] CRE .8 )0 2 ~ult.])
1 j=1 J s e Tl g 7|
- 2
k-1 (z.,,-%.)
24 drchl s 5 (1.6)
i=0-(s;,+—8;:)
i+l i

where {d.}% , dj > 0, and {Ui}k are appropriately chosen
j=1 i=1

quadrature coefficients. ﬁg(E,ﬁ) is to be thought of as a

discretized version of M%(z,u) of (1.3) with Lm given by
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(1.5). Let the n x k matrix K, the n x n (diagonal) matrix

D and the k x k symmetric matrix Q be defined by setting
M7 (z,u) = (Rz-u) 'D(Rz-u) + az'Qz (1.7)

and matching the coefficients of z, u and oz in (1.6) and

I >=

(L.7). For a given u, the vector z which minimizes

ﬁg(i,ﬁ) is well known to be given by

1

z (K'DR+aQ) ~K'Du (1.8)

It can be verified by direct manipulations upon the matrices

~

involved that another formula for z is

1, =1

: ¢ (1.9)

1

z = o1& (R~ &R '+op”

Tihonov and Glasko compute z from (1.8) as a discrete approxi-
mation to the function za(s) which minimizes Mi(z,u). They
do this experimentally, for several values of a, by beginning

with a u obtained from a known function u(t) satisfying

alt) = f K(t,s) z (s)ds
S

*
where z 1is a given (smooth) experimental function. For

certain values of o, the results are "good", i.e. the com-

”~ ~

ponents Ei of z satisfy



More recently, Ribiere [8] has also studied the method
of regularization. In both [8] and [14] the experimental
results suggest that there is an optimum choice of a. How-
ever, a theory makinqlprecise the optimal choice is apparent-
ly not available.

The second method, discussed by Strand and Westwater
[11] and called "statistical estimation" of the solution,
is as_follows: .Let the p x .k matrix K be defined as before.
Let 2 = (Zl,Zz,...,Zk)' and ¢ = (el,ez,...,en)' he
normally distributed zero mean random vectors with (prior)

covariance

EZZ' = Q1
Eee! = aD_l
FZe¢' = 0

Let U = (Ul’UZ""

vector defined by

U=KZ + ¢ (1,10)

It is well known that



E(z]u=u) = 0 K (KQ "K'+aD ) u (1.11)

Strand and Westwater replace the equation (1.1) with
the model (1.10), where the unknown vector z is replaced by

the random vector 7 with prior distribution N(E),Q_l

), and

e is to be thought of as a "noise" vector in dependent of %
and having the distribution N(D,uD_l)- The estimate for the
"random" vector Z given the "data" u is taken as the right
hand side of (1.9). Hence the method of regularization and
that of statistical esﬁimation are in practice the same for
anpropriate choice of D and Q. Strand and Westwater per-
formed numerical experiments (again beginning with a smooth

* . .
known solution z ) analogous to those of Tihonov and Glasko,

and again obtained "good" results.

1.2 Purpose of this note and basic assumptions

Both of these methods can be embedded in £he general
theory of the approximation of continuous linear functionals
in a reproducing kernel Hilbert space. The overall purpose
of this note is to demonstrate this statement in some con-
siderable practical detail. As a byproduct of this theory
we obtain a rationale for choosing o, to minimize a certain
error bound. We also obtain pointwise error bounds on the
solution involving a Hilbert space norm of the (unknown)

solution z. These results provide a criteria for the selection



of a good Hilbert space in which to operate. Several

practical examples are given. .
We assume the function z to be an element of a repro-

ducing kernel Hilbert spaceﬂ#ﬁ of real-valued functions de-

fined on S. This means that the linear functionals Ns,

seS defined by

Nz = z(s) , =z e W .10

are continuous for every seS. In this case, for VvseS there

exists an element 6559% for which

<Gs,z> =T (g) 18 vze §6; -(1.13)
If we define the kernel R(s,s') on S x S' as

<GS,GS.> = R(s,s') (1. 2d)

then R(s,s) is positive definite. Let Rs be that function
o
defined on S whose value at s is given by

Rso(s) = R(so,s) (1.15)

By the Moore-Aronszajn Theorem (see [2]), to every positive
definite kernel R(s,s') defined on S x S there corresponds

a unique Hilbhert space f{==?£ with the following properties:

R
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2) <z,R, > = z(s)) ze ¥ s €S

§. =R {1.16)

and

<RS,RS,> = R(s,s") (1-:.1.7:)

Equation (1.17) is the source of the terminology "reproducing
1
kernel”. The elements {Rs,ses} clearly span ‘¥ .
We make sufficient assumptions on K to ensure that the

linear functionals At defined on‘f\i:R by

A 7= Blt,g)zlaids < ZeFt (1.18)
t S R

are continuous for every fixed teT. The problem of estimat-
ing z(s) for a particular seS given that zé?iR and the in-

formation of (1.1}, namely, At z = u{ti), i=1,2,...,n may

.
then be viewed as that of approximating the continuous linear

functional N, defined by (1.12) by the continuous linear

functionals {At 3 defined by (1.18). There is a growing
i i=1

body of literature on the approximation of one continuous

linear functional by several others (see [3] [4], [92])



familiar to these working with splines. We actually con-

sider the cases where u(ti) are known only up to some error

(experimental error) or the values n, (s) of the representers
a4

n of the continuous linear functionals A are known only

t. t
i i

imperfectly (quadrature error). We show that these cases
both lead in a natural way to the same family of algorithms,
which contains the method (s) of reqularization and
statistical estimation.

To discuss the problem practically we must know when
At defined by (1.18) is continuous, and how to finds its
representer Mg The answer is given by Theorem (l.1) and
its corollary which will conclude section 1.

Section 2 provides statements of all the Hilbert space
lemmas that are used in the sequel. They are.generally well
known and may be proved by elementary methods, no proofs are
provided. Section 3 provides examples of some reproducing
kernel Hilbert spaées. Concrete examples are fairly hard to
come by. Section 4 presents the main theorems concerning
approximations to the solution z and their properties. For
concreteness sake, but without loss of generality, the
theorems are stated with respect to a particular reproducing
kernel Hilbert space which is related to the method of re-
gularization as discussed in: . [12],..[13]1, [l14]). Section 5
discusses the introduction of quadrature error and appropriate
ways of dealing with it, and a rationale for choosing o is

given. In Section 6, the precise relationship between



statistical estimation, and the approximation of continuous
linear functionals is described, and it is shown how in
aqeneral one obhtains the same numerical result from the two
approaches.

