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Abstract

m
Let L be the differential operator defined by me = l’Il (D +a )£,
V:
where {@ }™ are m distinct positive real numbers and D
Vv =1
is differentiation. Let #f p = {f:f(r) is absolutely continuous on

(=0, 6y, ¢ = G128, 0 mely e Ll B L feLy(-%, ©)}. We solve the constrained

minimization problem: Find h e H g to minimize

S (L _h) (s)]° ds

— 00

' 00
subject to the constraints h(j) = f]. y j=----1,0,1, «-« , where {fj}
. j= -

is a given sequence satisfying

2
o]
the existence of c'l_(ﬁecessarily unique) solution. If f is any element

It is shown that Z f¢<® jis a necessary and sufficient condition for

in & o satisfying £(j) = fj’ j=4+s0 =1,0,1,~++« . ‘polntwise errot bounds on

[£(s) - h(s) |

where h is the solution to the constrained minimization problem, are given.
A formula for h is easily given by applying standard techniques related to

the interpolation of a zero mean stationary Gaussian stochastic process with
m

spectral density |P(N\)]~ 2 , P(\)=1I (ixte )., Some generalizations are
v=l

discussed.



A Note on Interpolation Over All the Integers

1. Introduction
Recently, there has been some interest in interpolation, when the
data to be interpolated is given at more than a finite number of points [2][8],
although this interest goes back many years, (See, for example [7]). The
problems of existence and uniqueness, not to mention construction, of

interpolating functions satisfying some optimality criterion may be quite

difficult. In this note we consider what may be viewed as one of the simplest

special cases of this type of problem. The main reason for considering this
case, is that it is not difficult to explicitly construct and study the (unique)
solution, by elementary techniques. It seems however, that this case has
been overlooked in the approximation theory literature.

Let Lm be the differential operator defined by me =V1'[Ii11 (D + ozv)f,
where {a’v}m1 are m distinct postive real numbers and D is d—ifferentiation.
Let HR =V—f:f(r) is absolutely continuous on (-%,%), r=10,1,2,...m-1,

£ Lol-%,0 T 1& Lgl-%,~} }. We solve the constrained minimization

problem: Find h e )f’R to minimize

i 2
Sl by (s)]° ds
— 00
0
subject to the constraints h(j) =f;, j=... -1, 0,1, ... , where {fj}
i =

is a given sequence satisfying



o]

2 g e e
It is shown that Z f]. <% jis a necessary and sufficient condition for

JEA¥
the existence of a (necessarily unique) solution. If f is any element

in '#R satisfying f(j) = fj, j=... =-1,0,1,..., pointwise error bounds on
|£(s) - n(s) |

where h is the solution to the constrained minimization problem, are given.
A formula for h is easily given by applying standard techniques related to

the interpolation of a zero mean stationary Gaussian stochastic process with
m

spectral density |P(}\)| 2, P\y= 1I (ikJrozv'). Some generalizations are
v=1

discussed, in particular where Lm is replaced by a differential operator of

infinite order. :



2. Construction of the Solution

Define G(s,u) by

~a (s-u)
——-———HWI? (@.-a) s> u (3)

jEv

G(s,u) =

LIRS

g% |

1
o

Eor pie LZ(— © ) define the operator G by

0o

(Gp)s)= [/ G(s,u)p(u)du

-0

(4)

Letting
f (s)=(Gp)(s) (5)

it is straightforward to check that

me=p &. (6)

We also have that f(r) is absolutely continuous, forr = 0,1,2,...m-1.

