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ABSTRACT

This note considers convergence rates for certain approximate

solutions to Fredholm integral equations of the first kind, namely

u(t) = [ K(t,s) z(s) ds, teT (%)
S

where S, T are closed, bounded intervals of the real line, and
K(t,s) is a given kernel on T x S with appropriate properties. It is
desired to approximate =z(s) given u(t), for t= tl, tz, o5 tn. We

assume that z is an element of a Reproducing Kernel Hilbert Space‘,;»‘?lR
with reproducing kernel R(s,s'), and we let the approximate solution to

2
(*) be that element =z G-"?R which minimizes HZHR subject to

ut,) = [ Kig,s) z(s)ds, i=1,2,...n
S

Let [|A || = sup |t, .- t.|, where t, and t_ are the boundaries of T,
i i+l i’ 1 n
and let Q(t,t') be defined by

Q(t,t') = ffK(t,s)R(s,s')K(t',s') ds ds'
S'S

Loosely speaking, we show that, if Q has smoothness properties
similar to those of the Green's function of a 2m th order differential operator,
and z is sufficiently smooth to insure that u given by (*) has a repre-

sentation of the form
ut) = [ Q(t,t')p(t") dt’
T

for some bounded p, then if the approximate solution to (*) above be
denoted by PV z, we have
n

l2(5) - By 2) ()] = o (llal™) s ¢S
n
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1. Introduction: This note continues the study, begun in [3] of methods

of solution of Fredholm Integral Equations of the first kind, namely

u(t) = [K(t,s) z(s)ds , te T (1.1)
S
where S, T areclosed, bounded intervals of the real line, K(t, s) is a given kernel on
T X S with appropriate properties, and u(t) is given for te 4;
A= {t<t,<... <t e i1
In [3], it was assumed that =z E?:?jg, where 9 » is the reproducing

kernel Hilbert Space with reproducing kernel R(s,s'). R(s,s') is a given

positive definite kernel on S X S. Let

Q(t,t') = [ K(t,s) R(s,s') K(t',s') dsds'. (1.2)
S'S

Itwas shown in [3] that, if Q(t,t) is well defined and finite as a
Rieman integral for every te T, then the linear functional At oni‘?}lj R?
defined, for fixed te T by

Az = SfK(t,s}z(s)ds (L 3)

. . ar ,
is continuous on g, R and has the representation

Az = G,z Sp, telT, z eH R’ {1,453



where N e“}%

R is defined by

n, (s) :SfK(t,u)R(s,u)du (1.5)

and <, L R denotes inner product in }}?; R We will denote the subspace

of Q}R spanned by {T't i tie A} by Vn and the projection operator in
o i
'1~.1,--R onto Vn by P

v
n

Suppose u(ti) and nt(S)are known exactly for ti ¢ &, seS. Then
i

it was proposed in [ 3] to choose as a "solution" to

u(t)= [ K(t,s)z(s)ds , t;eA (1.6)
S

. 7
that element =z e:,r‘,s_';-R which minimizes Hz |l R subject to the constraints

(1. 6). Since we may write (1. 6) as

~

u(ti) = f\j’]ti, z> , t,e A

s (1.7)
R i

the solution is PV z, and is explicitly given, in the case dim Vn =

=n
n
by
(B, 2) (5) = (n,(s), n_(S), +-. M (5) Q7 (ulty), ulty), ... ult ),
n 1 2 n
(1.8)

n

where Q is the n X n Grammian of {nt }i-l , with i,jth entry given
, i

(see [3]) by

; nti’ ntj SR = Q(ti’ ]' (1. 9)

Let HAH = sup lti 41 til , where, without loss of generality, we

let t1 and tn be the boundaries of T.