We conclude this Section with Theorem 1.1 and its

corollary.

1.3 A Preliminary Theorem

Theorem 1.1. Let A he a continuous linear functional

on;f’R, and let Yeiys, be defined by

Az = <(,z> E ze‘%iR (1:19)
Then ¥ (s), seS is given by the formula:

Y (s) = ARy {1.:20])

Conversely, let A be a linear functional defined on %iR and

suppose that the function {y defined in S by

~

P(s) = ARS (1.21)

satisfies ¢€?{R, then A is continuous.

Proof. Since w(s)eﬁf P(s) = <w,RS> = ARS. Conversely,

RF

if we?gR, then the continuous linear functional A defined by

w1 f=



Az = <yp,z> {1.299

~

coincides with A on the svan of {RS,SES}, since KRS = P(s).
But the span of {RS,SES} is ; S

Corcllary. ~Let K be such that
f J K(t,s)R(s,s')K(t,s')dsds' = ez(t) (1.23)
S5

is well defined and finite as a Riemann integral for each

fixed teT. Then the linear functional At defined hy

Atz = i K{t,u)z(u)du , ze?}R (1.24)

'is continuous on %:R and

where N, E?iR is defined bv
nt(s) = AtRS = é K(t,u)Rs(u)du % (1= 25)
ana | |n.]]2 = 02 (t).

Proof. The hypotheses on K imply that there exists

(for each fixed t), a triangular array

-11-



11

Sy iR

Slk,S2k,.. . ,Skk

such that the Riemann sums

k-Z*l le
El{tyBas ) Bl
iZ1 451 LB

SixrSyp)K(tssyp) (8509 178500 (S440,07550)

converge to ez(t), as k, & =+ «, But then, using (1.17), it

follows that the sequence nék), k=1,2,... defined by

- e
ne = L K(Eis) (S5 S5 Rg, el
i=1 ik
is a Cauchy sequence inﬁ%*w, ||nt(_k)||2 -+ 62(t), and nék)

converges pointwise (in s) to Ny given by (1.25), which is

therefore in # -

2. Hilhert Space Lemmas

In the lemmas of this section we have the following:

m < n, g is a Hilbert space,

-12-



e ) 8
1 =73 0 and P0

and P, are the projection operators onto J¥ 0 and;ﬁwl re-

where # is an m—-dimensional subspace, }ﬁ

0

spectively. {ni}n

j=1 are, in each lemma, n elements in

satisfying the following two conditions

. n ;
£i) {Poni}i=l span}%—o

Y

(ii) (Pyns}iq

1Ny are linearly independent.
Let

r i=112p---'n
let {¢v}t=l be a (fixed) orthonormal basis for;%io, and let

X and )} be the m x n and n x n matrices with entries de-

fined by

[X]

. 0 RS o e HE= L 26 am
B S (3m1)

% = P

(J154 = <B3.%5

Conditions (i) and (ii) guarantee that' X and Z are of full
rank. We let ¢, £ and n be vectors of m, n and n elements

ofﬂﬁ{resnectively, given by

<
1

(¢l,¢2,...¢m)
E= (Ey/Eyr-..E))

n = (”1'”2""”n) "



and u, be a given vector of real numbers,
g o= (ay ks ).
1772 n

Lemma 2.1. The solution to the problem: Find ze ?#»

to minimize <Plz,Plz> subject to <z,ni> = u 1:2 1,2,:::0

i'

~

is unique, and is given by z,
2 = oIy Iy taree 07T e ) "Iy hE . (2.2)

Lemma 2.2. Let 665?}hm given. The solution to the

problem: Find ys'ﬁFof the form

n
y= ] c.n, (2.3)
o R
where ¢ = (Cl'c2""cn) is a vector of real numbers, to
minimize
[P (8 -v) |1 (2.4)
16 i
subject to
e (s_-v) 1% = o (2.5)
o' o N

~

is unique and is given by 50,

-14-



where ¢ and £ are the vectors of real numbers (dependina

on'SO), given by

B = (<8,01%,<8 ,0,>,...<5_,0,>)
{2577

£ = (<60’£l>'<60'£2>’... 0-‘<6Orgn>)-

*
Let the bounded linear operators A and A be defined

by (2.2) and (2.6) respectively as

Dg = 7 . f My = <z,ni>, im0 s ea N ymE e

*
Inspection of (2.2) and (2.6) reveals that A and A are each
idempotent, and are adjoint to each other, that is:

Lemma 2.3 If z is of the form of the right hand side

of (2.2) for some u, then z = z.

Lemma 2.4

<z,8 > = <z,8 > = <z,8 >, z,8_c%f (2.8]

-15-



TLemma 2.5

~ ~

2 SaR
<z-2,8 >° = <z-z,8 -8 >
o) o o

A ~ 2
1Py (z=2) [ 1P (5,75 ) ||

| A

I A

2 A 2
[1pyzl 121 P =60 117 (2.9)

Furthermore, a calculation gives
Lemma 2.6

- - 3 T
||P1{60—50)1| = <P,8_,P,8 &) E

>
Q
e s e o W 0 e 1

(2.10)
where ¢ and I are given by (2.7).
Lemma 2.7 Let V = {vij} be a non-negative definite

n x n matrix with ijth entry of V"l given by v'J. Then the

solution to the problem: Find ze‘F}to minimize

- i3 .
(<z,ni> ui)v (<z,nj> uj) + <Plz,Plz>
{2.11)

~

is unique, and is given by 2z,

loa=1 P !

z = ¢(xs‘lx')' Xs~-u' + £(8 -8 x'(xs‘l

x')"lxs‘l)ﬁ'

(2.12)

-16-



where

S =7 + V. [2..1:3)