We shall seek a solution to the constrained minimization problem in the

class of functions given by the range of G, with domain Lz(—OO, o),
Another way of writing (5) is
f=a#% p
where i —a T

e
glr) = ), S e >0 (7)
v=1 j=¥=v
otherwise



Since the Fourier transform ¢g of g is given by

o
where
m
P(\) = T (ih+e) (9)
v=1

we have that f is in the range of G if and only if it has a Fourier transform

which is of the form

¢ (M)
bp(h) = —I;?;-—-—- ; (10)

(ix+a)
v=]

where _d)p R e s [

Since p * 0 as an element of LZ(—°°,°0) implies that f = 0, we
may make a Hilbert space out of the range of G, with inner product Lo >

defined by

[e]

Chafy = (Wp,u)du = [ (L_fONL f(t)dt (1)

- 00

where

fi = g% Py i=]1,2 (12)

It is easy to check that this is a Hilbert space, which we shall call ﬂR

is a reproducing kernel Hilbert space with reproducing kernel

co

Rit,t') = [ G(t,u) Gt',u) du (13)



That is, to say, the function Rt(' ) defined by

R(t') = R(t,t") (14)

is in R? for % t, =6 e-90, 90, and
Gir ) = Bl 4 Eifgeite S0 (15)

The reader is referred to [1],[3], and [6] for examples of the
use of reproducing kernel spaces in approximation theory.

We may also characterize ‘}T R 2as

2 R {t: £(7) absolutely continuous, r=0,1,2,...m-l, (16)

fo L300, 1 K e T (=9, 1) }

2
We now reformulate the problem as follows:

Find h ¢ # n to minimize Hh HZ subject to

<h’ B BB onel

Now, let®h R be the subspace spanned by the elements

-1,0,1,+ (17)

[*a]
{Rj} . It then follows that there exists a solution if and only if
j =0
there exists an element fe# R satisfying
R y= gy E=rie Ll e ; (18)

~ i
For fe % ns let f be the projection of f onto # R’ Then, if an f

satisfying (18) exists, the solution h . to the minimization problem is
00

A
unique and is given by f. We will defer until later conditions on {fi-}
j=-

such that an f satisfying (18) exists. We now assume that it does,

and proceed to derive a formula for ?(s*) =h {8,), 84 (- ),



Fix s, €(-*°,%) and let
00
-~
R, = ), byls,)R, (19)
£ j—_-_.DO ] ]
e.]
where the {bj(s*)} are to be found. Once the {bj(s*)} are known,
A j=50
a formula for f(syx) is given as follows:
A A A
(S*) = <f’ RS*> = <f! RS*> (20)

O
=], by(s.) <hrf:>

j=-

00
= bois, )L,
i :
is linearly independent, this is a consequence

The family {r.}
-
J_
of a well known theorem in time series, whose discussion we will also defer
are, as a consequence, uniquely determined,

co
until later., The {b.(s.)}
J ! j:_m
for each s,, and they minimize
i 2
fr =i BGeaR (21)
Cd j:_(x) .] ]

Expression2l) may be written, with the aid of (14) and (15) as

R(S '»78*) = i Z b'(szk) R(.i, S:::) L Z z b'(s*)bk(sz::)R(jjk)
j e e |

j=-o0

(22)

The normal equations, which must be satisfied for (22) to be

a minimum, are then



00

Z R(j,k)bk(s:::)

k=-00

= R(j,s::c), j:---

From (13) we may calculate that

m

6

1%

R(t,t') =
where
m
8v=
=1
and hence
R(j, k) = r(j-k)
where

Hence (22) becomes

k=-

-& |t—t'|
V
e

-1,0,1,° "

—af|'rl Te(_oo,oo)

Y, r(-k) b (s,) = rli-sy)

(23)

(24)

(25a)

(25b)

w10 L ene  26)

It is clear from (26) that bk(s*) = bk+n (s, +n) for n an

integer. Hence, it is only necessary to solve (26) for 0<s, <l

Ejuation (26) is a standard convolution equation which is

solved as follows.

Let

]

o0

wn) = 0 e p)

J

j==00

0 A m
e o 0 e
v=l1

=-00

m

G

=]

-a |

(1-a?)