The purpose of this note is to investigate the rate of convergence

- T
of (PVHZ)(S) fto =(g), as ” /_\H 0. Let RS eJ)R
whose value at s' is given by

Rs(s') = R(s,s")

By the properties of reproducing kernel spaces,

(R, z), = z(s) , seS8, ZE%-R

and hence

= Hz-—Pv ZHR | R -P, R

n
< llz-p
n
= |z - Py zllg
n
Suppose =z eﬂ'R and
0= [K(t,s)z(s)ds, teT,
S
entails that =z(s)= 0.
Equation (1. 13) may be written
0 = \:"J'Ht’ z} , tel =z=0,

ozl IRl

thus, in this case, {nt, te T} spand_. R(s,s') continuous on

S X S insures that f*“ is separable, and, as HAH - (0, we must have
v R bl b b]

Iz - &, =l
vV, R

= 0, any fixed z, (including z= RS). However it appears

that no rate holding uniformly for =z é—‘fﬂ p can be found. In this note we

be that element of ﬁ R

(1. 10)

(1.11)

(1.12)

(1.13)

(1. 14)



v ZHR when z belongs to a special
n

subset of ‘ff; R’ More specifically, the main purpose of this paper is to

exhibit convergence rates for || 2 ~-P

prove
Theorem 4.

Let z e R? have a representation

z(s) = [ m, (s) dt)dt (1.15)
T

for some bounded p, and suppose {nt, te T} span pe Let Q(t, t')
satisfy

i
(1) if Q(t,t") exists and is continuous on T X T for t#t',
ot

)

L= Qulydyne ¢ &1 -a—ﬂ— Q(t, t") exists and is continuous on T X T for
£=0,1,2, .2m—28t

- . aZm—l . . 8Zm—l '

ii) tlfrmt' W Q(t, t') and tliT' W Q(t, t")

exist and are bounded for all t' ¢ T.
Then

. Py 2l =0l aly"

The proof, though long, rests only on an isomorphism between
two appropriately chosen Hilbert spaces and the Newton form of the
remainder for TLagrange Interpolation. Section 2 is devoted to the
proof, which proceeds via three preliminary theorems. Section 3is

devoted to a simple example and discussion.
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In the example of Section 3, z ¢} p implies that 2%, L,(S)
and u of 1.1 satisfies u(m)e LZ(T)’ where k+£=m and K(t,s)is a
Green's function for an [ th order differential operator. In that example,
which is apparently typical of the general situation, the restriction (l.15)

(m+])’ j=0,1,2,...m-1 is continuous and u(Zm) is

implies that u
bounded. Thus, loosely speaking, our results apply to the situation in which
u is slightly more than twice as smooth as in implied by the assumption

2 ¥ g



Theorem 4 has an interesting

Corollary Let N be a continuous linear functional on %R with

representer 6,
vz = <5, 2 >0 , z e (1.16)

and suppose that & has the form

5(s) = [ m.(s) wt)at (1.17)
T
for some bounded . Let Nz be approximated by N(PV z). Then
n
INz—N(PV z)| = o(lla™y. ) ZG%R. (1.18)

n

This is an immediate consequence of Theorem 4 upon noting that

INz - N(P,, z) | = | (z-P, z, 6-P, &), |
v, < v, Vn>R
<llz-p,zll_ lla-p, 6| (1. 19)
= v,”'R v.” 'R
and
3 m
ls - p, sl =odlall™) (1.20)

n

2. Proof of Theorem 4

Theorem 4 is an immediate consequence of Theorems 1,2, and
3 below. Theorem 1 is of independent interest and is discussed in

Section 3.
Theorem 1.

Let Q(t,t') be a positive definite kernel on TX T and let ~’>f 0 be



the reproducing kernel Hilbert space with Q as reproducing kernel.

Suppose
!
i) —Q-ﬂ— Q(t,t') exists and is continuous on T x T for {2. 1)
ot
y
t=k ty e 0, 1,2, v . 2 ——8-72-—— (t,t') exists and is continuous on
gt
TXT for £< 2m- 2,
821rn—1 82m-1
ii) lim T Q(t, t") and lim —Smol e ) (2. 2)
trt' At tyt' ot

exist and are bounded forall t' ¢ T. Let 7 T be the subspace of?f-'Q
n

spanned by the elements {Qt }in=1 where {ti ﬂ:l are n distinct

@)
7
!

points in T and Qt is that element of /i whose value at t is

Q
given by

Let PT be the projection operator onto@{— T and <., - >Q denote
n n
inner product in ?}{ 0"

Let u e“ have a representation of the form
Q

u(t) = [ Q(t, t')p(t') dt’ (2.4)
T

for some continuous p. Without loss of generality let t;and t
be the boundary points of T, and let n = N(2m-1) for some integer

