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A Note on the Regression Design Problem of Sacks and Ylvisaker

By
Grace Wahba

0. Summary

We consider the experimental design problem of Sacks and Ylvisaker.
We first consider the case of the (noise) stochastic process X satisfying

a stochastic differential equation of the form

L X(t) = dwi(t)/dt 0<t<1 (0. 1)

where Lm is an mth order differential operator whose null space is spanned
by an ECT system and W{(t) is a Wiener process. We show that the non de-
generacy of the covariance matrix of {X( V)(ti), v=0,1,2,...m-1, t, e[ 0, 1],

1=], 2, ¢6 ) } is equivalent to the total positivity properties of the Green's
function for Im Lm with appropriate boundary conditions. An asymptotically
optimal sequence of designs is found for this case and its dependence on the
characteristic discontinuity of the above mentioned Green's function is exhibited.
We next show how an entire class of experimental design-regression problems
reduces to the experimental design problem in question, for general X. Re-
turning to X of ( 0. 1), we finally show that a special case of the problem is
equivalent to the problem of the optimal approximation of a monomial by

Spline function in the L , norm, Some recent results are available on this
latter problem which provide some information concerning existence and unique-

ness of optimal designs with distinct points.



1. Introduction

Consider the linear regression model in which one may observe a

stochastic process Y having the form

Y(t) = ef(t) + X(t) 0< t<1l. (1. 1)

© is an unknown constant, f(t) is a known function and X is assumed
to have mean value funtion 0 and known continuous covariance kernel

A
Q(t,t') =EX(t) X(t'). Let T be a subsetof [0,1] and let 6, be the best

T
linear estimate (if it exists) of © based on observing {r(t), teT}. Let
2 A 2 "
o & = =
o be E(® -0,)". Let @ = {T [T =t t;,...,t,0<t <... <t <1}L

Sacks and Ylvisaker, in a series of papers [8], [9], [10], Consider the
problem of finding a member Tn of a<9n for which
oo = inf  of . (1.2)

n Ted n

n n
In [8],[9] they consider processes X(t) which are assumed to have no
quadratic mean derivatives and satisfy a number of other conditions. [10]
considered situations where X(t) has exactly m-1 quadratic mean deriva-

tives. It is assumed there that X(t) has a representation

t dt

™A, jo’ 2 X (t))dt, (1. 3)

where



EX(t) = 0
(1. 4)
EX (s )X,(t) = K(s,t)

with
lim 88— K(s,t) - lim 58—8— K(s,t) = «(t) =const > 0 (l.5)
st %% sM

and K(s,t) satisfies some other conditions.

Throughout [8], [9], [10] it is assumed that f(t) is of the form

1
f(t) = [ Q(t,t') p(t')dt' , p continuous (1. 6)
0
where

Q(t,t') = E X(t) X(t"),

and f satisfies some other conditions.

A sequence Tn, n=l,2,... of designs Tn € ”'n, is said by Sacks

and Ylvisaker to be asymptotically optimum if

crz 02
T
. n
lim = ] (1.7)
n—> % inf crz - crz
T € O n
n

where o2 = 0’% with T =[0,1]. It is well known that o> 0 if

fe ,_,"'yb, where ,_.,}{Q is the reproducing kernel Hilbert space associated

with the kernel Q, and that (l.6) insures that £ leé. (See [7] for details).

uﬁ.j'Q, for any Q positive definite on [0,1] X[0,1], has the following

properties (see [1]):



D Q) e« dg Vtelo,1]
where Qi) =Q(t, )
2) (Qt,h)Q = h(t) , Vhe J‘r’Q ’
t el0,1]

We are using the symbol <°’ .>Q for the inner product in ;NQ.
Let }{X be the Hilbert space spanned by the random variables

{X(t), te [0,1]}, with inner product
{ - </
2,,Z,)= EZ;Z, Z, 2Z,¢ Hy.

There is an isometric isomorphism between and ""L%X generated by the

correspondence
X(t) ~ Q(*), ¥ te[0,]]
which follows from the fact that

EX(t) X(t') = Q(t, t') = <Qy, Qt,‘*Q, ¢, 5 e[8,1]

It is well known that if Z e/, and f(*)c then

Hay

7 ~ f<&EZX(t) = f(t)

and it is easy to check that f of (1.6) satisfies

]
[x(t') p(t)dt' ~£(e)
0



If Ze "'A’"Q and Z ~1f, it will be convenient to use the symbol

x>

~

to represent the random variable Z, which corresponds to the element

f of ,‘Q under this congruence. It is well known that if ®

is a
T

best linear estimate for & given {Y(t), teT} it satisfies

8p-0= (P07 (i, PTfj;Q (1. 8)

where PT is the projection operator on the subspace of J»;’Q spanned by

{Qt( *), teT}. Hence, using the fact that E<pl,X:,)N /_pZ,X}N = {pl, P> 0

we have
M~ 2 -1
var B, = IIPTfHQ] (1. 9)
where | ° H 0 denotes the norm in Q Thus (1.7) is equivalent to
2 2
f - |P.. I
el - o, €15
lim 5 = 1 (1.10)

2
n-o |f] - sup Ip,, £l

Suppose that X(t) has m-1 quadratic mean

derivatives (which entails that f of the form (1. 6) has 2m continuous

derivatives). Let @m T be the best linear estimate, if it exists, of 8,
’

n
based on observing {Y(V)(t), v=0,1,2,...m-1, te T, } . Allowing m-1

(quadratic mean) derivatives to be observable at the design points Tn’ the



definition of asymptotically optimal may be revised to read: Tne“ is

asymptotically optimal if

crz % - 0“2
m,”.[";1
lim > > =] (1. 11)
n>% inf o T "
T e ™ip
n “n
where
2 ~ 2
Um,T —E(Sm’T -0) {1.12)
n n
In this case we have
A
-8 = & D
Om,m " ° <Pm,Tnf’X>~/ P, b Pyt F0 (L 13)
where Pm T is the projection operator in D“HQ onto the subspace
’'n
of g;-‘Q spanned by
©, M), te1, v =0,1,2,...m-1} (1. 14)
where
(V) . o .
Qt ( ) 2 a v Q(S, ) s = t
S
since
& Yt s 2
Hence,
- s
var © = e . £l2]
i, T | " m, T Q|



If X(t) and its first m-1 derivatives are continuous in quadratic
mean, then X( V)(t), v< m-1 may be approximated arbitrarily closely by

it + 5, (1) )}?fl if we are allowed to choose {6.(t)}}f'Jl arbitrarily close to
i i=1 i i

=]
t, and

inf le-p, £l < inf [f-p | . < inf llf-p 1.15)

£l . ¢
T €A nm Q T e m’Tn Q T ed Tn Q
nm = nm n¢%n n€ “n

Suppose that the mn elements in brackets in (l.14) are linearly
independent for every Tn in J]n and every finite n. Then it is easy to see
that if f has a representation of the form (1. 6) then f cannot be in the range

of P

forany T_e .J_, n< % that is f cannot have a representation of the
m, Tn’ n n’ G

form -
i1 = ),
=

n
(v),.
o 120 Cvi Qt. ) ti€ Tn’

1
and conversely. Thus it becomes apparent that different analyses are
required according as some condition like (1. 6) holds or not.

