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ABSTRACT

An algorithm for density estimation based on ordinary polynomial

(Lagrange) interpolation is studied. Let Pn(x) be nil times the sample

c.d.f based on n order statistics, to, tl, s tn—l’ from a population

(V)

with density f(x). It is assumed that f is continuous, V=0, 1, 2, ...,r,

r = m-1, and f(m)eLQ(—w,m). Fn(x) is first locally interpolated by the

mth degree polynomial passing through Fn(tik )y Fn(t(i+l)kn)’ P Fn(t '

n
where kn is a suitably chosen number, depending on n. The density estimate

(i+m)kh

is then, locally, the derivative of this interpolating polynomial. If

2m-1
(S

then it is shown that the mean square convergence rate of the estimate to the

true density is

2m—1 )

0 (n-( 4ul ) .

Thus these convergence rates are slightly better than those obtained by the

Parzen kernel-type estimates for densities with r continuous derivatives.

(m)

If it is assumed that f is continuous,

and 2m

kK =0 (n 2m+1 )

L , then it is shown that the mean square

convergence rates are

. e 2m
0 (n 2m+l) 3



which are the same as those of the Parzen estimates for m continuous
derivatives. An interesting theorem about Lagrange interpolation, concerning
how well a function can be interpolated knowing only its integral at nearby

points, is also demonstrated.
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1. INTRODUCTION AND SUMMARY

Let to, tl’ ves tn-l be the order statistics

from a random sample of size n from a population with unknown density f(x).

We are interested in estimating the density f(x). Suppose that f has r

bounded derivatives in the neighborhood of x. Then the Parzen or kernel-type

estimate fn(x), for £f(x), (see Parzen [2]) has the property that

“(x2T0)
E(fn(x) - f(x))2 =0 (n 2”1) ,p=1,2, ... (1.1)

Tn this note we consider a very simple type of density estimate as follows., Let

f possess r continuous derivatives and suppose f(m)e L2(-°°,°°), with m = rt+l.

n . . g ; . .
Let Fn(x) be o times the sample cumulative distribution function. Let

2m-1
k be an appropriately chosen sequence depending m n (kn~aonst(m,f)n2m)_

Let % be the greatest integer in (?).
n

Let
f’ﬁ x <t

fn’m(x)=< = B (x), t, <x< t(l—m+1)kn {1.2)

Q 2 t(ﬂ,—m-l-l) kn I




T

where Fn m(x) is defined as follows:
]

For m=1,

F (t

5 (i+l)kn) - Bl

ik
n

-~

Fn,l(X) = Fn(tik )+ x

» t. < X<t .
t(i+l)kn- tikn lkn - (1+l)kn

$21,2, a.., &-1.

S

For m>2, let Fn,ngi

i - .o . . E
polates to Fn(x) at the m+l points x tikn’ t(i+l)kn’ ¢ t(1+m)kn or
A

(x), i=0,1,2, ...¢-mi,be the mth degree polynomial which inter-

define E_ _(x) to coincide with F i(x),lzcyl.,ljéieﬁ‘“Tdﬂ

XE[t(i+1)kn’ t(i+2)}cn)3 N ,m M.,

A more symmetric positioning of the local interpolating polynomial may be
made, the present choice is primarily for notational convenience. Similarly,
the definition of fﬁ,m(X) for X¢[tkn’t(l—m+l)kn) is arbitrarily chosen for

notational convenience -

Under the assumption on f that

k
- p = | = p W
| t(i+1)kn t(i+2)kn | = 0 (552" Ipl <gm (%)
We prove
Theorem 1:
_2m-1
Elew-g G f=0m P ) w-1,2 .. (1.3)

Sufficient conditions for (%) are shown to be e.g. that f is supported on a

closed interval [a,b] with 0 < X < f(x) s Ahxw  xefabl.

Thus with the added assumptions of the square-integrability of the
m= (r+l) st derivative and (¥*), this simple algorithm improves upon the

rate of the Parzen estimates.
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If, instead we assume (r+l) = m continuous derivatives in a closed

interval with x in the interior, and let

2m
kn~ const. (m,f) n “mhe , wWe prove, assuming (%)
Theorem 2:
2m
E| £x) - £ () |2 =0 Ca 2‘“”) (1.4)
n,m

Thus, this algorithm achieves the same convergence rate as the Parzen
estimates.