N. Let Ik be the interval

Ip= [t(k+1)(2m-1)+1“ tk(Zm—l)-!—l] g B=05 4y Gge =L



Then
lu-p ull? < 2(t) (2m+1) (¢ - t
u-Ppuly < sup p (t) (2m+l) (£ - t)) X
n t
[ 82m aZm—l
sup ’—"""—— Q(E,t) | +2 Gip  Bup ——s——1 Q (§,1)
Lg:j:t % . Etel |8t
N-1 g 2m-+1
T -t |
k;'=0 (k+1)(2m 1)+1 k(2m-1)+1
2
(hal=™)
Remark: Since u(ti) = A"Qt.’ u 0 i=1.2 00 PT u is that
i n

element of minimum “'ié Q norm which interpolates to u(ti}, i=]l,2,::.

P M Q. 2 (R u)(t,) = ut,)
Tn ti— &) Tn i i

Proof:

~ At
If u is any element in % of the form

Q

W = ZQt_ Ojl c,(t) p(t) dt

1
. e T
then, since u efj, we have

2 o~
u |l < | u-ull

| u-p 5

T
n

Q

The proof proceeds by finding a set of functions {cjﬂ(t)}?_1 so that
5 -
lu - u HQ with u defined by (2.6) isboundedby the right hand

side of (2.5).

-y
| l

.U

X

(2.5)

{273



Now, since u satisfying (2.4) satisfies

) 11
<y, u>, = [ [ ety 2At,t)p @) dt at’ (2. 8)
e 0

1
U, Q> = ult) = [ Q (t)et)dt (2.9)
i Q a i

it follows that

~ 2 1 1 - - - S
lw-wlg = [ fot)txQ - ) o) @ , Qu - c,t')Q, > dtat
g 0 i=1 i =1 J i Q
(2.10)
where Q is, for each fixed t, that element in ‘?}Q whose value at
t' is given by Qt(t‘) = Q(t,t')s For te Ik we will approximate
Q. by that linear combination of (Q \ 2m which corresponds
t t
k(2m-1)+ 2| =1

to Lagrange (polynomial) interpolation of degree 2m-1. More precisely, let

2m
jfl (t =t 2m-1)4)
E 3
k= tel 2.11
pk,ﬂ( ) ZHm k ( )
o1 Tk(@m-1)+ Tk(@m-1p)
B2
=0 S
k = 0’1,2,9uoN_1
and let
ck(Zm—1)+ﬂ(t) = pk, E(t) , k=0,1,2,...N-1 (2.12)
’e= l’z’nnuzm"‘z

(k, £) = (0, 1)

=Pg-1,1®) +py 4(t) , k=1,2,...n-1



Then, for f G%Q, te I

k’
n 2m
Q.- ), e mQ ,fy =<Q - p, ,(t) Q £
k igl ' Y Q t EZ:l Ky Yem-1pe’ 7 Q
2m
= £(t) - EEzl o {0 (o 1yep) (2.13)
2m

where JZZ--l pk, ﬂ(t)f (tk(Zm—l)H) is, for te Ik’ the 2m-1 st degree

polynomial interpolating to f at t = tk(Zm—l)—H’ tk(2m—l)+2’ —_ t(k+1){2m—1)+1°
—_ n
It remains only to show that u defined by (2.6) with {ci(t) }i=l given by

(2.12) has the required properties.

By the Newton form of the remainder for Lagrange interpolation, we
know (see for example, Isaacson and Keller [2], p. 248) that, for te Ik

2m

2m
= JEI (t =t am-1y4) f Uramo1ye1, tkem-1ye27* * Sl yem-1)410 T

(2.14)

where  flty o0 1y Tem-lp2 0t Fkel)em-1)sr B 18 the
2m th order divided difference. Turthermore we know that if f has 2m

continuous derivatives in Ik’ then

g(2m)