(1—a1}e~n)(1—a vei

A

)

(27)



[©0]
by = ) e M r(esy)
-
= i —a |j=s, (28)
-1 |
. E@l})\. Zeve e
jm-oo v=1
"Bt -ik 2By ' i =
m St (l1-a e ; )+ e v [(1-a e l)k)--(l—a\ el}\)(l-a e
= Z 6 v ™ 1’:)\ |4 1%
1 i (1-a_e : ?(l—avel )
and o
Bin) = ;& bytay) _ 29)
Ji==i

By multiplying the left and right hand sides of the jth equation in

(23) by M and summing over j, we obtain

W) BOY) = g () (30)
Since WU(\) has no real zeroes, we may write
B(\) = Uy () /N (31)
and
bl e ol s R nidibG e (32)
i 2m S 4
-7

Some algebraic manipulation on (27), (28)and (32) results in



l Kt - S: T (l_ave-l)\). II (l_ajelh }(l_aje_i}\ )
by(sx) =7 z% O 88 i =S e ar
v.: 4 .
% ¥ ep(lﬁi) I (l~ake”‘)(1~ake'”‘)
W=l k=*=p. -
(33)
1 m A T ave_lh(l_ave lk) I (l_ajel?\)(l-aj e—ik)
v .
s b G el e £ .
=l e Z Bu(l—ai) I (l—akelh}(l—ake"lk)
=] k=l=p,

BN e

0<S:::<].

bj(s*) = b].__m(s*—m) m< sx < m+l

3. Existence

Q0
We now address ourselves to the question of conditions on {fi}
j=-00

so that there exists an f €% R satisfying

{f,Ri) = 1, , P el el s (34)



wli=

N
The necessary and sufficient conditions are,that f defined by

©0]

)= ), Bifudf, (35)

j=- A

with bj(s*) given by (33) is in }gng, since this is in fact the projection onto ’%R

of any element f in-% R satisfying (18). Now, by (32), we may write

o0
b *)=ka k) R(K, S,) (36)
where r(T) is given by
) LS
r :ﬂ”_ﬂf e 0T _ (37)
It may be verified that _
Lm Rk(s) = Lm R(k,s) = G(k, s) (38)
Thus . :
T b}.(s):kz . 07K gk, s) (39)
and
o0
I81% = fie D )1 ds
00 00 [¢'e] [ce] o0
L e s IR D R g G4, s) G, s) r* ™ ds (40
J—_.OO k"—— J _Q:—OO n=-=00
00 00 00 o0 ‘
= Z Z f.f, Z [0-0 R(£, 1) ple-n)
]:..00 k—..-OO f=-00 n=-°0

I
[
gt

Hh

i

-
s
=

~
s
&=
=

s

o

by



=11~

Letting o
(M) = ) et Mo (41)

(40) may be written

00 ‘ i 2
. = [E(\)
Ofo[(me)(s)] ds == _f.,, T B (42)

Since WU(\) is bounded above and below between positive limits,

the finiteness of (42) is equivalent to

(v o]
2
5 b g o, (43)
-1r — 00

1]

Lo eealt ane
]

4, Pointwise Error Bounds

We may use (42) to put a pointwise error bound on interpolation

of this kind. Let f e, with

<f,Rj>=f]., R B

o0
B v Rhuite Tt
J==

and



=12~

Then

lf(s*) - "I:\(S*) lz 2 | <f"?, Rs=.<> 12 = | <f _¥’ Rsz.: F ﬁs,.=> 12

N
<le-501% IR, -R

<

e 2na b e
| flaghelds - 55 [ - o
2
y e e
RIS 8y )= _fw TES dn

b J TN
0 ' vy,
1 1 S
e g\ - [ B
. L Ta e

cO
5. Linear Independence of the {R]. i
: j=-®
The reader familiar with the literature of Time Series Analysis will
recognize a similarity between the interpolation discussed here and least-
squares interpolation on stochastic processes. Let {X(t), -~ BLp<® I he

a zero mean Gaussian stochastic processes with

E X(t) X(t') = R(t,t")

where R(t,t') is given by (13). (t), t e(-©,%) } is a stationary process

with spectral density |P(\)|™ 2, where P(\) is given by (9).