In this note we consider only f of the form (1. 6) and primarily
the situation where derivatives are allowed. Sacks and Ylvisaker prove
the following

Theorem (Sacks and Ylvisaker). TUnder some assumptions on Q

and f stated in [10] and including (1.3), (1. 5) and (1. 6), Tn = {t;kn}?z 5
given by
tn 2/(2m+1) i 2/2m) .
f p (u)du = ~ f p (udu, i=1,2,...,n (1. 16)
0 0

is an asymptotically optimal sequence, and



2my o £l - yii A
S Pm,Tnf Q= (Zm) (2mH).

[ 22 ) au |7 o)) (117)
0 f

-1

2 ;” | T 2m+l
I
;

In this note we first consider a special class of stochastic processes.

X(t) is assumed to (formally) satisfy the stochastic differential equation

_ dw(t
L x() = SHE (1. 18)

with random (left) boundary conditions where W(t) is the Wiener process
and Lm is an mth order linear differential operator whose null space is
spanned by an extended complete Tchebychev (ECT) system, of continuity
class sz. For these processes we will have

82m-1

lim 25— Q(s,t) - Um 25— Q(s,t) = (-1)
sit s lm-l ’ stt ngeml ’

a(t) (1.19)

where «(t) > 0 but may not be a constant. Thus this class is not covered

by [10]. @ is a Green's function for erT Lm, with appropriate self adjoint
boundary conditions, where Lm is the adjoint operator to Lm and a(t)

ia the characteristic discontinuity of the GCreen's function. These processes
are m-ple Markov processes in the sense of Hida [3]. In Section?2, we define
the class of processes under consideration and point out that it is an immedi-
ate consequence of the total positively properties of Green's functions for
certain self-adjoint differential operators that the dimension of the subspace
spanned by the set (l.14) is nm. In Section 3, by writing down an appro-

priate representation of the Green's function for Lm we obtain



Theorem 2. Let E X(s)X(t) = Q(s,t), s,te [0,1], where X(t) satisfies

X(t) = d W(t)/ dt

X(”)(D) = EVL[-]_ g w2 0, 1,2, m=1

where W(t) is a Wiener process, {g1_,}5“=1 are m linearly independent normal,
zero mean random variables independent of W(t), and L, is an mth order

differential operator with null space spanned by an ECT system of continuity

class sz
Let 1
[ Q(s, t) p(t) dt (1. 20)
0
and j2m-1 j2m-1 -
Hm —s———— Q(s,t) - lim Q(s,t) = (-1} aft)
sit Bszm 1 ’ st ﬂszm—l ’

Suppose p is strictly positive and has a bounded first derivative on [0,1].

Then T = {tm }1_0 with t ., given by
£ e L
S PP we) 1P qu = 4 f POl gy imi2 . n (L2l
@) O
£ =g

is an asymptotically optimal sequence, and

2 _ 1 2m+1 1
It - Pm,'f';if”Q = Zm (Zm 2m+l) | f [o“(u du |



L

In Section 4, we go back to general Q(s,t). We show how a family
of other experimental design problems reduce to the one under consideration,
2
and use Hermite interpolation to show more generally that ||f - Pm T f||Q= q Azm),
b}

where A = m?x’ti+1 ~ti|.
We conclude by noting that, in the case of processes of the type
considered in Section 2, the experimental design problem is equivalent to
the problem of optimally approximating a monomial or related function by
Spline functions, in the L2 norm. This problem is discussed by Karlin [5]

and Schoenberg [11] for which some interesting results have become recently

available.
2, Extended Complete Tchebychev Systems and Associated Stochastic
Processes

In this section we quote some basic definitions and Theorems
which will be used in the sequel. They may be found in [4].
Let {@i(t)}Tzl be a set of m functions. The set is said to be a

Tchebychev system if the determinant

§lt) ... Byt )

is strictly positive whenever 0 < t1 < 1'2< PP tm < 1, anda complete
Tchebychev system if {<I>i };/:1 is a Tchebychev system for each 1=1,2,...m.
Suppose @i(t) has m-1 continuous derivatives on (0,1). The domain of

definition of the determinant may be extended to 0 < i < L L b =

.4 &

o ,  where, whenever we have an r tuple coincidence b=t g=.. .=t

wr-1?
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the v+jth column of the determinant is replaced by

I6F § 8 Ty Biymn « il
(See [4], p. 48 for details). If the determinant is always strictly

positive, with this interpretation then {@V}I?’z is called an extended

1
Tchebychev (ET) system, and if {®v}mv _; is an ET system for each
v=1,2,...m then it is called an extended complete Tchebychev (ECT)

system. The following theorem will be useful to motivate our requirement

that Lm have a null space spanned by an ECT system.

1

Theorem ([4], p. 276). Let {‘I‘i}nilzl be of class C" * on[0,1]

obeving the initial conditions

@(]?)(0) = 0 p:O)]-:ZS'“'k_z’k:ZB"”m

?

Then the following three assertions are equivalent:
a) {‘ii }Il.n=1 has a representation of the form
D =
() = o (t)

t
2,(t) = w(t) { w,(£,)dE, (2.2)
: ¢ 2
3 (t) = v)t) ng(gl)dgl fo

m-2

1 w3(§2),d§2. o fO CLJm(gm—l)dgm—l

where *&ui}nil_1 are m strictly positive functions with «_ of continuity

class C™N 0,1]



=P

by {a)"
=1

is an ECT system

v
c) The Wronskian of {&,}

_, is strictly positive on [0,1], for
v=1,2,...m.