The proofs proceed by breaking the mean square error into two major
terms, which might be viewed as the sum of a squared bias and a variance.
The bias term may be viewed as the error made in approximating a smooth
density at a point by differentiating a polynomial which interpolates to
actual values of the c.d.f. in the neighborhood of x. The variance term
then results from the fact that the c.d.f. is not known but estimated. We
use the following theorem about polynomial (Lagrange) interpolation which
tells us about the bias error.

(v)

ses X are m+l real numbers, and f WV=0,1,2, .0.

(m)

<x. <
We suppose Xq <%y

absolutely continuous on {xo,xm], £ eLolx _,x J. Let L E 3T INS STRRPE xm)=£v(x)

be the mth degree poiynomials satisfying J?,v(xu) = ‘Su,v’ U,v =0, 1, 2 ... m.
Then we have
Th;orem 3.“ N
. m v "m 2 2m-1
[f(x)—v§0 E% ﬁv(x)j f(E)d£|2 < const (m) I {f(m)(5)3 dEle-XO| (1.3
Xy Ey

xE[xO,xm] ,m=1, 2

>
xelx ,x 11, m2 3



.

To minimize the mean square error, kn is chosen so that the bounds for
the squared bias and variance terms are of the same order of magnitude.

The polynomial algorithm for m = 1 { r = 0) coincides with an algorithm
recently studied by Van Ryzin. (see [3], "unsymmetric case'). He obtained

2/3)

the interesting result that if kn =0 (n , and X is a point at which f'

exists and is continuous, then

(- (£0) = £ G0 ) (0, £ ) (1.6)

L]

Van Ryzin's theorem tells us what happens if we proceed here as though

l/2)) but in fact £~ exists and

£” was only square integrable (e.g. k= 0(n
is continous at =x.

We remind the reader that an extensive literature exists on density

estimation. For a bibliography, see [4#].

2. DESCRIPTION OF THE ALGORITHM AND THE MAIN THEOREMS

It is convenient to have some general formulae for interpolating polynomials.

Let Kgs Xps vee X be m + 1 distinct real numbers . Let 2&Qbe defined by

m
UEO (x-xu) (2.1}

uty

ﬂ,v(x) =£v(x;x0,xl,...xm) = — SV BGy Ly 2y wws M

M(x_-x )
u=o VM
u#Ev

It is easily seen that Qv(x) is the mth degree polynomial satisfying

(2.2)
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Let t. be the order statistics indicated
i

, t - LB ) t ‘. -
kn (l+l)kn) (1+m)xn

by the subscripts, and, for convenience, define ﬂi v(x) by
. 2

A

¢ (%) = L, (st

5 s P ) {230
iz lkn (1+l)kn (1+m)kn

Ea)

The estimate £ defined in (1.2) is given by

3

~ i m A (i+V)kn+l .
fh’m(x) = = vfo Qi’v(x) ~ry] , 1 = i(x)
xelt sTmeiyk ) (2.48)
n n

0 otherwise

where 1(x) is defined for x =« [tkn , tff"m+1)kn) as that
value 1 which satisfies

Plael)k, © * < Yaao)rg (2.4b)
for m 2 2, and by

tikn€ X < t(i4d)k, (2.4¢c)
when m = 1.

That is to say,

(i+v)k_+1
m

ot ) ~rmey—

3

Vv

is the mth degree polynomial which interpolates to Fn(t ),Vv=0,1, 2 ...m.

(i+v¥kn
In view of the fact that

m
¥ ii’v(x) =1 _ (2.5)



we may rewrite (2.4) as

m vk

~ _ d fa) . n
fn, (x) = = § E’i,\)(x) oy XE[tk s t(ﬁ-m-&-l)k ) (2.6)
v=0 n n
i=1(x)
= 0 otherwise
We may now write
T
A m ~ .(i+V)k
f(x) - fn m(x) ={%(x) - I Eg' Ri v(x) f B OE(g)aE S
] — L]
v=l tikh
R W : :
?{? Tdx Ei,u(X) Il’i,\)% XE[tk * T(g-m+1)k ) (2.7
v=1l n n
= () "ﬂtkn’ t(z-mmkn’
where
i = 2l
vk
Y. . = Flt,, O S (2.8)
i,V (1+\))kn lkn n+l
and
i
F(t) = I £{E)dE

o0

It is appropriate to view the two terms in brackets in (2.7)

as the bias and the variance terms, respectively.