2 Ye(zm-13+1 k(2m-1p22 "0 He)em-1re 1= (2m)t (6), (2.15)



=Ji0=

for some £ ¢ I If we only know that f(zm_l)(t) is continuous

kD
except for a finite number of finite jumps, then we may write the 2m th
order divided difference as a divided difference of two 2m-1 st order divided

differences,
ity em-1)41 Tk@m-1)+2> *** Hx#1)2m-1)+12 T
1

{f[t
k1) (2m-1)+1"k(2m-1)+1)

k(2m-13+1? Tk(2m-1)+2? *** Yk(2m-1)+2m-1 tI-

fl tem-1p22 ** Hkalyem-1p12t } (2.16)

and know that the term in brackets in (2.16) is bounded in absolute value

\ f(Zm—l)

by 2 sup defined by

(t) | . Now let f, be that element of 71
tel

Q
k

) (2.17)

that is, 2m

= Q= J; By P HE for t el (2.18)
Bt jZ=1 %3 ty2m-1)+j £

g
1

(2m)
tl

(t) has bounded left and

By assumptions (i) and (ii) , for fixed t'e I,s %
f(Zm—l)
£ t!

right derivatives. Thus, for k # £ and p = supl p(t)|, we have
T

(t) is continuous

for td1,, and, for tel



=

2m Zm
| p(t) p(t') <Q,- ), b (1) Q , Q- ), P, ()0 ) dt dt
kalﬂf NE oI R Thom-ne T Y 3 BT T Sam-1)4 /Q
' 2m
, "
<o [ [] <2 5 (0Q £,) ‘dtdt'
kaIﬂf SEogm Rl Themotpge B0
> 2m
= IfIf | J.lzl (=t 2m-1945) fer Uam-1y91, Te(zm-1y427 * ** Hetyamon e B |98 G
ke JF
2 2m+1
< e pnyen-+ tazm-+1 ) Cranyzm-1)+41 “k(zm-1)+1 )
x |f,(:.2m) (&) | (2.19)
for some £ ¢ Ik" Since |pJg J.(1:) |§1, we have, for ke £ that
@ 2m
£8™) (£) < (2m+]) sup QE, ) | (2. 20)
t 3 Ik a §2n1
il Ig

For k={, by use of (2.14) and (2.16), we have

2m
1 I e) ety <Q - ) p, () Q o L4 » db dp
i, ka B = IS Yeem-14 FQ
2m
| 1

ISty omo1y ) |
< 2 f f j=1 s
Iy

P
I Iy Cearyem-141 *k@m-1)41 !

£ | k(2m-1)41, " tk(Zm—l)-!—Zm—l’t]

]

’ k(zm-1342°°** Hk+l)zm-1)+1 ¢

’dt dt’

~f, |
fa b

8Zm—l :
s o Ol 6L 0 (2. 21)
oe 2m-1 ‘

2 2m-1
= P Canyem-1)41 tk(2m-1)+1) akeml) Bup
E,ﬂeIk




] P

Putting together (2.10),(2.18), (2.19),(2.20) and (2.21) gives

uu -3 HZ
2m 2m
s | f f PtIP(E') Q- ), By (110 ,Qu= 2Py 4(E)Q, dt d
k f=0'1 =1 ™ k(2m-1)+j j=1 ™ tyem-1)+i'Q
2 . 2m 8Zm—l ]
< p7(2mHl) | sup ’ s QU6 ) ) t2sup sup [T Q(§,1) l K
| E#¥t (0§ k &,tel |9¢
N-1
2m+1
kZ:o ery2m-1)+1 ~ Sk(2m-1)#1 ) (2. 22)

o(flal

Theorem 2.
Let R(s,s') be a positive definite kernel on 5 x S with associated
reproducing kernel Hilbert space ?f R’ let n(t, s) defined on T xS have the

property that for each fixed t the function of s defined by nt(s), where

n(s) = nt,s) (2.23)

satisfies yn eng Let Q(t,t') be the positive definite kernel on

Tx T defined by

Qt,t') = Ny Mo /g y bLit'e ¥ (2.24)

and let ,;\ be the reproducing kernel Hilbert space with Q as

Q

reproducing kernel.