Now let the first order differential operator D, be defined by

(D,2) (t) = S— —

= 2.3
Fr mi(t) ®(t) i=l,2,...m ( )
and the mth order differential operator Lm be defined by
L,2=D D _;-.. D;® (2.4)
It may be verified that {® } 5 given by (2. 2) are the solutions
of
L _ @=0
m
satisfying the initial conditions
Mv (0) = 6k, vl wk(O), v=0,1,2 -1,
where '
Mszva—l Dl’ v=1,2,...m-1 (2.5)
1\/IO =1,
Let
T g1 5m—2
i:;m (t’S) :ml(t) _£ wz(gl)dgl J; U‘)B( gz)dgz ° e 0 j‘s m gm l)dg (2'6)
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G_ (t,s) is well known to be the Greens function for the differential

ok

operator Lm with boundary conditions 3

P

#: A, 1) (0= 0, v=10,1,2,...m1} sy

That is, the solution to the equation

i
me = g, fe &

(2. 8)
is given by
1
f(t)=£ G, (t,u) g(uku (2.9)
Let now
m
t
X(t) = Zl £, 2,0+ [ G_(t,u)dwW(u) (2.10)
i 0

m
where W(t) is a Wiener process and {&i}i _] are m zero mean normal

random variables with non-degenerate covariance matrix S = {s,.}, in-

e
1)
dependent of W(t). We say that a stochastic process X(t) constructed as

in (2.10) formally satisfies the stochastic differential equation

_ dw
LmX T dt

with (random) boundary conditions

MX(0)=¢ .., v=0,1,2,...m-L

We have

E X(s) X(t) = Q_(s,t) + Q(s,t) = Qs,t) (2. 11)



14—

where W em
Qls,t)= ) L s, 3(s) 2,0 (2.12)
p=l =1
and min(s,t)
Qs,t)= [ G (s,u) G_(t,u) du (2.13)
@]

To insure that Q(s,t) has the usual continuity properties for Green's

functions (see e.g. [6], p.29) we now further assume that 'I>v is of
_ 2m

continuity class C™, v=1,2,...,m.

It can be shown that Q(s,t) is the Greens function for the

differential operator Lm Lo with boundary conditions B* , where
B L ®(1)=0 (2.14)
D, L, ®1) =0
D, D, L. ®1)=0
where
L _ 1 d(j}(t)
Dy ®M = -T® at (2.15)

We will later on use the properties of the characteristic discontinuity

of Greens functions for differential equations, (see [6]) namely



)

aZm—l 82m—1 -
lim — Qg8 ~ lim =—s—= Q&%) = (~1) " 8t) (2.16)
sit Bszml ’ sTt aszml ’
o 8Zm
where[(—l)mo(,t)] is he coefficient of 5 in the expansion of
ot
i N I_. Here we have
m m
ol
a(t)=1I @, (t) . (2.17)
i=1
Let
— t
X(t) = jo' G, (t,u) dW(u) (2.18)
We have
+v
g (0 O £ _ _oF
EX. MefE R og) 8 =————=— QI 8} [.. (2.19)
5 ] or Mds” ’ ;;21

Let 2 be the mn X mn covariance matrix of the mn random variables

{ff(p)(ti): b=01,2,...m-1, i:l,Z,...I‘l}

with entries given by ( 2.19). We have the following.

Theorem 1.
det T s 0

Proof: The remarkable fact that ¥ > 0 is a direct consequence of
Theorem (8.1) p. 547, [4] concerning the strict total positivity of Greens
functions for differential operators of the form L;:;n Lm with (self-adjoint)

boundary conditions /)0



w by

Corollary. Let Z be the (n+l)m X (n+l)m  covariance matrix

]
of the (n+l)m random variables X(M(ti) 3 w=0,1,2,...m-1

j.: 0,1,2,0..1'1,1:0:0J
then

det Z > 0 .

The reproducing kernel Hilbert space G}Ja with 8 given by (2.1l1),
corresponding to the stochastic process X, consists of all functions £
for which Mm_lf is absolutely continuous and me € LZ[ 0,1], with inner

product

£ B

m
ooty = SV (M, )00 (M 15,)(0) (2. 20)
p=l

i)

1
+ [ @ ) @ f,) ) du
0
where 87! = {s""} .
If X(t), 0 < t<1 is a segment of a stationary stochastic process
with spectral density

ol -2
f(N)= | ) @ (in)”
v=0

m

where the polynomial Z a'vzv has no real zeroes, then X(t), 0<t< 1
v=0 m

is an example of (2.10) with L @ = ) @ o) (compare (2.20) and
v=0
equation (5.24)of [7] ). The simplest example is the unpinned, integrated
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m
Wiener process (see [12]), L @ = d & ,
m m
dt
m-1
t-u)t+
Gm(t,u) —(LHT_—I))—. y (x)+ =x,x >0 (2. 21)
= 0 otherwise
ti—l
and (IJi(t) = (i=1): (In both these examples, «(t) is a constant).

We may always add a fixed finite number of points to each member of
an asymptiotically optimum sequence of designs without modifying the
asymptotic optimality. Thus we may without loss of generality restrict our-

selves to processes of the form

i
X(t) = Of G, (t, u)dW (u), (2.22)
since the random variables {gi }T=1 are known arbitrarily accurately

if we may observe X(s,), i=1,2,...m for 8, arbitrarily near 0, or

exactly if we observe X (V)(O}, v=0, 1y 2y « wiltL,

3. An Asymptotically Optimal Sequence of Designs.

The main goal of this section is to prove Theorem 2. This is done

via several lemmas which study the behavior of IEE= Pm T f”é .

’™n
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Lemma 1

Let X(t) be given by (2.10) and let

1
f(t) = f Q(t,u) p(u)du, where p ¢ LZ[ 0,1].
0

(3. 1)
and let t_ =0, t_=l.
o n
Then
2
f ~
Is -7y o 113
T TY R
=) [ J es)By(s,t) p(t) ds dt (3.2a)
i=0 4 Y
where min(s, t)
Bi(s,t)= t_f Gm(s,u)Gm(t,u)du—
i
m-1 s " t
D ; Gpp(s,w) Gy (8, u) du s} tf Gt V)G, ft47, V1Y,
B, V=0 i i
S,te:[ti,ti_H] (3. 2b)
=0 otherwise,
with
Gm,“(s’u):M}l(S)Gm(s’u) 9 H=1’2,n ,m—l
(3. 2c)

Gm,o (s,u) = Gm(s,u) y

MH(S) is the operator MH defined by (2.5), applied to the variable s
m-1
By .
and {si }H, ,=o are defined by



=1 G

| v m-1 m-1
8, ={si }H’V_O 4 sl={si’w} " (3. 2d)
,v=
with ¢
i+l
5 =tf Gy, (g1, W Gy (4o 0) du. (3. 2e)
i
Proof:
Let
P,z X(0) =& ) xM)), v=0,1,2,...m-1, £, ¢ T }
(3. 3)
Then, since
1
f(t) = EX(t) [ X(u) p(u)du (3. 4a)
0
and
1
Pm,Tnf(’c)= EX(t) J Pm’TnX(u)du (3. 4b)
we have
1
£(-) Nof X(u)p(u)du (3. 4c)
1
P, 1 £~ [ By g X(w)e(upu (3. 4d)
and
11
le-p £12 = [ [ p(s)p(EMX(S)-P_ - X(s))X(t)-P_ - X(t))ds dt
m, T Q 00 m, T m,Tn ‘
(3.5)