B |

A
X(s,), defined by

Rsx)= E &H | %), 1=...-,0,1,...}

is well known to be given by
00

X(sx) =}, by(sx) X())

j==

where the {bj(s*)} minimize (21).

[o.0]
The assertion that the {Rj} are linearly independent as elements
j==-% 00 :
of <i R is equivalent to the assertion that {x()} are linearly independent
i =—00

as random variables. The reader is referred to [ 6] for a discussion of the
relations between - p and the Hilbert space spanned by {X(t), -© <t <® },

If @ stationary process {X(t), - ®< t < ©} has a spectral density

=2

function |P(7\)| , (where |P(7\)|_2 is here any measurable function),

then it is well known that the condition

%0 -2
[ el 4w (45)
~io e

is necessary and sufficient that the random variable X(to) is linearly in-
dependent of all the random variables {X(t), t < t - 6, t> t +6, §>0 ¥4
any to" See, for example [9], p 189. The condition (45) is satisfied by

P(\) given by (9), thus, in this case the {X(j) }].0:_00 are linearly in-
dependent.

6. Generalizations
m

i) Non-distinct {ﬂ’v }v=1



=14

We remark that our problem may be solved in a straight forward,
m
albeit somewhat tedious manner by the method described, if the {av}vzl are

not required to be distinct. However, we do not apply this procedure if some

of the {av}m are zero, since we are dividing by P()), which would then
v=1

not be strictly positive. We refer the reader to [ 7] and [8] for a discussion

=)
of the case Lm ] D RER S

ii) Rational Spectral Densities

The constrained minimization problem in a reproducing

kernel Hilbert space may also be solved explicitly in the same manner

if Lm is replaced by the operator A defined by

m
Nt oo ST R +ozv)(Bf) (46a)
=1
where
0
(Bf) (s) = J B(s,u)f (u)du (46b)
—~0Q0 :
with 4 _ﬁv(s_u)
B(s,u) = Z —@W g 2ol {46¢c)
v=1 : v,
jo v
=0 s < u

where g < m and {8v}q are distinct positive integers.
vl



.

In this case the spectral density lP( ?L)l-z is replaced by

lomy|2 1p(nyl ™2, where

d
QA= I (ix+ B),
V=1

and R(s,s') is replaced by

; \ dx (47)

/’-}R is replaced by fff’K = g f(r) absolutely continuous, fe L,(-%,%),
ro= 0,1, 2w tieg, Adel, (=7 2 }. An explicit solution resembling (33)
can be found. We omit the details.

iii) Polya Frequency Functions

Let now P(M\) be of the form

[s.0]
POM) = I (1+ 6 i) (48)
|
o0
where 6v>0 and Z 6V < © _, Then
v=1
Q0 _2 .
lo P{\
f g l ( )£ dx <€ © (49)

o0 1+



-16-

L 00 - N

g(‘r):{o epm d (50)

g(T) is an example of a Polya frequency function, with g(7)=0, 7 < 0.
There is an extensive literature on Polya frequency functions. See Karlin (51,
Chap. 7, and references to the works of Schoenberg, listed there.

If G(s,u) is defined by

G(s,u) = g(s-u) (51)

and the operator G is defined as in (4), we again make a reproducing
kernel Hilbert space % R out of the range of G with domain L,(-%,*®).
This space has a reproducing kernel R(s,s') of the form (13) with G given

by (51). Let the nth order differential operator Ln be defined by

n
L f= VII=1(1+6VD)f (52)
If
i(s) = (Gp) (s) (53

then the Hirschman-Widder Theory (see [4], especially Theorem 5. 3. b)

tells us that

lim (L £) (s) = p(s) {549

n-—a-w

if p € Ll(woo, ©) and s is a point of continuity of p. We are then justified



iy

in describing the norm in %,L R as

o0
2 2
e ll® = [ [@)(s)® ds (55)
- 00
where
o0
1f= 1M (%56 D)f= lm -L_f a.e. (56)
v n
vl 11 =¥ie0