Let V be the subspace of J , spanned by the family {nt, te T}, and

R

let V_ be the subspace of V spanned by {nt s e A}, Let Py and Py
i n



=] B

be the projection operators in 9{ R onto V and Vn respectively. Then

2 ) =
I B~ B, 2 |IR =] u- Pp U HQ (2, 25)
n n
where u E?A‘Q is defined by
u(t) = <ny, 22 (2. 26)
and PTn is the projection operator in 0 onto the subspace?#—Tn
spanned by the elements {Qt , tye A }.
Proof:
Since
Qp Q) o = A&t = lny naPps bt eT, (2:27)
there is an isometric isomorphism between'?)’ 0 and V generated by the
correspondence " " ,
QteﬂQN n, eV te T (2.28)
Obviously
i (A Vn
n
under this is isomorphism. Furthermore, since for =z e“}‘;R ,
_\ _ {/_ r \,“‘. = ‘/," \ Y
N PyZ /R T 22p = W) = Qp Vg s (& 29)
we have
PVZ ~ U
and
Pz ~ P u
Vn T

(2.30)
n



e b

and hence
2

3 2
HPVZ - By, HR = |lu - By B HQ (2,31)
n n
Theorem 3.
Let p be bounded on T and suppose =z has a representation
z(s) = f n(t, s) p(t) dt (2.32)
T
where n (t,s) satisfies the hypotheses of Theorem 2.
Then z e V and z ~ u under the correspondence "~" of (2.18)
where
u(t) = [ Q(t,t') p(t') dt' (2. B3
T
Proof:
Let Hﬂ = {1:11, tlZ’ - .tu} , £ =1,2,... be, for each £, a partition

of T, such that, for every t, the Riemann sums for 1'.[)?‘ for the integral

[ Qut,t') pet') at’ (2. 34)
T
converge.
Then Z( gy £=1,2,... defined by
-1
2 py(8) = 12'1 nfjés) Pty ) 5 =12, (2.25)

is a Cauchy sequence of elements in V which converge pointwise to

z(s) of (2.32) and u =1,2,... defined by

oy *

£-1

£=1,2,...



=B

is a Cauchy sequence of elements in %—Q which converge pointwise

u e so we must
(Ly (£)

have u ~z with uand z defined by (2.32)and (2.33).

to u(t) given by (2.33). But, by (2.30),
Theorem 4
ut) = [ K(t,s) z(s)ds (2, 579

where =z is assumed to be in F'NR, the reproducing kernel Hilbert space

with reproducing kernel R(s,s'). Let Q(t,t') defined by

Qt,t") = [ K(t,s)R(s,s") K(t',s") ds ds' (2. 38)
s’s

he well defined as a Riemann integral and

satisfy hypotheses (i) and (ii) of Theorem 1. Suppose z eE}fR and

u(t)= 0 =z = 0, and suppose z has a representation of the form

z(s) = [ m(t,s)p(t)dt (2. 39
T

where
nit,s) = fK(t,s')R(s,s')ds'g (2.40)
S

Let Vn be the subspace of %’; R spanned by the elements {nt 5 ti eA}
i
where y is defined by
i

s) (2.41)

and suppose P\/’ is the projection operator onto Vn“ Then
n
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z(s) - (P, 2)(s)I<R %(s,5) » sup p2(t)- (2m4)
n t

r 2m g2m-1 }
| sup e, 1) [#2 BUp sup |—=—5 RUED) X
| £t | g2 B ger, |BEPH
L k J

N-1

2m+l1
kZ:o (ter1yzm-1)41 ~ k(2m-1)+1
2
=o(lafy™ (2.42)
Proof

lz(s) - (P, z)(s) | 1-‘f£—P z, R \ |
Vi ” Va S“>R

| z-pP

A

v 2 g lImglg (2.43)

J
R’
is equivalent to the assertion {nt, teT} span?’/'R., Then, by Theorem 3,

P .
Since u(t) = ".fnt, z\) , the assumption =z e u(t) =0, teT = 2=0

Zi R e?VQ given by

ut) = [ Qt,t') p(t') dt’ (2.44)
T

under the correspondence (2. 28) and hence

|z -p, zH; = llu- Py u |2 (2.45)

n n Q

where PT is as in Theorem 1. Application of Theorem 1 to the
n

right hand side of (2.45) then gives the result.



.