We will evaluate the right hand side of (3.5).
Since to =0c¢ Tn’ it is only necessary to carry out the proof

for X(t) of the form (2. 21), that is, X e¢ . This follows, since, in
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T X(t), it makes no difference whether X(V)(O),
' n

v=0,1,2,...m-1 are observed, or known to be zero. Now, for

calculating X(t) - Pm

L X(t) = dw (t)/dt, (3.6)

xMoy = 0, v=0,1,2,...m-1
X(t) has the representation.
i tl Hn—z
X(t) = w(t) ng(tl)dtl { w3(t2)..o_g o (t Wt )t .
(3. 7)
It will be convenient to work with so-called generalized derivatives,

M X(t), »=0,1,2,...m-1. We have the representations

t T
- m-2
MX(t) = w,,,(t) { @ oo (B ppht pge o { LML LT o

v=0,1,2,...m-2 (3. 8)
M__X(t) = e_(£W(t) ,
and
5
MX(t) = My g G, (t, 5) AW (s) (3. 9a)
vaErllo 2y ee i ym=l1
t
- of Gm,v(t,s)dW(s). (3. 9b)

G (t,s) 1is the Green's function for the operator L given by
m, v m, v

Lo,y @ = DDy ees Dy @ v=1,2,.0.m-1 (3.10)
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with boundary conditions

B, ¢ (2Mh0)= 0, u=0,1,2,...m-v}.

We will use another representation for G Sty 8), v=1,2,...m-L

Let

and let

as before.

’

P, W) = O (8)
S
2, J8¥=wg als) bfwm—w-z(gl)dgl

H

S gl
By f8) = e uns) -{jwm-wz(gl)dg of “m-w3(62)d82. -

EU—Z
j(-) mm(gv—l)dgv—l’ v=1,2,...m,

B)(s) = & | (5) = 0s)

S

2,(5) = 8, L (5) = w(s) { w, (648,

2 (5) =B

s :
) = uy(s) [ (6 el fOIwB(gz)dgz..n

€

o
i
[§8]
E"\
ur
=
L
a
ure
T

(3.11)

(3.12)



9B

Also let
2(s) = (-1)°
S(8) = (- 1)° f o (£ HE_ (3.13)
§2
m+l S m-1
3 _(s) = (-1) gwm(gm—l)dgml J o (B oM, e [ w (68

Algebraic manipulations on the representation of the Greens function

in the form of (2.6) give the Green's function, in another, familiar form:

m-v

Gm,v(t’ s) = Z (I)m—v—u-!-l,m-v >s (3.14)
p=1

gty Oy by By ey =1

=0
Substituting (3.14) into (3.9b), we have that the random variables
M X(ti), have the representation

- t,

m
_ 1 ¥ _
M X(t,) = pZ=1 @m—v—pﬂ,m—v(ti)J(; @ (W (u), v=0,1,2,...,m-1
(3.15)

and that the m-dimensional space t spanned by {MVX(ti)}T__
t i
is also spanned by {f q’ (u)dW ( )}H -1

3 systems of (3.11), (3,12), and (3.13) are each ECT).

(We are using the fact that the



=23

Now we have, for t> t,

t
x(t) - B ) IM X (t), v=0,1,2, ...m-1} = [ G_(t,u)dw(u) (3.16)
t
This (well known) result follows by writing
I t
Xty = [ G, (t, W)dW(u) + i G, (t, U)W (u) (3.17)
0 ti
m
b e t
= {H; P n-ptl, mt) { 2, (WdW (u) b+ {{ G, (t,u)dW(u) }
i
and the first term in brackets is in -'f"t , while the second term is
i
perpindicular to it. Using (3.15) and the remarks following, it follows
that --}"/t U oy is also spanned by
i i+1
tit1
M x(t,), tf Gy, Wty W (), v=0,1,2,...m-1}.
i
It may then be calculated, for L, St< ty, that
X(t) - E K@) IM X (t,), MX (t,,), v=0,1,2,...m-1}
t . t (VY 541
= [ G (tuaww) - ), ), [ G (G Lt w)du s G, (ti,1r V)AW(V)
1:i R, v=0 ti : t, 4

(3.18)
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where Si_l = {s;W} is given by

i
- _ (iHl
S:'L B {Si,Hv} 2 Si,pw - { Gm,p (ti+l’u)Gm, V(ti+1,u)du
i

Py ¥ Dy 2y o » M1

i <1<
Finally, we have that, for Lttt

X(t) - P

>
—

[
S

]

= X(t) - E{X (t)[M X (t), MX (t),

v=0,1,2;:s.m-1}

since a direct check shows that this last random variable, as given by

(3.18) is already orthogonal to each random variable of the form

T,
+
th Gy, (Epgpp AW () T

d j=0,1,2,...n-1

Finally, it also follows that
EX(s) = Py ¢ X(3)) (X(0) = Py ¢ X(t))=0,

S e [tj,tj+1]

Belty tinl,

A gquick calculation from (3.18) shows

E(X(s) - Pm T X(s) ) (X(t) - Pm

’"n e 11

By(s,t), s,te [ti’ ti+1]’

1= ]

(3.19)

X(t) - E {X(t)|M x (t;), v=0,1,2,...m-1, t; e T}

(3.20)

(3. 21)

(3.22)
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and the Lemma is proved.

Lemma 2

Let bs(t), for fixed s e [ti, ti+1] satisfy

2m-2
b (t) e ozm, t e[ti,s)U (s,ti+l], b (t)e C h - [ti, tH_l] £
um b1 4y - um b(szm"l)(t) = (-1)™ a(s) and b )(ti):b(sv) ()= 0, =000 00
tis tts
Then
t m m t m m
i+1 (=80 (5E) m oy (b t) (et
t b_(t)dt = a(s) o w19 tf ey dt
i i
t=ks (3.23)
Proof:
Let
m
(tygt) (=t))
. = 8§, (t) ¥ e [ti,tm] (3. 24)
and note that
My =8 & j=08, w=0,1,2,...m-1 (3. 25)
§ v i i+1 ’ Tk ke :
5441 1y = (-1)™ (3. 26)

By successive integration by parts, we have
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S i+l
i b(szm)(t) 5.(t)dt + [ plem)
£ ! s
i +
S _ byt
= (2m-1) (2m- ].
! by (t)8,(t) + S| b )(t) 6,

¥ —_

i ki
= (-1)"a(s) 5 (s) - | b #™ 2ty 51 (t)+ f b el s By (272
I %
titl ti41
_ oyt -1 (2m-2) . (E1), , .2 (2m-1),. . . (2)
= (-1™Ha(s) 8,(s) +(-1) ‘ b (1674 (-1 tf b (ty 8¢ )t) at
t i
: (3. 27%.0)
m+1 2m ti'H 2
= (-1 a(s) 5,05) + (-1°™ [ b (t)6§ m) ¢y dt (3.27.2m)
. ti
t,
_ m+1 m i+
= (1" ats) &(s) + (-1) tf by (bt

1

thus proving the Lemma.