From (2.7) we may write _ t(i+v)kn :
| £(x) - fn’m(x)| <2| £(x) —vil Yy (x) J £(g)ag | (2.9)
ik
n
" 2 2

+ 2m _Z E;—li’v(x) ¢i,v 5 xE[tk 2t (gomtl)k )

v=1 n : n
= £2(x) bt

k ’t(ﬂ—m+l)k )
n n
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The bias term may be studied via Theorem 3, which

we state below and prove in Sectlon 3.

Theorem 3 Lot x. ¥ €y X be m+l real numbers and suppose f(x)

g L
(v) (m)

satisfies f '(x) absolutely continuous on [xo,xm}, £ (x)e L2[xo,xm],

m = r+l. Then

b3
m
|f(x) - I -d% Ev (x;xo,xl, — xm) If(F,)dElz (2.10)
v=1 xg
X
< a(m) r (=™ @) Paglx x| 2
*o0
with
a(l) = 1 xa{xo,xm], m=1, 2
a(2) = (5/2)? xex,%x 1, m= 3, 4, ... 1

1°"m=-1

a(m)=2z(:—i%)—J2,m23

Then, applying (2.10) to (2.9) we may write

b
. 2 (m) 72 2m-1 (2.11)

£G) - £, G| <2am) i[f (€)] dE|t(i+m}kn-tikn|

s [gﬁ_z_ v(x)]z 2, . is i(X)’t

v=1 25 B I s Tem )
z 200 x ¢ Lty "t gm)k_ )
n n
a.lso

_.:_L_| We believe that the Theorem isptrue for xt-:{xo,xm:l, m>3, but have been
unable to obtain a general proof.
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In the case Ifcnﬁ(E)lfc, a < £<b, we may write

2, 2 2
| £(x) —fh,m(x)[ <2a(m)c lt(i+m)kn- iy |

n
m ~ 2
+2m I (-—g; R,.v(x))2 . \ g = i(x),xe[tk . t(ﬂ,—m+l)k )
v=l = 1e n n
= Fi(x) , 0t s Y men)k )
n n
Therefore //’ﬂ—_ b
}mgx 2a(m) f[f(m)(E)JQdE Elt(i+m)k “Tine |2m-l
i a
e di2 d % w172 .4
+2m £ E L. (x)J"E UM (2.13)
v=1 [EE. 1oV 1)V
+ 0P bl s Ty
n n
i 2
E|£(x) -£ ()% <
-
max 2a(m) sup If(m)(6)| E|t -t |2m
3 a<E<b (1+m)kn ikn
m o
+2m £ EV/? [ — d v (% )1* E b wi v (2.14)
v=1 ?

+ fz(x)°PI'{X¢ l—t i t(,Q. +l)k %

\—
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We now proceed to bound the expressions on the right of (2.13)and (2.14)

Since
m
EEO (x=¥(34E) k!
~ m
d &, (x)= I g*u;5+v (2.15)
= - s S “t, o)
U#Fv £=0 (1+\J)kn (1+E)kn
E$v
We have, as a loose upper bound, good for t,, < x < t_.
3 :Lkn— (J.+m)kn
d m=1 1
| ax 'Q'i,\)(x)l = m(t(i-rm)kn-tik ) min (t _t m(2‘16)
v=0,1,..m-1 (i+v+1)kn (i+v)kn
and
1/2; 4 © L 2 _1/4 8(m=-1)
- = U, g (t(i+m)kn-tikn) €
(2.17)
1/u4 1
E ( min

8m ) °
v=0,1,...m-1 (t(i+v+l)kn -t(i+v)kn)

We will use the following Lemma 1, proved in the appendix:

Lemma 1 Let the suﬁport set of f(x) be [a,b] and suppose 0 <X < f(x)< A,

xela,bl, and let p, g <m kn'