3. Discussion

In an attempt to give the reader a feel for what is going on, we
discuss a very simple example. There are several interesting points which
will become clear from the example. First, assume that {nt, te T} span

ﬁR and let K be the 1:1 linear operator from H g onto ?Q defined by

(Kz)(t) = [ K(t,s)z(s)ds (3. 1)
S

Then the "solution" PV z is given by
n

z = K_I(PT u) (3. 2)
n n

Py

where Ppu is that element of '/;\j 0 of minimum )‘L{j-Q norm which interpolates
n

to u(ti), i=1,2,...n. Secondly, we do not so far have the best error rate for
lz(s)— (PV z)(s)l since we have not discussed the rate at which

H RS— 2 Rs || - 0, This is done in the example presented here. We remark

Vn

that if R(s,s')and K(t,s) are appropriate Green's functions, then the
theorems presented here are intimately related to some convergence
theorems in the theory of spline functions. We will illustrate this remark
with respect to certain polynomial splines.

Let S=[0,1], T=[0,1] and let

. 1 (s—u)_}_(_l (S'—U)E—l
R(s,s') = Of Ty o du (3. 3)
and
e (t-s), "
(t,8) = 33 (3.4)
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with k,{ positive integers with k+£=m. Then ?15 R is the space of

all functions z on [0,1] with z(v)(0)= 0y w1, 2e0 0 a k=1, 2K) ¢ L,[0,1],

with
. 1
. k k
(“\-?fl’ zz. o= f zi )(s) zz( )(s)ds (3.5)
“ R 0
It follows that
m-1 k=
fl (t—u)+ (s—u)+ : .
n(t,s) = s g u (3.6)
? 9 (m-1) (k-1)
fl (t—u)rf—1 (’t:’--u)j_l"1 ]
t,t') = 0 . u 3.7
QLYY= J Tmyr @by : (3.7)
‘;‘%Q is thus the space of all functions u on[ 0, 1] with u(v)([)) = 0,
b= Dy 1,8, ou s mely o™ LZ[O 1], with

<.’;/u f um) uzm}(s) ds

H

n*{s,t) defined by

n*(s,t) = n(t,s) (3. 8)

is the Green's function for the operator L defined by

Z(k+m)

Lz = (3.9)
with boundary conditions
zNoy=0, v=0,1,2,...k-1 (3. 9b)
z(v)(l) =0 v=k,ktl,...k+m-1
Thus, z has a representation
1
z(s)= [ mt,s)p (t)dt (3.10)

0

for p continuous if and only if z(v)(O) =0, v=20

z(v)(l) =0, v=k,k+1,...k+m-1, and z(m+k) = p continuous.

1,2,...k-1,

?



<

Pv z, given by
n
__.I i
PV Z = (nt ’ T].tyo-ﬂt ) Q (u(tl)J u(tz),""u(tn) ) (1"8)
n 1 2 n
is the solution to the problem:
Find z ¢ 9 g to minimize
! 2
f(z(k) (s)) ds (312}
0]
subject to
1(t-s)y t £ -1 3}
u(t,) = f-(-f—:—l): z(s)yds = [ dg,, ) dE,,... [ =z(sMs ,i=l,2,..
0 o o o)
(3.13)
The solution to the problem: Find %E%{Q to minimize
1
2
f(k(m) (s))” ds (3. 14)
0
subject to
}-L(ti)=u(ti) 3 1212500 o1l (3.15)
is y = PT u, given by
n
_._1 1
L= Qs Qpoeer Q) Q ity ulty), - ulty)) (3.16)
that is,
__1 1
) = (Q(t) 1), Qlty, ).+ Qlty, 1)) Q7 (ulty) ulty), e culty) )
(3.17)
Since
812
— 7 Q(ti,s) = T](ti, s) (3.18)
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we have
£
l&f )(S) =(PV z) (s) (3.19)
n
K—l u, u EI%Q is given by
£ = g (3.20)
Thus, (3.19) is an example of the relation
K"l(P u) =P, =z (3. 21)
i Y ’
n n
whenever
Kz =1 (35 22)
Hence our method of approximate solution of
(3.23)

Kz=u

is equivalent to interpolating usmoothly at the points uf(t ),
of the resulting interpolating function.