Lemma 3.

(t) 8,(t) dt

(3.27.1)

1+1

- [ plEmh (1)6; ()it
L.
i

Suppose p(t) > 0, and has a bounded derivative on [0, 1],_?'

e ¢ sz we C
v VvV

?

+Reca11 that since 2m-(w»-1)

a bounded first derivative, m > 1.

and hence «(t) has at least
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and by & B 0= 1
Then
> n-1
2 (m: ) 2 2m+1 i
le-p - £ll5 = ), i) @ it) [(t. —t) " aroa, )| 3. 28)
m’ TD. Q (zm): (2m+1): i=o 1 1 i+l i 1 ]
where
Al = |‘ti+l-' tl v (3.29)
Proof: By the assumptions on p, the mean value theorem and
Lemma 1, | t
2
l£-p . fl% = 0,)) P(6, ) ds dt
m,1 flo iZ:o p(8;)) Pl z)f tf
i
b Yl N
= Y p (t,)(1+0(A,) ) tf tf B(s,t) ds dt (3. 30)
i=o i i

where 6,,, 6,, are some numbers in [ti’ti+1 ] Hence it remains to show
that

i1 C(mt )2 ' 2m+1
[ ds f Bi(s,t) dt = o(t,) {(t1+1 DM s0(a)) )i

i, (2m)! (2m+1)! !

(3. 31)

Now, B,(s,t), s,te [t t; ] can be shown to be the Green's
function for the operator L m Fm with boundary conditions J:)?l A (BHI’

where

ggt?j: {m, () =0, v=0,1,2,...,m-1}, j=0,1,2,...n, (3.32)
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(Bi(s,t) satisfies the hypotheses of Theorem (8.1), [4], with the

appropriate changes in domain. )
L
We now evaluate [  By(s,t)dt. For fixed i, and fixed
£,
1

Se [ti’ t it will be convenient to write

j41)
b, (t) = B,(s,1) (3.33)
The properties of bis given below, up to and including (3. 36)

are the properties of Green's functions.

(M b, ) (£,) = (M b, ) (t;,) = 0, »=0,1,2,...,m-L (3.34)

Also, b, (t) is of continuity class GAR

forte [ti’ti+1] and of
continuity class sz on the set [ti, s) U (S’ti-{-l]’ and has the same

characteristic jump in the 2m-1 st derivative as does Q(s,t), that is

. 8Zm—l . aZm—l -
tlfz Sl big (F) - tl,?rn; PRCE bi(t) = (-1)7 als), telt;,t; ]
(3.35)
Furthermore, b, (t) satisfies
L;Lmbis(t)= 0, t;<t <s
(3. 36)

L L b, (t)=0, s <t<
m m 1S
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Note that the set of conditions (3.34) is equivalent to

bi(sv)(ti)z bl(sv) (tl+1) = 0, v= 0, 1,2,.,.,m-—l. (3. 37)

Therefore, by Lemma 2,

i, m m t. m m
flﬂ B (s, t)t = afs) ) BT fl+113(2m)(t) S E I U
12 . (2m). + is (2m).
ti i
t s (3. 38)
The proof would be nearly finished if it were shown, for example that,
bi(szm) is bounded independent of Ai. A simple proof was not found,
so a somewhat roundabout argument is given. TFor the special case of
(2m) “““’T_l (2m)
Lmme = f 5 Gm(t,u) = W , we have bis (t)y =0,
te [ti,s) U (S’ti+1]’ and since, in this case «a(t) = (—1)m we have
t. t t m m
. BT 0 _ g
f1+1f i+l B 18, B, 3 = f i+l ‘ti+1 s) (s ti) de - (m! :2 - )2m+1
g g iv°e ; (2m): (2m): (2m+1)! i+l i .
i i ' 1

(3.39)
We proceed by relating the general case to this special case.
By analogy with (2.6), and the mean value theorem

g
£
Gm, v(t’ 8) = ww-l(t) SIwH-Z(gvl-l)d gv{-l T Sf wm(gm—l)dgm—l’ t>s

=D t<s

m (t~s)f“*1

=14l Tmee 1 Gk Eesiel Bedl)
l:

where 0, ¢ [s:t ]
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Thus, for s,te [ti’ti-!-l] we may write

min(s,t)
tf G, (5,u) G, (£, 1) - Z ¥ f G, (5,01, pu)iu 2
i
t
J‘Gm&,v)em,JH+Pv)dv
i
I min(s, t) _am-1 m-1
=T I w(6,)e(8,,) > (smu) o
j=lk=1 7 t; @I (1)t
i m-1 m-1 m—}.L—]_
o o s (s U) (t, ,,-u)
l II i+l "+ TR
| j=1 k=p+l £
py v=0 )
moom s NI PV s
II I w, (6,.) w (6, ,) dv
j=l k=ygl J 15 K'k6 £ (m-1): (m—v-1)!
“(3.41)
where
hv _
i {st'" 1}, s {sl,pv},
and
o m b (t, Fu)mT2
v ™ I : d
"1 j=p+l k=wv+l w( Oks) f (m u U (m—w1)
(3.42)

and where {eu,ekﬂ, j,k=1,2,...m, £=1,2,...8} are all in the interval

[ty ] -
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Then, by the continuity and strict positivity properties of the

m
toghia,
m m
I w(0.,)= I oft)l+O0(4A)) w0,1,2,...m-I (3.43)
j=wl 20T gmen M !