By (54) we can assert the validity of (38) with Lm in (38) replaced

by L, and the present R. Thus, if

co

Ty s

J'—_.OO

there is a unique solution to the problem :

Find h e%ll R to minimize

00

[ [@hys)? ds (57)

- 00

subject to the constraints h(j) = f]. sl e 2l wen

and it is given by (20) upon solving the system (23).
(iv) Further generalities
The most general discussion of this problem that we know of goes as

follows. Let P(\) be any (measurable) function satisfying



~-]18~-

o0
1
g e g ) A (58)
[PV
00 -2
/ log [PNI "~ 4y < (59)
- I

Let (14 R be the reproducing kernel Hilbert Space with reproducing

kernel
RIL 4% = !OOOG(t,u) G(t',u) du (60)
where
G(t,u) = g(t-u), (61)
g(T)ZIw% d (62)

-~

‘H R is the range of G with Lz(—°°, ©) as domain, and has the norm

2
o | ¢ (N
lel2= [ —Ef——

dn (6 3)
ST

where ¢, 1is the Fourier-Plancherel transform of f.

o0 " .
Then, if £ £, < ®, the solution to the problem: Find h H R

j=®

to minimize Hh I 4 subject to h(j) = f]. is unique, and is obtained by solving

the system (23).



] G

7. Summary

In summary, we have proved the following

Theorem: Let N s £ £(°) absolutely continuous on (- %, %),

m m
el L 2y o5y Ml T e Tgl0e, 90y, Be fielo(-5a, 00 F; whiste L, f=t L (Dta ¥, {a}
00 Pzl
district positive numbers, Let {fi} be given., Then the necessary and

1=-00 ;
sufficient condition that a unique solution exists to the problem: Find

h e/ R such that h(j) = fj’ j IR K11 ) to minimize

0

2
mf (Lm h(s) ) ds

o0
is that E fi2 <%, In this case the solution is given by
i=—-00
00
h(s)= ), b,(s)f, (64)
j=-00 ] J

(ve]
where {bj ) } are given by (33).

IS

If f is any element in Q\, R satisfying f(j) = f]. , then

2 o0 5 2 y ST |2 ]
f(s)-ns) | <t [ leew® I 0| ax -5 [ —(—l—wm de X
] -TT
(65)
& e (12

1 1
d o e S g o
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where e
Finl = ), AN
j==o !
w K]
By= - =i SE)es
=10 4]

and P(\), 4JS{7\) are given by (9), ( 27) and (28).

Existence and uniqueness of a solution in other Hilbert spaces

has been discussed.

(66)

(67)



[6.]

[ 7]

- 21_

REFERENCES

De Boor, Carl, and Lynch, R.E., On Splines and their minimum
properties, J. Math. Mech. 15 (1966), 953-969.

Golomb, Michael, and Jerome, Joseph, Linear ordinary differential
equations with boundary conditions on arbitrary point sets.,
to appear, Trans. A.M.S.

Golomb, Michael, and Weinberger, H.F. Optimal approximation and
error bounds in "On Numerical Approximation"”, R. E. Langer,
ed., Univ. of Wisconsin press, (1959, 117-190.

Hirschman, I.1., and Widder, D.V., The Convolution Transform,
Princeton University Press, Princeton, N. J. 1955.

Karlin, Samuel. Total Positivity, Vol. I. Stanford University
Press, Stanford, California, 1968.

Kimeldorf, George, and Wahba, Grace, A correspondence between
Bayesian estimation on stochastic processes and smoothing
by splines, to appear, _Ann. Math Statist., April, 1970.

Schoenberg, I.J., Contributions to the problem of approximation of
equidistant data by analytic functions, Quart. Appl. Math,
4. (1946), 45-99.

?

Schoenbem, I. J. Cardinal Interpolation and Spline Functions,
]. Approx. Theory, -2, (1969), 167-206.

Yaglom, A.M. An Introduction to the Theory of Stationary Random
Functions, Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1962,