n and calculating K

1=},2,54
In general, we have
|z(s) - (B, z)s) < lz-P, 2z I IR -P, R (3.24)
n n n
where, by Theorem (1)
n I - H
Z~ B, & =llu-P_,u
Vi R Tn Q
> :— 2m
< sup p (t)(2m+l) | sup 5 QUE, 1) ‘
t | E#t | 8¢
nN-1
)Zm-l-l

| 92m
+ 2 s]L;pgs;lpIk; me 7 Q(E,t) f E k+1)(2m—1)+1_tk(2m-1)+1
J k=0
(3. 25)
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In this case

e » (m+k) _ LI(Zm) (3. 24)
2m
e wern Q(E,t)‘ = 0 (3.25)
8Zm—l
sup —— Q,t) | =1 (3.26)
g,teIk a¢
N-1
2m+1
, 2m
and, since ), Ca1y2m-1y11 "k (2m-1)41 ) <em i ||
k=0
we have
lz -7y zllg < 22mi1) supl 2™ (s) | 2m-1y™ a7 (B2
n S

In Lemma A.l of the Appendix, it is proved': for this case, that

1 1
aFT 2 k-3
Rl < Cp T2 Jal (3.28)

| r -P
& n R

v

where C 5. 55 is given by (A.13). Hence

2

|2(5) - (By 2)(5) | < 2(2m)sup |27 | (3. 29)
n S

1 1
el PN L

e m(Zm-l)m(m—

k’

It appears that Lemma A.1 has an easy generalization to
R and K which are appropriate Creen's functions, but we do not as yet
have the most general conditions on R and K for which error bounds of

m+k-3

the form O([lAal) obtain.

*The method of proof assumes a bounded mesh ratio.
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N ow

l2(s) - (B, z)s) | = [u sy - 5 Pis) | , £=0,1,2,...m-l.
n

k-3 2m-£-1
< 2(2m+1) sup | u?™ sy Cp fm-1) 2[lAll“™T 2 (3. 30
[ 2
Since y, (s) is the solution of the minimization problem of (3.14) and (3.15),
it is well known that wu(s) is the (unique) 2m-1 st degree polynomial
spline of interpolation to u(ti), t=1,2,...n, satisfying the boundary

conditions

woy= o, v=0,1,2,...m-1

We have thus proved in (3. 30) the following Theorem, which is typical of
convergence theorems to be found in the spline literature. (see e.g.[l] )
Theorem 5.
2m . (v) (v
Let u(t)e CT[0,1], with u'/(0)=0, v=0,1,2,...m=1, u' /(1) = 0,
v=m,m+l,...2m-]1, and let y(t) be the 2m-lst degree polynomial spline
of interpolation to u(t) at t = tytoyeeety satisfying the boundary conditions

W oy=0, v=01,2,...m-1. Then

2

1 e
lusy - uPs) | < 2(2m+1) sup | u®™s) Cy m(rrrl)k—aHA [jem=d-a

S

=  1,2yss w=L

d



P B

Appendix.

This appendix is devoted to the proof of Lemma A.l used in the

Example of Section 3. The Lemma is not necessarily new, but is typical

of convergence theorems in the spline literature, see e.g. [l].

Lemma A.l

Let -
1 (S—u)k“l (S'—u)k !
R(s,s') = f + t s du
’ 0 (k-1). (k-1).
(t-5))
and K(t,s) = —T!:W , with k+£=m, Let
sup|ti+1—ti| /infl -t | = a< (A. 1)
i i
Then
-1 k-1
= 2 2
I Ry Py Rq I < C¢om (S (A.2)
where
m-1
S W 1 (=)™l ma
k,m ~|(k-1)! (m-1) T [+-1 |
it | T \ i
#=0,1,2,...m-1
Proof.

qt(s) is given by

A CE

0y (8) = / (m-1)" (k-1),

du (A. 3)
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For the remainder of the proof we consider s fixed. Then for any

n
{di(s)}lzl;
u "< Ir -7 I
R -P,. R ||l < [R, - d.(s)m (A.4).
2 ¥y B g e B T
1 {s-u) (s- )E . - 1(tl_,u)f1 . (s—u)]j__1
i B = i = R A My e vl
l_
n n 1 (¢ _u}m—l (t _u)m 1
+ i
d.(s)d d
| ¥ ) 2
1"(s—u)lj~ . o (t -u)T : \
= Ty 121 d,(s) ey ) du (A. 5)
Suppose tj < 8 < tj+1 . Set di(s)= 0, except for i=7j, j+l,..
j+m-1. Then (A.5) can be written
. 2 , o
1: (- U)E 1 j4+m-1 (ti-—u)m_1\ tj+m—1/(s—u)i_l j+m-1 (tj_—u)r-:-l- ¥
f - izj 4(8) +tf &_ &-1), ‘i; 4 () Iy