=1,2,...8

In particular

m m

= I () (t.) (1+ O(A,)) s, 3,44
= I I )] (40080 )3, (3.44)
where
- FiH (e, mu)e TR
ey m-p-1), (m=w1); ¢ (3. £5)

i
The matrix §; , évi = {?1 }_W}, is strictly positive definite. We
-}
have by (3.42) and the continuity properties of the matrix inverse trans-

formation
MV T o AL 17 S U0
Si :; ._1'[ -H wj(ti)wk(ti) Si (1+ O(Ai) ) (3046)
E]—p.-!—l k=p+1

where rs\;w is defined by EJ_ll = {;‘-’ipv} . We therefore have the right

hand side of (3.41) is given by
(r.h.s.) (3.41) =

min(s,t) m-1 m=-1
m P(smu) () ® g
I ow(t) (1+0(A)) [ du - T w?(t, (1+O(A,) ) X
B i KX i
k=1 t; (m-1). (m-1): k =1
_ -1 —p-1 - -
mzl f (s=u)y (hg-uly " gy Swv ft (t-v)y l(ti+1_ )y - P
(m-1)! (m-p-1). e -1y, (m-w1); v
B, =0 1, 1

(3.47)
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From (3.39) and (3.47) we obtain

Yty Hn
j f . By{s,;t)ds dt
t.  f, .

1 1

2
= —Ams) et ), ~t, )2
(2m)t (2m+1); b At E
([t t; min(s, t) m-1 m-1 '
+1 N4l 2 (s-u) (t-u) !
o (A ) ds dt s L P O
( 1)ltifl tif B tif (m-1) (m-1) “!
([ Ye1 Ba m‘lf s (s—u)ri1 (o= )rf-_“_l
1
o) | f Joasar ) | S (m-1y, e
Lt :
| i p,v=0) 71
1 m=-v-1 ]
t (t-v)" (t, ,,-V) a
f . i dvl ) (3.48)
NS (m—1-1)! |
1 F

Since the first term in curly brackets in (3. 48) is greater than the second

term in curly brackets (which is non-negative), we have, upon evaluating the
first term in curly brackets



3%,

41 4l
S Bs,t)dsadt

2

s wlle) a(t, )(t, .-t.)°™H 1 oA, | -t )2mH
(2m). (Zm+1): i il i i’vi+l i

w200 ) (3. 49)
o) (zmiy 2 Y i) ) :

and the Lemma is proved.

Theorem 2 Let E X(s) X(t) = Q(s,t), s,te [0,1], where X(t) satisfies

L, X(t) =d W(t)/dt

x™M0) = ¢

vh]? v=0,1,2,...m-1

m
where W(t) is a Wiener process, {F;V}V:l are m linearly independent,

normal, zero mean random variahbles independent of W(t), and Lm is an
mth order differential operator with null space spanned by an ECT system of
continuity class sz'
Let
1
f(s)= [ Qls,t) p(t) dt
0

and

2m-1 82m—l m
i —pe— Qlget) = lim ——p——a Qg t) = (-1) a(t)
st Bszm 1 ’ sttt Bszm 1
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Suppose p is gsirictly positive and has a bounded first derivative on

ES _ n . ES ]
[0,1]. Let T, = {t._}, with t;  given by

in“i=o
1
t S 1
in 2m+1 ; 1 e
2 i 2 2m-+1 :
[ @] du= o [p%w)e) 7T du 1=1,2,...,n
o) o)
o (3.50)
ton =0
Then Tn is an asymptotically optimal sequence, and
2m-+1
2 L 7
o B - 1 (ms:) ( 2m+1 1
“f - Pm,TanQ - nZm (2m); 2m+1)‘ l f [p (8)x(0) dej +o(n2m
{3.51)

Proof: Let A = max |ti+1“ti[ . We know that for any asymptotically

; : 2
optimal sequence, lim A = 0, since otherwise ||f -P fH

m. T will not
n— o0 bl n Q

tend to 0.

Using a Holder inequality on (3.28), gives, for any Tn that in-

cludes by 0, t = 1

: 1 (m! ) = 2rr?+1 i J2mu
I - Pm,Tnf HQ = J2m (2m)! (2m+1)| ; P e Ja T NIHO(A (e Yy )
= |
r ]. "21’1’1"!‘1
2 1 2m+l |
T 2 | oA
T 2m (2m)! (2m+D)! Of[P (t)a(t) ] dt| + im (3.52)
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Now, using (3. 50) and the mean value theorem,

2 1 f2i = 1
2m+l , % 2m+l * . f AP 2m+l
P (0 ;) (8 )(t W i) = [p™(u)e(u)] du
in {3, 53
1 1
= Hl f [pz(u) o (u)]zm+1 du.
O

where 6, is some number in [tm, 41,0 ].

If, in Lemma 3 we use that

2(t, )a(t, 1+O(A, ) ) = p2(0, )a (B, )(1+O(A 3. 54
we have
5 y 1 Jem+i
) well2 _ 1 (m! ) 2 2+l “l
le-pry 17 = —my Ty ey | J [P (W) Z AL
n Q n o d i=o
1

1 : 2 2m+1 .
n2m (ZIT(II)I;(%m-H): of [p™(uw)e(u)] dul +o (_nza)

(3. 55)

Since ||f——P T fHé achieves the lower bound (3. 52) up to a vanishingly

’n
small term,T; is an asymptotically optimal sequence. This completes the

proof of Theorem 2.

It appears that the theorem can be proved under weaker conditions on

p, similar to those considered in [10]. We do not carry this out.
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4, Other Design Problems

Let T,S be two index sets, let cﬁx be the Hilbert space spanned
by X(s), seS, and let U(t) e J}’X every te T. The problem of choosing an
optimal index set TT_L = {to,tl, S § tn} to estimate a random variable
(f,X)N 5 feJJQ of a certain form, from the random variables U(t), teT is
immediately reduced to the problem considered previously by the following
two theorems.

Theorem 3. Let Q(s,s') be a given covariance kernel, on SXS,

let af(t,s) have the property that

at(o) =a(t,s)eﬂﬂq, VteT |,

Let

R(t,t') = <at(n WG ))Q t,t' ¢ TXT

and let JIR be the reproducing kernel space associated with R. Let
vV be the subspace of 4, spanned by {at(" ), teT} and let v, be

the subspace of V spanned by {at(- ), te Tn}a Then

2
Ip f-P 12 = llg - P, gl (4.1)
Vn Q Tn R

where |- || is the inner product in "yR’ g is defined by

R

a(t) = {a,f), ey (4.2)

are the projection operators in o#

and PV’ P 0

v
n

onto V and Vn
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respectively, and PT is the projection operator in .JfR onto the sub-
n
space spanned by {Rt(= ), te Tn}’ R.(+) = RIt,")
Proof: Since R(t,t')= <at,aﬂ> there is an isometric isomor-