Lemma 2.8 Let {ei}?=1 be n elements in # satisfying

<E. ,£.> =

v.., and let § €% be given. The solution to the
Fty ij o s :

problem: Find yef%iof the form

di(ni+€i) (2.14)

o3
1]
e~

i=1

2'""dn) is a vector of real numbers to bhe

found, to minimize

where d = (dl,d

(8= R e ] I el

§ - difiz| + d.e. {2:15)

O i=lll {1 h L B

subject to
s 2

[ 6, = 7 d 3" = o (2.16)

i=1

is unique, and is given by 60,

8 = e ey T me T M nae) & E(s'l-s_ls'(xs"lx')'lxs'l)(n+e)'

(2.17)

where ¢, £, depending on 60 are given by (2.7), S is given

by (2.13), and the vector of functions (n+e) is given by

-17-



n+e = (nl+€1,n2+€2,...nn+en) (2.18)

TLemma 2.9 Let z satisfy <z,ni+ai> = Wey L= 1,2,00.ny

then if z is given by (2.12) and 50 by (2.17), then

~ ~

<P e, 3 <0 > (2.449)
o) o

Lemma 2.10 For d = (dl'd2""dn) any vector of real

numbers, and z and z as in Lemma 2.9, 60 ag in (2.17)

2

c2-3,8 >2 = <a,8 -3 52 < 20| |2]12¢| 18- § any ] 12411 T ae 1120
4 & o — ° 44 i'i Sy i71

{(2.20)
If €€ ﬁ"l' i=1,2,...n, then 50_50 E?fi' snd
& ; o 2 i 2
<z-2Z,8_ > i2[||PlZ|| (Hdo—.z diniH +||Z dieiH )1
i=1 2]
(2.2

3. Examnles of Reproducing Kernel Hilbert Spaces

3.1 Generalities

Let S, @2 each be the real line or a closed subset,
let G(s,u) be defined on S x Q with the property that

G(s,u) £ L,(2) for every fixed s, and suppose further that

2

-18-



0 = f G(s,u)p(u)du, DELZ(Q), seS (319
Q

implies that p = 0. Then the range of the operator G
defined by

(Gp) (s) = J G(s,u)p(u)du - (3.2)
Q

. is a reproducing kernel Hilbert space of functions defined
on S. If we call this space‘%'l, then it has reproducing

kernel Rl given by

Rl(s,s') = [ G(s,u)G(s)u)du t3..3)
- Y

with inner product

RE £, = é ol(u)pz(u)du (3.4a)
where
£.(s) = (Gpy) (s) = f; G(s,u)p, (Wdu, i = 1,2 (3.5)

Suppose , 'is contained in some larger Hilbert space
of functions defined on S, and {¢v}$=l are m orthonormal

i T = : "
functions on S all 1n,?4l . Then }io' the m dimensional

space sbanned by {¢v}$=1 is a reproducing kernel space with

-19-



reproducing kernel RS given by

m
R (mym ] = vz ¢, (s)9,(s") (3.6)

andfﬁ;=fjox£f?i is a reproducing kernel space with re-

producing kernel R given by

R‘s,s') == RO(S,S') + Rl(s,s') (3.7)

3.2 Reproducing Kernel Spaces Associated with Green's

Functions

Let L_ be an mth order linear differential operator
on [0,1] with m-dimensional null space. Let the linear

functionals MU be defined by
i m
{¥—-1) '
M £ = i . = + 2 e e 2
y ZlYuv (0) i -3 m (3.8

where the matrix {YUU} is non-singular. Let G(s,u) be the
Green's function for the equation me = g, Muf =0k PO s e s el

and let {¢v}$=l span the null space of Lo with
M b = 6 (3.9)

where Suv is the Kronecker §. We may take }éﬁ as the

collection {f: Iy feL,[0,1], M £ =0, u = 1,2...m,} and i¥'o

-20-



the space spanned by {¢v}$=l' ‘E§ =}f0 ® f}l then has inner

product
m 1
<fl,f2> = E (val)(vaZ) + f (mel)s(meZ)sds (3.10a)
v=l 0
and
2 1 2
||Plf|| = é (me)sds S (3.10Db)

Two simple examples are:

m
a) Lm=_._(.i_ﬁ
ds
(q_u)m-l
G(s,u) = g1
(3.11)
sv—l
f‘p\)(s) =W ’ v = l,2...m
YuV =1, w=v, =0 otherwise
s m
b) L = vzl (D+a ), {av}v=1 distinct positive real
numbers
m —av(s—u) 2f .
gls 1) | o @ sl i melio=l I ddk-ai)
v - v ; v
v=1 J#V
"= 0 otherwise (3.12)
-0 S
b, (s) = c e
M f = T (D+0,)
% 2#v .

e



where (D+av)f = £V ok avf. This type of reproducing kernel
space may be used to construct spline functions. (See [3])

3.3 Spaces of Functions with Rapidly Decreasing Fourier

Trans form

Let W(A) be a complex-valued Hermitian function of
A on (-=,») with W(X)eL, (-=,*) and |lw(xy| > 0, all real X .
Let G(t1) be the inverse Fourier-Plancherel Transform of
W(A) which we write as

Gir) = e 1™ youar . (3.13)

Let

[ee]

R(s,s") = [ G(s-u)G(s'-u)du = [ e

-0 -0

1= A onw™ (0 an

(3.14)
R(s,s') is positive definite, and, since |W(A)| > 0,
[ee]
0 = [ G(s-u)o(u)du, -0 < g5 < @, p€L2 (3.15)
implies p(u) = 0. }ﬁ , the reproducing kernel space for

R(s,s') is the collection of all functions f of the form

=]

f{s) = [ G(s-u)p(u)du peLz(—m,m) (3.16)

- 00

with inner product (by Parseval's theorem), given by

-2 2-



o Fl(l)F;(l)
<f1,f2> = f & dax (3.17)
- W(A)W (A)

where F. is the Fourier-Plancherel Transform of f.. %?
contains only functions whose Fourier transforms F(A) de-
crease sufficiently rapidly that F(A)/W(A)ELZ(—m,m).