j

The first term may be made to vanish by choosing the {d s)}j“Lm_1

so that the coefficient of u’ is O, for £=10,1; 2,% s s~
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j+m-1
This is accomplished by letting {di(s)}i - satisfy
g 1 1 \ ‘dj(s) \ 0
i
t, ) tm-1 1dj(s) | | 0
L. ! | :
i _ 21
| s
| g
! | 2
| ' |
| m-1 m-1 m-1 | | k-1
| 5 b1 Yi4m-1 | 4bm-1(8) |
‘ (m-1): (m-1): T (m-1): / % / 4 J
\
We may get an explicit expression for dj_l__l(s), Te @l 2400 sm=l, by
noting that cj+T(s), 7=0,1,2,...m-1 defined by
fey(s) [ 1 i . 1 | (1
|Cj+1(s) =1 Y Ll tirm-1 | &
2:
‘ m-1 m-1 m-1 m-1
Cj_l_m_l(s? e _-t_j“’_ t.+l s s @ t .+m_1 S( _1)I
/ \(m-1): (m-1). (m-1): o

y

is the (m-1)st degree polynomial which is 1 at s = tj+'r and is 0 at

S =t p I=0,1,2,...m=1, £+% Thus
II (s-t,
g Y
Cj+"r(s) - I (tj_;_‘"r_tj_l_g, , T=0,1,2,...m-1

(A. 8)
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and
gt 1
d.. {s)= c,,(s)= : I (s-t., )
j+T i j+T Tt =ty 0) 3 . o ; j+v
ds ggr IHT j+ 15,0001, v,-‘ill,]z,...:tJZ
2=0,1,2...m-1 de# T VT (A. 10)

where the sum is over all | _1}" ways the indices {0,1,2,...7-1,71,...m-1}
\
\ g

may be selected £ ata time.  With this choice of {dj+T(s)}m_1

T=0
(A.6) becomes
t k-l m-l m-1 2%
j+m-1 (s-—u)+ (ta+ —u)+ 1
J (k-1)! - J(—rrn—l)' Im(t,, -t.,,) 2 e T o
t}. T=1 . j+T j+L iy, v¢11,12,...1JZ
~ £=0,1,2,...m-1  ig#7 v T -
(A.11)
i T
Since \(tj+T—u)+/ (tj+~r—tj+ﬂ) |§ T7-1| a and tj < sftj+1,
we have that (A.1l) is certainly bounded by
P 2k-1 2k-1
Clo (1) Al ; (A. 12)
where =
m-1 m-1 m-1
o s | 4 1 (18) (A. 13)
k, m (k-1) i (m-1)f  II[v-{] j :
T=1 I
FT
and
_1
Iz, - by, RN = odllall A. 14
s V. s = oflla ) (A. 14)
n R

Remark. The case of general R may be converted to a problem

in the rate of convergence of an approximation in the Lz norm as follows.

Assume R has a factorization of the form



.

R(s,s') = G(s,u) G(s',u) du (A. 15)

= R

where U is, say, a given interval, and assume that G and K are
sufficiently regular to allow interchanges of the order of integration

below. Cbserve that

(BS,RS> =R(s,s) = | G%(s,u)du
s R U
(\JF{S,n,Ei}\q = nti(s) = SfK(ti,s')R(s,s')ds‘
= [ du G(s,u) fK(ti,v)G(v,u)dv (A, 17)
U 8

and

Ny M P = K(t,,s) R(s,s') K(t,, s') ds ds'
<ti’ tj? sfsf ¥ ]
.—_g du éfK(ti,v)G(v,u)dv SfK(t].,v")G(v',u)dv' (A. 18)

n

Then, for any {di(s)}i -1 3

n

i |
Iy -7y Rl < IRy 12:1 ORI
n
= [[G(s,u) - Y d.(s) [Kt,,v) G(v,u)dv]® du (A.16)
U i=1 ' 3 !

The problem of finding error bounds is then one of finding di(s) so that

n
{f K(ti,v) G(v,e) dv}i of well approximate Gf(s,-) in the L2 norm.
X =
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