Then

Elt *

A

- | D
(i+v)k ik
n n

E|t(i+v)k 'tikl
n .‘m‘

Thus, assuming the hypotheses

El/2 l d

m
Fos {wi,v}v=l
‘JJ p—ﬁ&
i,v v  ntl
where

p ~ Be(Vk_, n-vk +1)
v " n

E Ry =

i (n+l)

vk
n

In the appendix we show the following

- Lemma 2
v 3vk
gL/2 wg v S __;PQ (i+o (n
* (n+l)

i G §

i (1+0 (E"))
n

=0 < Aq

of the Lemma,
o Y 2m
- Qi’v(x)[ < m

¥ 1
E}+o (E;‘

are centered coverages, that is

P
(2.18a)
y (140 (Ei-)) 9 (2.18b)
Tofnrl )2 (2.19)
il :
n

{2.20)

(2.21)

(2.22)
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We next invoke Lemma 3, proved in the appendix:

X
Lemma 3. Let n* = | —%—- + 04X such that F(x) > 0, £ the greatest
integer in-%:i- , and m fixed. Then
n
“ (2.28)
= 2.23
Pro{x ¢ Eckn’ t(ﬂ.—m+l)kn)} - an

Putting together (2.13) and (2.14) with (2.18), (2.19), (2.22) and (2.23) gives

J‘ kn- 2m=--1 . kn \ .
g —~ O — 2.24
E|f(x) - £ m(x)] 2 < Lﬁ n+l L k) * 2
< {c “n - #B ==\ +0 n (2.25)
=~ n+l F;' ;f"
where
b
2m=-1
A=%M)J £™ e (hoé—g | (2.26a)
a n
= Zmi3 A" 3 {1+0 (L) +o0 'i‘l\‘é (2.26b)
4= L ;?Th-l) t (EQ (p ;
(m) ‘m m 1
c= 2am) sw |[£ (&% )_) (1+o (k—-» (2.26¢)
agEd \ n

A lemma given by Parzen (see [2], lemma 4a) tells us how to choose

k +o minimize the terms in brackets on the right hand side of (2.24) and
n

(2.25), namely, take T

T We assume A, C * 0., The dominant term of A and C equals 0 if f is . a
polynomial of degree <m-l1 on its support set. In this case we would

like k_ as large as possible, which happens if exactly m order statistics
are used to estimate the density.



= e

1 2m-1
_ B 2m 2m
kn = (WA) (n+l) ’ (2.27)
for (2.24), and
1 2m
N ‘B 2m+l 2m+1
kn - (m) (n+l) 3 (2.28)
for (2.25).
We then have
»’/: 2m-1 2m-1
m\ ™ /48 |p %W (2.29)
- 2
E|f(x) - £y (%) |~ % 4 :
_2m =-2m 1
on 2wt L 4 |n §m+I/ (2.30)
where 1
_ 2m 2m=-1 2m
(2m=-1)
. 2m+l [e i 2m\ 2;+1 (2.32)
i 2m " 1'\ ! |

We have thus proved:

Theorem 1. Let £(x) be supported on [a,b], with 0 < X < £(x) <A, x[a,b],
(v) (m)

let £ ', v=20,1, 2, ... r be continuous, let f ‘€ L2 [a,b], m= »+l, and let

~

the estimates £ _(x) be given by (2.4), with k_ chosen as in(2.27). Then
?

] =
2 2m 2m
E|£(x) - fh’m(x)l < Dn + 0 (; ) (2.33)

where D is given by (2,31) .
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Theorem 2. Let f(x) satisfy the assumptions of Theorem 1, and in

addition suppose Ssup |f(£)12 <™,
Eela,b]

Then, if k_ is chosen as in (2.28),
- 2R _—
T m -
where G is given by (2.32) .

3., THE INTERPOLATION THEOREM

This section is given over to the proof of the following:

Theorem 3. Let x5 < X, < eve X be m+l real numbers and suppose f(x)

satisfies f(v)(x) absolutely continuous on [xo,xm],v=0,1,2,...r,f(mg(x)ELz[xo,x 1s
m

m = rtl. Let Qv( x) Rv(x; Kgs %o ees xm) be the mth degree polynomial with

E,U(xu) = 611’\) M, v=0,1, ... me Then
mo g A" 2
!f(X) = L = Rv(x) I £(E} dE | (3.1)
v=1 !
0
Xm
< a(m) J e™ ()12 ag |x x| *"
*o