For a concrete example, let g, p be non-negative in-

; P q i i
tegers with g < p, let {au}u=l' {Bv}v=l be p + g distinct
positive real numbers, let
P
p{a) = I 2ERk-a.5)
=1 F
q
o(x) = T (il~8v). (3.18)
3 v=1
4, W(x) = 9(X)/P(A).
We have
- T
G(t) = E ¢ B ' T {0
p=1 "
(3.19)
=0
where
a
c = I

(B,-a. )/ T (a.-a )
kw3

-2 3-



and

P -a_|s-s"|
R(S'S') = Ee e v
v
v=1
(3.20)
D g
8. = i
v S (au+a )
y s e ¥
(for g = 0, p = 1 we have R(s,s8') = e a|s-s !)_

Letting m = p-g, % is here the collection of all
functions with absolutely continuous m-1lst derivative and

square integrable mth derivative. Let

q - T
GO(T) = E due ’ T30
- v=1
(3.21)
=0
where
atl= 1 (8;-8) .
J#v
Let
(GQf)t = _i GQ(t—s)f(s)ds (3:22)

_24__



and let

(D+au)f . [ 3:23)

For fE'&, (an) has p-1 absolutely continuous and p
square inteqgrable derivatives, and the inner product 1in
is given by

oD

Eo» = _i (LPGQfl)t(L G.f.) . dt. (3.24)

<£1.%, pCotale

3.4 Spaces of Band Limited Functions

Let ﬁgkbe the subset of L2(¥m,m) of functions whose

Fourier transforms vanish outside [-A,A].

Let
G(t) = [ s{t-u)w(u)du (3.25)
where
e sin AT
™
(3.26)
A iud
w(u) = [ e W{x)da
- A 3

and W()\) is assumed to be a Hermitian function of A with no

real zeroes in [-A,A]. The equation

(2]

0= f G(t-u)p(u)du -® < t < w (3.27)

- 0O

D



has solutions in L2(—m,w) but not in ELA’ since (3.25)~(3.27}
imply W()\)P(?\)"= 0, -A < A < A, where P(A) is the Fourier-
Plancherel transform of p(u). (Note that S(A), the Fourier-
Plancherel transform of sin AT/7nt is S(XA) = 1, Al <A, =0
otherwise.)

'%ﬁ is a reproducing kernel Hilbert space with inner

product
A Fl{A)FZ(A)
<fl,f2> = f < dx {3.28)
-A WA)YW (A)
where Fi is the Fourier-Plancherel transform of fi’ Bz ,25,
The reproducing kernel is
A ixs-s") *
R{s,s8') = [ e W)W (A)dx . (3.29)
-A
If we set
W(A)2=1, |A] < A
(3.30)
=0 otherwise
then
' : L
Bl = EEiES ) (3.31)

m(s-s')

and :}A is a Hilbert subspace of Lz(—ﬁ,w). Slepian and
Pollack [10] consider the space of bandlimited functions with

reproducing kernel (3.31). A restatement of the sampling

-26-



theorem, tells us that the functions nj defined by

i(s~-27wj/A)

n.(s) = - e WA AL, J & el s

1
j S =

e

(Ja32)

are a comnlete orthonormal basis fori&t

4, Typical Theorems

A variety of theorems now fall out by applying Theorem
1.1 and the lemmas of Section 2 to the reproducing kernel
Hilbert spaces of Section 3. For concreteness only we
state them with reference to the example of Section 3.2,
since this example provides a direct comparison with the
method of regularization as discussed by Tihonov and Glasko.
Thus , let Lm be an mth order linear differential operator
on [N,l] with m-dimensional null space spanned by {év}t=l’

(m-1)

and }; = {z:L zeL,[0,1], z absolutely continuous}. Let

G(s,u) bhe the Greens function for the equation

= f V0 0as w9, U= 0,08, ol

1] The reader may verify that the choice of the matrix
{Auv} in (3.8) is irrelevant to the solution of our problems,

we take it as T.
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and

1

f G(s,u)G(s',u)du (4.1)
0

o
-
)
P
5=
il

G(s,u)G(s',u)du

b, (s) 8, (s") +

Py

o)

i

(43}

]
N3
P YR

1
(4...2)

We sunpose that K (t,s) satisfies that

K(ti,s)R(S,s')K(ti,s')dsds' L & dydpeedn

S
e

is well defined and finite as a Riemann integral.
Let ni(nis ) be defined by
1

ng(s) = J K(t;,w)R(s,u)du | (2:3)
0

Define the elements Ei E %&, and the matrices X and Z by

1
Pin. =_IE, ii(s) g K(ti,u)Rl(s,u)du, A= XD e gy

1 1

(4.4)

G



X ={x .}, u=1,2,...my i =1,2,...n

il
v
ey <ni,¢u> é K(ti,U)¢u(u)du, (4.5)
11
Dij = <gi,gj> = éé K(ti,s)Rl(s,s')K(tj,s‘)dsds'
(4.6)
Theorem 4.1 Let u = (4y,U,,...u) be a vector of n
real numbers, let V = {vij} be an n X n symmetric positive
definite matrix with vl = (v}7}, and suppose that matrices

X and ) defined by (4.5) and (4.6) be of full rank. For

~

ze Yf , define the numbers u; by

e ~ 1
e = ui(z) = <ni,z> = é K(ti,s)z(s)ds (4.1

Then

~

(i) There is a unique solution Z to the problem:

Find ze ¥ to minimize

n = . o TR 1k
_ _ i, a 2
M(z) = i,§=l(ui u;)v (uj uj) + o é (L_z) Zds (4.8)

30



given bhv

o -1 il = 1 1 -1

- _.hl .
- ' 1 s '
z, = G(XT_X')TUXLCGY + E(TT-TTRY (XD

where ¢ and % are the vectors of functions

=
|

(91 rbyreeedy)

E = (B By wa B )

and

Fa = Z + aV

(ii) 1lim Za = R given by
a>0

o]

is the (unique) solution to the problem: Find ze %

minimize

= 2
f (L. z)"ds
0 m's

Ak U ol
o

(4.10)

2o = oI x0Tyl 4 g0 e T Tk hE

(£.47%F)

to
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~

subject to ui(z) = ui,.i = D e T

(iii) For any ze ¥ satisfving

K(ti,s)z(s)ds i = 1325 ssN (4.12)

o
il
N

~

and & given by (4.11) we have the pointwise error bounds

1

|§0(s)—z(s)|2 <ol s 2)2 as) (4.13)
0
where
0% (s) = Ry(s,8) = £(s) [T E(s)" (4.14a)
+ Fe)-Ee) T kIO T @) -E) ITxN
and
6(s) = (§;(8),0,(8),...0, (s)
Els) = (£E,(8),E5(8),..-E (5)) (4.14b)