Q

phism between "';”JR and V generated by the correspondance
Rt(u ) e ,ﬁj"'ir’RN at(- ) e Q‘/Q (4. 3)

since

Ry g = RiL, ) = <at’at'>Q

Furthermore

a,D g = <y P,£> o =9t = Ry, Pn (4.4)

Hence, since {at,teT} spans V, {Rt,te T} spans Fs V. Nd% ,

where “"?E{I‘ is spanned by {Rt,te Tn}, we have
n

Pvf ~g

P

VfNPTg

n n

and

B
lp£-p, £l . =1llg-P. gl
vt v il r 9R

Theorem 4, Let T be a closed interval, p(t) continuous on T,

and R(t,t') continuous on T X T. Then (i)any £(s) of the form

f(s) = {a(t,s)p(t)dt (4.5)



B

is in V and (ii)

under the correspondance (4.3) where

gt) = [ R(t,t') p(t')dt"
T

and hence (iii)
X, = [ U e(tat (4. 6)
T

where  U(t) = <at,X>N

Proof: Let w, = {tll’t12’“°t1£}’ £=1,2,... be a sequence of

partitions of [0,1], such that for every t, the Riemann sums for m

for the integral

1
[ Rt t) pre) gt
O
converge.
Then
-1
£-) = j; altyp Jo (5008 4 78, L2,

is a Cauchy sequence in V whose limit must be representable as f(-)

and the sequence of functions gﬂ(- ), £=1,2,... defined by
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-1
is a Cauchy sedquence in ’--"‘I"'T with
n

1
g,(t) —> {R(t,t')p(t')dt'

Assertion (iii) follows by noting that

i 1

EX(s) [ U p(t)at g"zps,at>Qp(t)dt

1

1
[ aft,s) p(t)dt = f(s) (4.7)
0

This completes the proof of Theorem 4.

The next theorem shows that ||f - P = Of Azm) under

2
m, ®f 5

?

more general conditions on the covariance than those in Section 3.
Theorem 5
Suppose Q(s,t), s,te[0,1] has continuous mixed parial
derivatives up to order 2m for s == t, and

2m-1 2m-1

Q(s,t) - lim ——— Q(s,t) = (-7 a(t)  (4.8)

stt 852m

I 9
i 2m-1

sit 9s

Let

1
f(s)= | Q(s,t)p(s)ds (4. 9)
o]
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2m
and suppose « and p are continuous on [0,1] and 5= Q(s,t)
ot
is bounded for t 4= 8a
Then
2 2m
- <
| £ R TanQ < O B (4.10)

Proofs
le-p o £S5 < [ Joels) pt) E (Xis) - K'() JX(t) - X(t) ) ds dt  (4.10)
o O

Where for each s, fiu(s) is any random variable in the subspace spanned by

{X(V)('ti), teT , v=10,1, Bose s LY &
We construct )?(s) for ti < 8 A ti+1 as follows. (To avoid trivial
details we let to and tn be the boundaries of T.)

Let piv(t), qiv(t) be the unique (2m-1)st degree polynomials

satisfying

p(p)ft }y=28 p(H)(t ) = n,v=0,1,2 m-1 (4.12)

iv i pv? iv i1 ’ ’ 253 ©9 0

(1) - (1) _

q;, (£) =0 ay, (L) = " (4.13)
where & =1, u=y, & =0 otherwise.
Let it

(4.14)

Xis)= L oy o0xMey+ qsxMee ), 1 <5 <t

v=0
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~

X(s), s e[ti,ti+l] is the 2m-1 st degree polynomial which satisfies

X(V)(tl) 'SEI(V)(ti) - X(V)( ) _"}"C"’(V)

L (t,) =0 v=0,1,2,...m-1.  (4.15)

This is the classical Hermite interpolation procedure, (see [11]). It

is also the correct interpolation procedure if

-1 m-1
1 (s-u)™ (t-u)
Q(S,t) = f (m"-'l-].): (m_+1): du (4. ].6)
0

In this case Pm

T X(s)=f}‘{4(s), g% [B),t-5 s Sinee }?(s) is the unigue (2m-1)st
5 Ll

Il
degree polynomial in s satisfving (4. 15},, and these conditions determine P

m,T
Let
m-1

X(s).
n

~

Tyt = 0 M ra s el )
1

{ (4.17)
=0 i+l
We have, from (4.1l)
n-1 ; k.
5 i+l 4l
le-p, o Elg < 0 NS 7 dt es)e) X
»“n i,j=0 t t
i
Qg Qgp Q- Q> g dsct
A-l Y G ) -
< ) 2 eeyee) [oas [T aedQ-Qy,, -9y
i,7=0 ti tj
(4.18)

isfyi <9, <
for some {eiﬂ} satisfying t; < 0, < t,,



s

By the assumptions on Q, ge _}%I’Q implies that g has at least

m square integrable derivatives. Furthermore, for any ge ;?/"Q, if we define

~

g(s), se [tia ti+1] by

Qg = Qgpp 9 o =9s), (4.19)
then
gN("’)(ti) = gﬂ")(tiﬂ) =0, wv=0,1,2,...m-l (4.20)
Then by use of (3.27m), we have
t t
i+l i+l m m
~ d d
[ 4s@.Q.,904 = J = 5(u) T glu)u (4. 21)
¥g ¥gi??/Q m i m
ti 1:i du du
g e Lj¥Q .
where ai is given by (3. 24).
Now letting g(u) = Qt(u) -3tj(u)’
we have
Ci1 b4 y .
{ o tf ds Q=R QR4 q
] i
ftj+l fti+1 4o 4 N
= o dt 5,(u) (Q.(u)- ®..(u)) du
t, . qu™ b g™ ¢ t)
j i
1:H-l m gm tj+1 oy &
= tf du o 5, (1) . tf Q- Qpyr Q) q Ut (4.22)
i j
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For i#j, t#u all the appropriate derivatives exist and are contin-

uous by assumption, and (4.22) becomes, by another application of (4. 21),

equal to
fti+1 ftj+l qm g™ aZm
5,(u) 5.(t) Q(u,t) dudt . (4,23)
-3 + dum i dtm j ouot 2
1 J
. 2m+2, o m
We have that (4.23) is O(A ), since 6,(u) = Oft, 17t)
dum 1 i+l i
For i=j, the left hand side of (4.22) becomes
b Ha P ‘ Eiel ti+1/ -
tf dt Ef ds <Q-Q.;,Q Vo * tf ds tf QG4 Qg Ot
i i i i
(4.24)
The first term in (4. 24) is
fti—!-l fti-f-l gqm gqm
dt 5,(u) Q,(u)du . (4., 25)
b t, qu™ b g™ P
i i
Integrating by parts m times in the inner integral in (4. 25) results in
-
LTI Ll 42m
| - T
[ at]s) e+ [ 8n) S5= Q u)u
£ : du
i 1 -
u+#t
3 _ . 2m+l (m )i . \2m+2
= @030t 47 h) (@m); (2miy; T O 7)) i)