XE. [xo,xm], m=1, 2

XE [xl,xm_l], m > 3



= 16w
with

1 (3.2)

a(l)

a(2)  (5/2)°

=2

a(m) = g..(_rff_?i)! , m>3

(m-l)o £

|

Proof: The assumptions on f tell us that it has a Taylor series expansion

in [xo, xm] of the form

X
m-1 v " m-1
F(x) = I f(v)(xo) e 4 J %E%-ﬁ £ s au Ry <% <R (3.3)
v=0 &
0
where
(u)+ =u, u>0 (3.4)
= 0 otherwise
We may then write
(x) - £(x) = fdf“”( yE - L f g 1 f(")(x)[xu? S (3.5)
f x - f x L\)_O XG W a; p-l ]_l \)-0 ! _\._J..!. .
0
™ | O
+ (u) )7 - E ,Q, (x) J. E‘—if)j +d€ du
'u.-.



wi] T
where we are writing

X

~ m ;
Fx) = I o ,(x) Jf(&)d'c:
v=1
*o

(3.6)

We first show that the term in curly brackets in (3.5) is identically
Zero. By examining the coefficient of f(v)(xo), v=0,1, 2 ... m-1, it is

sufficient to show that

X _ d
vi dx

™3

Xu v
2 (x) f.f,,_ de (3.7)

u=1l xo

Integrating both sides of (3.6) from X, to x, it is sufficient to show that

(3.8)

Since both sides of this equation are polynomials of degree no greater than m,
it is sufficient to show that they coincide at m points. But the right hand

side is exactly that polynomial which interpolates to

Ev
]X ST d§ for x = Xgs Xy eee X .
%0

We can now use (3.5) with the term in brackets set equal to zero, and

the Cauchy-Schwartz inequality to write

xm ‘xm m-1 xm m-1 "'\2
560 - Fwl? < f e la] | Gy - uflwxﬂ G &

(3.9)
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It is our purpose to examine the integrand

(:*c-ll)_'_m-l q g st fquﬁﬁ—u)T‘l “ ' ;
et - i 2 (= dg 3.10
(m-1)! L (m-1)1
0
Let hu(x) be defined, for u,xt€ [xo,xm] by
X m-1 m
(E—u)+ (x-g)+
hu(x) = Ix m dg = = (3.11)
0
and p (x) by
m *v (E-ulm-l m m
p (x) = uil %, (x) ]X = dg = violv(x) hu(xv) = vilﬁv(x) hu(xv), (3.12)
0

thus pu(x) is the mth degree polynomial which interpolates to hu(x) at the points
xo, x1’ e xm .
Thus (3.9) may be written

X X

~ ™ m
| £(x) - f(x)|2 < J [f(m)(u)]2 du I

X

E% (hu(x) - pu(x)_)]2 du (3.13)
0 *0

We calculate directly a bound on|g§-(hu(x) - Pu(x»| for m = 1, 2, and then give
a general bound good for m > 3.

Form=1

(x—xo)

hu(X) - Pu(X) = (X'-'I.J.)+ - -(xl_—xO)- (Xl—'LI)
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and
‘d f 0 (xl—u)
‘a (hu(x) - pu(x)>l = | (x=u)_ - Wl <1 (3.14)
Form= 2
2 2
(x-u) fﬁ(x-x )(x=-%_) (%.-u)
h (x) = p.(x) = £ _ 0 2 1 +
u u 21 2%
(xl—xo)(xl-x2)
2
. (X-xo) (X-xl) (xg-u) -
Tﬁz-xi)Ixz-xdT— 21
We hawve
IE%—-hu(x)l = |(x-u)+ | < |xy=x,] (3.16)

d

The maximum of, oo Iau(x)\clearly occurs at x = Xpe We have
(x,=x) (x,-u)?
d  p,(x) 270 17+
dx x=x, (x)=%,)(%;-%,) 2!
(x,=%, )+ (x,-%,) (x2—u)2
+ (3.17)

21
(xy=x, ) (x,5=x,

For u > x,,the first term is zero, and since (xz—u)2 & (xz-xl)z, the second
n absolvte Valuds

term is clearly boundedﬂby x2-x0| . For X, <u <xl, a rearrangement of terms
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gives
2 2
a4, 3 . e (xz-u) i (xl—u)
1 - -
dx 2! (x2 xo) (xl xo)
X=X
2
+ (xz—u) + (xl-u) X, Su<x, (3.18)
which is clearly bounded in absolute value by ;—- |x2 = Xyl . Hence
| 3 [ho(x) - p (x)]] < —> |x,- x| m=2 (3.19)
dx u u -2 177 % :