(iv) If ze%4 has the form

z(s) cv¢u(s) 5

n
; i£ d;E; (s) (4.15)

£

I
o3

v

where d = (d,,d .+.d ) is any vector satisfying Xd' = 0,

2'

and we set uy in (ii) as

G



s K(t, ,s)z(s)ds (4.16)
L 1

It
[

then the solution 2 in (ii) satisfies
Z = Z (4.17)

Proof: Assertion (i) is Lemma 2.7 and (ii) is Lemma
2.1. The remarkable error bound of (iii) is obtained from
Lemmas 2.5 and 2.6 upon setting 60 as the representer of
the continuous linear functional N defined by N z = # (s},

ze H, that is, 60 = RS. In this case we have

il

|;O(S)“Z(S)[ I<;0~z,RS>

<RS,¢U> = ¢u(s) (4.18)

<RS,§i> = Ei(s)

(iv) is another way of writing Lemma 2. 3.

Other minimization problems may be handled within the
context of the geometry of reproducing kernel Hilbert space.
For example, the solution to the problem: Find zet 7{ to

minimize M(z) of (4.8) subject to the linear inequalities

L= 1,27..:0K7 ;5 8,E8 (4.19)
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maybe reduced to a standard problem of minimizing a (finite)
gquadratic form subject to linear inequalities, as follows:
Inequalities (4.19) maybhe written

. ¥ <RS f22 < b g = 1,20k (4.20)

’
2 ) 2
Then, any solution z to this minimization problem must

be of the form

m n k
2= J oo b+ ] diE. 4+ ) aR (4.21)

for some coefficients {cU}, {di} and {eﬁ}. By substituting
(4.21) into (4.20) and (4.8), the minimization problem re-
duces to the standard problem of minimizing a quatratic form
in the coefficients, subject to a set of linear inequalities.
This minimization problem may be recognized as a problem in
control theorv. See, for example [5].

Side conditions which are precisely enough to specify
Poz give especially simple looking answers and error bounds.
For example:

Theorem 4.2. Under the assumptions of Theorem 4.1:

(i) The solution to the problem: find ze % to

minimize (4.8) subject to the boundary conditions (g

ﬂﬁe: Mvz = <¢v,z> = Sv, v=1,2...m (4.22)

~3%-



~

is unigque and is given by Zr
: o =1 = 1p
z = ¢8' + £Tu (u=-X'08") (4.23)

where O=(§l,82,...8m)
14y 1im 2. = zb,-where
a+0 4

~

z, = 08" + £7 "L (@-x"8") (4.24)

is the solution to the problem: Find zg ﬁé to minimize

1
S (Lmz)sds (4.25)
0
subject to
1
u: = [ K(t.,s)z(s)ds, 3 = 1,2 ..ntt (4.26)
. 0 .
W =8 w12, sl | (4.22)
v v

(iii) If zg§§ satisfies
i

u, = [ K(ti,s)z(s)ds , , (4.27a)
0

and

Mvz = 6 , v = 1;2;.:.M (4.27b)
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~

then Z of (4.24) satisfies

. 1
7 (s)-2_(s) |2 < 0% (s) {J (L,2) 2du) (4.28a)
" 0

where

o?(s) = Ry, (s,s) - E(s)] TE(s)! (4.28b)

and £(s) is given by (4.14Db).

Proof: ze'th, Mvz = 8§ , v=1,2,...m imply that

o] weq  ood
and
d m
1) K(ti,s)z(s)ds = <ni,z> = <gi,Plz> + Z Bvxvi
0 v=1
(4.29)
In this case (4.8) may be written
) b = i
M(z) = (<E., JPrzd={u.c™ B 3. MY I (<t Pagvmlu,= ] 8 % )
i,d L i 21 vVl F 1 g23 V™I
+ ol |Pyz]| (4.30)

Since {gi}?=1 and P,z are in ?ﬁl' we may find (Plz) to

minimize (4.30) or (Plz) to minimize (4.25) subject to

e 1



™~
\"4
-
=
I

1;2;4..0

via Lemmas 2.7 and 2.1 respectively, by setting m = 0,
iy o= }tl in these lemmas. To prove (iii) let Pg be the

projection onerator onto the subspace spanned by {Ei}2=l'

If ze 4 satisfies (4.27a) and (4.27b), then

sz = Plzo (4.31a)
Poz = Pozo (4.31h)

and hence
z -z, = (Pl—Pg)z. (4.32)

But
2(s)-2_(s) = <z-z_,R_>
= <(P1—PE)2,RS>
= <(P1"P£)Z’(P1—PE)RS> (4.33)
Hence
|2(s)=2, () |< | (B -p 2] [1[Py-e )R I | < [lByz|[[](Py-P R ]|

(4.34)

S



Rut

gz(s) = || (Py~P )RS[|2 (4.35)

5

A direct comparison with the solution of the methods
of reqularization and statistical estimation obtains, as
follows:

set v = D in (4.8) where D is the diagonal matrix of
P17 amd e B = 0 in (4.23) . Chooge {si}?=l’ sie[o,ll,

as in Section 1 and let
— L}
u = (ul,uz,...un)
be a given vector of real numbers and
s s = = [
P (zl,zz,--.zk)

where

N
]
N
Q
-
0
-
S
-
N
]
o
—

Then

2l B (JveD Sy Og (4.36)

I

where © is the k x n matrix with i, jth entry

R

Ej(si) = K(tj,u)Rl(si,u)du (4.37)
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th

and ) is the n x n matrix with i, j = entry
11
<le phar = L K, AR (Ga,n'" YKt n' ydudu' (4
5 1 I ]
1f {02}§=1 are a set of suitably chosen quadrature co-
efficients, then we have, for purposes of comparison,
approximately
k
gj(si) ~ g£1 K(tj,uQ)Rl(si,ug)Gz (4
k k
~ 1
<Ei.€j> A . K(ti'“g)Rl(“a'uz')K(tj'“z)gzda'
=1 L'=1
(4

st B Be ghE W % B nakris (ol (170 i svikhsi,; 5T aibky

K(tj,si)di, and R be the k x k matrix with ijth entry
Rl(si,sj). Then we may write (4.36) as