£
for some t, < 0,5 <t
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The second term in (4. 24) becomes

t t
i+l i+l m
foas [ 5™y 4 T wdu
t. £, du
i i
1 t
i+l i+l
= [ as [ s x
t i,
i i
% VM Lo gVm i
) P, (8) —S—m Qlr,u) + ), q, f8) ——w Qfr,u) p du
L =0 ar du v=0 or du .
l T, r=k. )
i i+l
b Ha ol ”
= [ as [ D 6. (u) X
t, Ty v=0
i i
:
| aZm 6\Zm l
ﬁpiv(s) T Zm-v Qr,u)+a; fs) ——n= Qe Whrdu (3.27)
or ou _ or ou -t
] = .
Now va) (u) = Oft, ;- ti)Zm—v , and it can be shown by using the

representation for piv(s), qiv(s) given in [2] that

_ 1%
P8 4p,f8) =0ty -t))

i g xeomd2
Thus (4.27) is O((ti+1 ti)) , and we have



n-1
2 (m: ) 2m-+1
- f =
I Pm, T_ g = (Zm). (ZmAl), i=ZO *(833)P(05)P(0p)(t; 45-t;)
-1 t t
i+l j+l m m 2m
d d 3
+) eoee,) [ f T 8;(u) S 8,(v) = Q(u, vidudv
i, j=0 ti tj du dv au’ ov
i#j
+O(_/1~_2m+1)
=O(&2m)

where 911’912’913 ¢ [1:i ’ti+1] . This completes the proof of Theorem 5,
Suppose now we have available X(ti)’ tie TZmn instead of derivatives.
Group the design points into successive groups of 2m points (ti+1’ti+2’ o ti+2m)’
-
i i <g<
having common end members, and let now X(s) be given, for b Ssst o
by the 2m-lst degree polynomial which interpolates to X(tﬂ), =t g 00s v 5 14200

(Lagrange interpolation). By wusing the remainder theorem for Lagrange

interpolation, it may be shown in a similar manner that Hf—PT fl'JQg O(A) Zmo
2mn
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5, Other Related Results

Suppose that a square root G of Q is known of the form

1
Q(t,t') = [ G(t,u)G(t',u)du (5.1)
0

where only Glt,: ) e LZ[ 0,1], for every te[0,1]. Then X(t) has a

representation
1
X(t) = [ Gt,u)dW(u)
0
and
f(t) = fIQ(t,t')P(t')dt' (5.2)
0
1
fle] o= p(t)X(t)dt
0
1
flp "IG(t', u)dt'dW(u)
= flh(u)dW(u
0
where
h(u) = [ Glt,u)p(t)dt (5.3)
0

If X(t) has m-1 quadratic mean derivatives, then for any

constants {c, },



il P

n m-1 (1 n m-l | 2
le- 2 ) < Qi(._v) ||é =8 f (Xt - ), ) o
(=0 =0 o =1 =0 |

n m-l
= f i) = Z0 Z0 iv(‘?‘(V)(ti’u))zdu
i=0 =

where

v
it u) = av G(t, u) ’

H 2
: ot t=t,
1

Hence the design problems we have considered are equivalent to the problem

of best approximation of h(u) by linear combinations of
{Gitpufy oo &%, Wl

in the L2 norm,

Let ge 15-;'{(3’ then a quadrature formula for f p(t)g(t)dt is given by
1 0

f p(t)PT g(t)dt, since this latter expression is a linear combination of the
0 n

values of g(t) at tzti € Tn“

Then

(5.4)
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‘ 1 1 2

Ofp(t)g(t)dt— { p(t)P git) dt (5.5)
n

| 2

"

/ —
| <t,9 PTng>Q

= | < - Yy |* < »
= | PTnf’g”Q| < gl lls PTanQ

n

1
2
Hg||Q . Of(h(u)— izzl ¢,Glt;,u))” du

[A

ol
In the case G(t,u) = G 1, we have

(m-1y.  °

hla) = Al (5.6)

By making the change of variable x =1-u in (5.5) the problem of

2
Q

minimizing Hf—PT f|| is equivalent to that of optimally approximating
n
m

the monomial XE,— by linear combinations of the functions

m-1 y n
N o f iy ! (; = 1-t,), in the L,[0,1] norm. Similarly, it is
clear that the problem of minimizing Hf—Pm T f||é is equivalent to
’"n

m
optimally approximating XE.— by linear combination of the functions



sl e

m-l-v m-1n

(x €y
—tr in the L
| (m-1-v) v=0,) i=0

2[ 0,1] norm. Such linear combina-

tions are known as spline functions. (See e.g. the volume in [11]).

Functions of the form

m-l-v

n m-1
<M (x=€.)
8(x) = mt + Z Z Sy (m—l—v)l
=l v=0

(=5

(5.7)

for some constants {Civ} are known in the approximation theory literature

(see [5][11] as monosplines.

Monosplines of smallest ]_2 norm have recently attracted attention

in the context of establishing optimal quadrature formulae via minimizing

the error bound of (5.5). Some of the results are relevent to the I%X?erk
(t, u)
i

mental design problem. These results are available when W

is replaced by G (t;,u)of (2.6), +=0,1,2,... m-1.!  We state two

H

relevant theorems, in our notation.
Theorem. (Karlin, [5], following Theorem 5). Let Q be of the

form (2.13), f given by (5.2) with p(t) = 1. Then, for every T & xﬁ’n,

~

there exists a Tmn e such that

Linear combinations of the functions {G V(tl,u)}rf__é iPl are so
=0, i=

called Tchebychev splines with respect to f, compare [4], Chapter
10, section 3.



=G

2
£

2
le-p~ £l . < |l£-p
i - S Q

mn Q m, T

Professor Karlin informs us that it is sufficient for this Theorem that
only p(t)> 0.
Theorem. (Karlin, [5], Theorem 5). Let Q satisfy the hypotheses

of the preceeding Theorem. Then

2
inf | £-P_, £1|2 = ||f- P.x £l
T €Y Tn Q Tn
n n

Q
where

(i) Tn is unique

(ii) Tn consists of n distinct points

Ale

. ]_ - Sk
(iii) <f~PT;!;f ) Qt(l )>Q =0, ti € Tn ’ (m >1)

The statement (iii) is the remarkable result that, at the optimal
design Tn for data without derivatives, the addition of first derivatives

to the data set provides no new information.
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