We now assume m > 3 ,
By the Newton form of the remainder for Lagrange interpolation (see, for

example, Isaacson and Keller [1], p. 248), we have, that

m
hu(X) - Eoﬂv(x)hu(xv)

m
=T (X—?’\)) hu [Xo,xl, LY xm’ x} (3-20)
v=0

where hu[xo,xl, _—— xm,x] is the m + 1lst order divided difference of hu at the
points Xys Xps ees XX It will be convenient to use identities relating

the m + 1st to the mth and m-1lst order divided differences,in particular
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_ . hu[Xl,... Xm,X] -.hu[XO, ase .xm_lgx:l (3'21)
h [x ’ x t ] LN x L] x] -
u"0 1 m
(x_-x)
m O
! 1 hu[xz... xm_l,x].— hu[xo,...xm_l,x]
(xm—xo) (xm—xl)
h, [xl,...xm_l,x] - hu[xo,...xm_2,x]
a1~y

Thus we may combine (3.20) and (3.21) to write
d
% (B (x) - p (x)=

m

L ; (x-x,a hu[xl’x2""’xm’XJ - hu[xo’xl""’xm-l’ %]

v=0 \j$v

(x -x,)
m
T (x=x_)
& 2 =O d hu [XQ,-..Xm,x]-hu[xl,-.-xm_l,x]
(xm-xoj ) dx (xm-xl)
by [%)5 ees x_1%] - hu[xo,---xm_yla' (3.22)

( =X_) l

n-1"%0
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Now if Yo < Yy < see® Y, are any m+l points in the interval

[%x.,x ], we show that
0*'m-?

1
|h [Y ys ove Yy ]l < sup ;

(m)
h (&) i (3.23)
Qe "=

This follows by writing

b
i

}
l hu [yl?YQ"" Ym] g hu[YO’Yl’ s e ym_lj

| b Lygsyys o0 v 1l | A (3.24)

Then, since hu has m-1 continuous derivatives, we may write, by the mean value

theorem, that for some € [yl, v,1» &8 Ly sy 11

_ 1 (m-1)

hy [y a¥gs eee ¥l = =7 By (&) (2.25)
o X (m-1)

h[¥ga¥ysees Yp1d = o)t Py (€,)

and

hu[yo,yl, ym]
n "D g)-n M)

1 u < (m)
= - sup. -T—nwj—- (E) § (3.26)
(m=) | Ym = Yo [ x <E<x \
{ 0=-"-1 3
5 !
Similarly, it can be shown that
-ag u[YO’ yl' ses Yiao x] = 1lim h [Yos Fiw wen Vo o Ry x+hA] (3.27)

A0

F
< sup T_—i)' (m)(E) {

<E<x
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Now, for X, <u < X s We have

1

=
"
v
=

h (m)(x)
u

I
o
"

N

o]

hu(m)(x) =

Thus, combining (3.22), (3.26) and (8.27) results, for x, <x <x . ,in

d
= (hu(x) - pu(x» ) (3.28)
T (%=-x.) m
520 Pom (x=x,)
< 2 E ] + [ 3=0 : e e ) -1
[CZS DI PR € E oo e R e .J

(m+3)

2 |y ™7
m=D)! ""m "1

1A

bstituting (3.14), (3.19) and (3.28) into (3.13) gives the theorem,
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APPENDIX

This appendix is given over to the proofs of Lemmas 1, 2 and 3 used in § 2

Lemma 1. Let tye and L be the vth and the v+k th order statistics from

k
a random sample of size n from a population with density f(x) where vV itself
may be a random variable (V < n-k), and where f(x) is supported on a closed

interval [a,b] with 0 <) < f(x) <A, xe[a,b]. Then, for p, q <k,

P D
p 1 (k'f‘p-l)(k'l'p"'z)ec-(k) - l ‘]E_ 3 l__
E| t\)+k-tvf = Ap (n+p)(n+p-1) ... (n+l) ~ 5% (n+l) <}+0 = D (A.2)
_ -q q n(n=1) ... (n-p+l) = 4 n+1,9 1
Bl t0tl T 2N mDmss Gy =4 ) Qo )) (4.2}
“the,
Proof, The proof is effected, if we can show thatkinequalities hold for any fixed
Vv < n-k .
Assuming Vv fixed now, the joint density g(x,y) of t, and t .. is
! - k- X
g(x,y) = (v-?)%k-l)'(n—v-k)' ik (x)[F(y)-F(x)] l[l-F(y)]n s f(x)f(y)