"""" Ly s | (4

Z ~ RE(KRK'+aD
We may identify R with Q_l of section ‘'l as follows:
Sunpose fe@él, then if me = g, we have
1
f(s) = [ G{(s,u)g(u)du (4
0

.38)

+39)

.40)

.41)

.42)
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and

1 2
f (L f) ds =
’ m

q2(s)ds (4.43)

=

Letf: (f(sl)f f(sz)r'-lf(sk)) r g= (q(sl)l g(sz)r---Q(Sk))'r
G be the k x k matrix with ijth entry G(si,sj)oj and D be

the k x k diagonal matrix with iith entry O,

Since
1
R(s,s') = i G(s,u)G(s',u)du, (4.44)
0
we have
=i T _1_'
R = GD0 G (4.45)
also
T = Gg (4.46)
: 2 * g P e sl
FYGE & J (I E)Tdd =g I8)yde =g § P .G F r=&f BRifof
0 m 's 0 o] o]
(4.47)

Some questions of convergence may be answered as follows:
For simplicity, we consider that the boundary values BS of
the solution z to (l1.1l) are known. We may then consider,

~

without loss of generality that z and z, are in ?él.
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Let the family of functions £ e Hyr 0 <t < 1be
defined by
(4.48)

Et(s) = K(t,u)Rl(s,u)du 0

R
i A
oF
| A
]—I

If the family of functions {Ei, 0<t<l} span the
(separable) space #{l, then gz(s) of (4.28), will tend Lo
0 for each s as the set {ti}?=l becomes dense in [0,1], by
(4.35). A necessary and sufficient condition that

{gt, Oitil} span ffl, is that
k2> =0 0<tl, 2z, (4.49)

implies that z = 0. But (4.49) may be rewritten

1
; K(t,s)z(s)ds =0, 0 <t<l,~zehy (4.50)
0

imples z = 0. There does not seem to bhe a straight forward

general way of estahlishing a rate at which

% (s) = II(PI—Pg)RSIIZ (4.35)

tends to zero, as, say sup]ti+l~ti| + 0, if indeed such a
rate exists. However, results have been obtained regarding

the convergence of I!(Pl—P£)6|[ when 8e7{, is "very smooth”.
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Thus error rates for the pointwise approximation of very
smooth z, or for the approximation of continuous linear
functionals with very smooth representers, are available.

These results will appear separately.

5. The Introduction of Quadrature Formulae and the Choice of a

Tf the integral

[ R

Ei(s) = K(ti,u)Rl(s,u)du (4.4)

can be evaluated analytically at values of s for which it
is desired to estimate z(s), and Xui and Oij of (4.5) and
(4.6) are known exactly, and computational and experimental

errors are negligible, then it is natural to estimate

Zigs) by zo(s) of Theorem 4.1 or Theorem 4.2. The purpose

of this section is to study the situation where {Xui}' {Gij}

and {Ei(s), }2=l must be evaluated by quadratures, where

quadrature error is the primary source of error. Let

N
{8p v By
and quadrature coefficients, respectively. We show that this

8. &2 051]), and {wk}§=l be suitably chosen quadrature points

situation leads in a natural way to estimating z by the solution to the

problem: Find ze ¥} to minimize

£ n N 2 i 5
M(z) = izl (ui—kélh(ti,sk)mkz(sk)) +49 é (L 2) Jds

{5:1)

il o



where A is chosen to approximate the mean square quadrature

~

error. Define n; € A by

A N
n; = izl K(ti,sk)mkRSk 1 =B R vk voal (5.2)
Letting Rl g be that element of?% 1 whose value at s is
£ k ~
given by Rl’sk(S) = Rl(s'sk)’ k=1,2,...N, define &, e?fl
by
~ N
E, = ] Kit,,s Ju, B R N I - P (5+..3)
34 e 1 fokt Tk l,sk

Then Plni = Eu e A= 125565 Xui given by

K(ti,sk)wk¢u(sk) (5.4)

~

is a quadrature approximation to Xui' Gij given by

oo TR N N
i U il L LT S T e

(5h)
is a quadrature aporoximation to Gij and Ei(s) given by
K(ti,sk)mle(s,sk) (5.6)

is a guadrature approximation to £i(s) of (4.4), for each s.

-42-~



pefine €. E?{ by
i

~

Bl MRy

(5. 1)

The problem may now he viewed as that of approximating

~

ZEY = <R3,z> from the information u; = <ni+€i'2>' v R el S
or, alternatively approximating R, by {ni+gi}?=l; where the
n
& P known.
{el}l:l are unknown
Let

n ~
y = £ di(ni+€i)

where d = (d;,d,,...d ) are to be found so that y is a good

approximation to R . If we try to choose d to minimize

||R,~y|| in the error hound
<z, R=v>| < Ilzl] IRyl (5.8)
it is necessary to know <Rq'€i> = ei(s), A e 0 R T

which is assumed unknown.

e will choose d subject to the constraint

il B



Then

2 S 2 8 2
llp-S"VH < Z{HP]_(RS_.Z dini)H + HE diEiH }
i=1 i=1
(5.9)
. . . 4Xh .
Let V bhe the matrix with 1,3 entry vij = <ei,ej> given
by
1 1 N
<ei,ej> = [ K(ti,u)du{f K(tj,v)R(u,V)dv - Z K(tj,sk)R(u,sk)wk}
0 0 k=1
N 1 . N
- QEIK(ti,sg){éK(tj,V)R(Sl,v)dv—kélK(tj,sk)R(sg,sk)wk}

(55 310)

N
~

and let X and Z be the n x m and n x n matrices with entries
{Xui} and {oij} respectively, given bv (5.4) and (5.5).
By Lemma 2.8 with 60 = RS, the solution RS to the

problem: Find y of the form

di(ni+€i) {5.:11)

<
]
|~

i=1

to minimize

(5:12)

L Al



subject to

n ~ 2
[4pf (BI=v] (Bing) |6 #D (5.13)
j=1
is given by
R, = 6(5)(xs'lx')"lxs“l(n+e)
+ t(s) 571s7 g (xs71x )y "5y (n+e) (5.14a)

where
ds) = (61(8),by(s),euudp (s))
(5.14b)
E(s) = (Ey(8) ,E5(8) .0 E (S))
S=) +V
and

el ~ ~ ~

a— ]
n+e = (nl+sl,n2+e2,---nn+en) :

Any "optimal" approximation to Rs will depend on the un-
known V. Thus it is desirable here to approximate V using
whatever information is available. A plausible approximation

is

vV = AI t5.15)

where A is a "questimate" of the mean diagonal element of V,
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I
S
o~

<Ei,Ei>, (5.16)

this "questimate" bheing based on (5.10) with i = j and the

properties of the guadrature formula being used.

Let R Ae?é— be given by (5.14) with V replaced bv AI,
!’
that is,

= i AA_lf\' _lAA-l ~
RS'A = ¢(s) (X5,7X") XS, (n+e)
+ E(s)(Sk "Sx X(XSA ) eRy ) (n+¢g) (5.17)

where

~
~

5, = ] 4+ AL

~

Then an estimate zy for z(s) is defined by

~ ~

zk(s) = <Z’Rs,x> . (5.18)

with

2(s1-2, () | < [zl ][RRy 411

~

The function Zy defined by (5.18) is in'3¥ and may be written

~ ~ A 1}1&1 AA_-l__

z, = ¢ (XS, X')X8u (5.19)
et N %5 Rl PP 8.0 T
+ £(S)T=S (XS TX) TS
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~

where ¢ and £ are vectors of elements of ?} with ¢ as in

(4.9) and

~

(EgpBnrers Eo)

Y >

~

with Ei given by (5.3). By Lemma 2.7, zy is the solution

to the problem: Find ze % to minimize

n ~ 9 1 2
Y (uy-<ng,z>)” + 2 S (Lz) ds (5.20)
i=1 0
where
A N
<ng.z> = kél K(t,, s )0 z(s,), O . PR

and A is of the order of magnitude of the mean square quadrature
Thus, if the primary source of error in forming a com-
putational estimate of z(s) is quadrature error, then this
shows that an appropriate choice for the regularizing para-
meter a of (l1.6) is as A, an estimate of the mean square
quadrature error, as defined by (5.10) and (5.16).

We have not mentioned the choice of guadrature formula.
Once the quadrature points {Sk}§=1 are chosen, the choice of
best formula in the sense of Sard is equivalent to approxi-

mating the element n,e 9% by a linear estimation of the

M

e The optimum coefficients in this case

elements {R_ }
Sx

. s

error.



are readily seen to depend on the unknown inteqgrals. Hence
a convenient quadrature formula which allows a "guestimate"
of A should be used.

As is widely known, as soon as there are experimental
or computational errors, there is a point of diminishing re-
turns in choosing n too large. If, e.g. K(t,s) is continuous

|

is the spectral norm. We will guantify this statement and

then IIZ—1|| and ]IZ"1|| + © as n becomes large, where |

indicate a mitigating technique. To simplify the equations,

we let Mvz =0, v=1,2,...m. Then we may let
~ 1
w, = <f.4e, 2> = [ K(t.,8)z{s)ds, 4. = 1,2,.-.n (55 22:)
i - 0 o
at : S
where {“i}i=l are given by (5.3) and €4 Ei £y Then, by

Theorem 4.2 the solution to the problem: Find ze}{l to

minimize

. 1
I (ug-<E,,z>)° + A f (1 2) ds (5.22)
i=1 o °

~

is given by Zy

z, = £(I+AD) 14 SR o

sl e



and

~ 2 ~
|z(s)—zx(s)| = |<2azk,Rl'S>[ =
|<z,Rl,s—R1’S'A>| < [|z[|||Rl'S-Rl’S'A|| (5920)
where
A n i~
T s i£1 ditegreg!
with d = (d;,dy,...d ) given by
. ~ ~ G 1
d = E(s) (J+AI)
with £(s) given by (5.14b).
Now
¥ 2 NRE Sy 2 2
1Ry, 67Re, s o 1% < 2001Ry o= ) as€; 1% 1age; 115
(5.25)

If V is the matrix with ijth entry v.

= <£g, g
iy el,ej , then the

term in brackets in (5.25) may be expanded as
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Ry (s,5) - 26 (FnD (o) + Ets) (fan) T (Fan e

Ly (Gan) " tes) ! (5.26)

+ E(s) (J4AT) ™
andc

Ri(s,5) - B e + e YT s (527

where 2_1/2 is the symmetric square root of Z—l and

A= rary "IV 29§ 2021y (s Y (5.28)

Letting Pg‘denote the projection operator onto the subspace

spanned bv {Ei}2=l , we have

2 -1
||

N Y |

[1PgRy ol 17 = £(s) ] tE(8) (5.29)

Lines (5.25), (5.27), {5.28) and (5.29) yield the bound

2 [ A 2
iy By el 17 2 2 HRy FeRy G

+ HPgR ||2.

1l,s

U1gan -

IV+KI|]{J t5.30)

some algebraic manipulation gives that (5.26) is eaqual to

If Vv = AI, the term in curly brackets in (5.30) can be replaced

by A||{E+AI)~1||. In practice as N, the number of guadrature
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points hecomes large, one expects ||V|| to decrease to a

finite limit imposed by round off errors. As n(n<<N), the

number of data points, becomes large, ||R, _-P;R, _|| de-
- s o T T
creases, however, A]](E+AI)—1||2 will increase for X bounded
below since [|(Z)_l|| + ® as n + o,
Let: it = {hﬂi} be a p x n matrix of real numbers of
rank p. Tiet
¢ n P
&y = 1 hy&y
i=1
x n
e N (R (5. 231)
i=1
n n 1
o .Z hy u; = 'Z hy, J K(t;,s)z(s)ds, 2 =1,2,...p.
i=1 i=1 0

Tf we estimate z(s) assuming the information zeﬁfl,

~
~ ~

<Z,E£+E£> = U, V=152 05 wD

~

as before, only replacing the set {Ei}?=l by {EE}E=1 and

the numbers {ui}ril=1 by {u }E, an error bound analogous to

’

the right hand side of (5.30) is obtained of the form

2(||R, _-P 12 1

1l,s g

1,s [«] |avH " +AT| | })

2 2 -
+ ]’P?Rl’s|| {|| ()R +21)

(5.,32)

=G



where P, is the projection operator onto the subspace
' oi Y
P
£}2=1'

in Fuclidean n-space, then the term in curly brackets in (5.32)

spanneduby {é If the rows of H are orthonormal vectors
can only he decreased, as compared to the term in brackets in
£5.20), while the first term*in 157 32) may, for large n;

and n-pP, may not increase much, as compared to the first

term in (5.30). If V = AI, then the "optimum" choice of

7 to minimize the term in brackets in (5.32) is to choose

the rows of H as the eigen vectors corresponding to the o

largest eigenvalues of Z.