X<y,

0 otherwise

IP

There fore E|t is given by

v+ By

(A.3)
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ol |p - n! i
vtk v (V=1)1{k=-1)T(n-V-k)}

Elt x

y y TP i
’ ny L) IR(y)=F) T3P o2 1 () PV sty dndy

[F(y)-F(x) P
X<y

(n+p)!?

ml 1
. (Vel) I{k=1)1(n= v=k)?! ‘_

- X
Jolnap)! (v=1) ! (ktp=1) I (n-v =k} }
(v=-1)1(k+p-1) ! (n-v-k)!
J J FY () [F(y)-F(x) TP -—l---b [1-F(y) TV £(x)£(y)dxdy
mln'f(u)J
Ry u
< wi - D) i

(A.4)

(n+p)! (ktp-1)! mﬁn]f(u)!p
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Similarly

n!

-t |79 =
E|tv+k tv' (V=11 (k=1) I (nsv=k)!

) 1d TRE ) eFEe) 1 oo
[ [ VL) [r(y)-F(x) T LEGZFGIT  p p(o) PV - ex) £(y) axdy

q
%y |y=x|
n!

< (v=1)1{k=-1)T(n-v-kit. (n=q)1

- (n-q)! C D kg -DI@-vkE ¢

(v=1) T (k=g=-1) T (a=v-K7}

[ ] P LG E(y)-Fa) TN Y max £UWI-F) PV ) £(y) dxdy

X<y .
1 o P 1
=l (k=g=1)} max f£i(u) (A.5)
(n-q)!1(k=1)! u
Lemma 2 Let y = p-n:§—-, where p ~ Be(k,n-k+l), then
Byt = 3K e e ¥ ol
' (n+l)u (n+2) n

Proof: Using the formula for the moments of a Be(k,n-k+l) random variable

_ T(n+1)T(k+r)
v I'(n+l+r)T(k)
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gives
b g 3
(k+3)(k+2)(k+1l) k
(n+H)(n+3)(n+3)(n+1)
b (k+2)(k+1) k2
(n+3)(n+2)(n+l)2
BCk+1) k°
(n+2) (n+1)°
- g
(1)
Letting
3 _
F=1 - (ntl) - 6 19 27
! (m+4) (n+3)(n+2) 0+2) (m+2(n+3) = (o) (n+3) (n+2)
F=1 - (n+1)° _ 8 n
2" (n+3)(n+2) T (n+2) T (n+3)(n+2)
fg=1. {ntl) =
3" (n+2) T Tn+2)
£, =0
we have

(n+1) {( l:(k+3)(k+2)(k+l) - 4 (k42)(k#l) k46 (kal)k2-3k° (

2
(n+1) {; oy £, (k+3) (k+2) (k+1) - £,4(k+2) (k+l)k+ £ 6(k+1) k %

B Lk
(n+1l) " “mt2) n

—

—

E
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Lemma 3 Let t,, be the Vth order statistic of a sample of size n from a popu-

lation with c.d.f. F.  Suppose F(x)> 0. 1i) Let -\-%+ 0. Then

P t >;l < L L =0 v
”{"_J T (@) ) (F (%) — (;7)

ii) If = + 0, then

=y )

|

/
Pr {t\) < x} < v(n-v+1) 1 {
1

=0
(n+1)°(n+2) (E:T)'i" F '(x))" ‘

Proof: i) P {t\) >x} = P {9\, >F (x)}, where

By ~ Be(v,n-v-1)
But, since var p_ = PAB-PELY » Chebychev's inequality gives for - £ F(x)
v 2 REAN )
(n+1)"(n+2)

P,loy >F (0} <P {log-mp | 2F - =1}

v(n-y+1) 1

i 2 v (2
(n+1)" (n+2) (F (x)-'ﬁ-rl)

A similar equation is written for ii) .
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