6. 'Statistical Fstination' of Soliutions to Integral Eauations

It is far from coincidental that the method of re-
gularization and the method of statistical estimation lead
to the same numerical solution. Let R(s,s') be a continuous
positive definite kernel on S x S, and ﬁ%R the reproducing
-kernel Hilbert space associated with R. Let Z (s), seS bhe a
stochastic proéess (i.e. a family of random variables in-

dexed by s), with FZ(s) = 0 EJ and

FZ (s)Z(s')

Rizs,z"} (6sl)

EJ without real loss of generality

SE S



Let X(t,s) satisfv the assumptions of the corollary to

Theorem 1.1 and consider the stochastic model

DY = J K(t,q9)% (g)ds (6.2)
S
where observations will be taken on the random variables
U(ti), i=1,2,...n. U(t) is a well defined random variable
for every teT. We have been studving the (deterministic)

model
u(t) = f X(t,s)z(s)ds (6.3)

where ze}éR, and the numbers u(ti), i=1,2,...n are available.
The purpose of this section is to demonstrate rigorously that
the same numerical solution to the integral equation is ob-
tained wether the true 'solution' is considered to be an
element zeQ{R or a realization of a stochastic process Z(s)
with covariance R(s,s').

Lot W,

be the Hilbert space smanned by the stochastic
process {Z(s),seS}. (See [6]). Q%'y is defined as follows:
71l random variables Y which are finite linear combhinations

of the form

Y = % agZ(s,) S €S (6.4)

are in *77. An inner product on the linear manifold of all

B



such finite linear combinations is
> =
<Y1,Y2 EYl o (6.5)

andﬁ% 7 is the closure of this linear manifold with the
given inner product. The precise source of the duality be-
tween 'deterministic' and statistical models is the following
(well known) fact:

‘N 5 is isometrically isomorphic toi#R under the

isomorphism induced by the correspondance "~",

Zz(s) ~ RS . YseS (6.6)

Furthermore, the random variable Ys?ﬁz corresponds to the

element ne?ﬁR if and only if
EYZ(s) = R = wig); se8 {6:7)

The family of random variables U(t), teT are all in ?{Z by

our assumptions on K(t,s) and

u(t) ~ (6.8)

e

where n_ is defined, for each t, by (1.25). Let {¢U}$=l

be a specified set of m orthonormal elements iny—p,, and let

-54-



{pv}$=l be the m random variables in '+, which correspond to

{¢v}$=l under the isomorphism induced by (6.6). It can then

be shown that Z(s), seS has a representation of the form
m
Z(s) = U£19v¢v(s) + 24 (s) (6.9)

where 7, (s) is a zero mean stochastic process with

l(

] o ' = ] S 1
EZ,(s)2Z,(s') = R;(s,s') = R(s,s') v£1¢v(s)¢v(s ) (6.10)
and E‘.pvpU = 6u,u' v = 1,2...m. Tet Z(s) be, for each s,

that random wvariable in the subspace of‘% 7 spanned by

{U(ti)}2=l which minimizes
= 2
E(Z(s) - Z(s)) (6.11)
subject to
E(E(s) - Z(s)lpv,v ® 1.2,..0) = 0. (6.12)

It follows from Lemma 2.2 and (6.6) with the identifica-

tions Z(s) ~ GO,U(ti) R ey D

ir Py ~ 9, and J K(t,,s)2,(s)ds ~ &,

that
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72(s) = () (xJ 1x) " Ixi Ty
fes) (07 - Tk ki h o (6.13)

where

8(s) = (67(8), 0,(s),eeud (s))

£(s) = (Ej(8), E5(8),...E (8))
X and ) are as in (2.1), and U is the vector of random

variables given by
U = (U(tl) r U(tz) r--.U(tn))

Thus, the numerical value Z(s) based on the model (6.2)

and a "realization" U(ti) = W, i=1,2,...n, is exactly the

~

same as the numerical wvalue of zo(s) of (4.11), based on

the model (6.3). An identical statement may be made about

~

zx(s) of (5.19) if we replace (6.2) by the stochastic model

N

U(t;) - k£1 K(ti,sk)wkz(sk) + e (ty) i=1,2,...-n(6.14)
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where

E E(ti) =0

E ¢ (t;)e (£} = 0, it

E e(ti)Z(Sk)

Il
o
-
=
il
=
-
S}
~
.
.
3

*
If we let s , be the Hilbert space of all continuous
; SHEE
linear functionals on Hope then H R is consequently

,isometrically isomorphic to-% 7 under the correspondance
Z(s) ~ Ns
where NS is the continuous linear functional defined by

N_z = z(s), ZE?TR

Then

Uty) ~ A
b 3

where At is the continuous linear functional defined by
i
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A iz = é K(ti,s)z(s)ds, ZEY}R

It is seen that the geometry for approximating Z(s) by

{U(ti)}?=l is exactly the same as the geometry for
: ; n
approximatin N_ by {Ati}i=l

An experimenter approaching the problem with the model
(6.2) chooses the prior covariance R(s,s') of (6.1) according
to his belief or past experience concerning Z(s). The
numerical analyst, beginning with (6.3) should choose an R
such that the norm of the solution z inH R is known or
believed to be small.

It is clear that algorithms for the numerical solution
of a broad variety of (linear) equations can, in fact, be
.identified with prediction problems on stochastic processes

in this manner.
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