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We generalize slightly a theorem of Shepp concerning processes equivalent
to the m — 1 fold integrated Wiener process, to processes equivalent to an m - 1
fold inteprated weighted Wiener process, and give the Radon-Nikodym derivative.
The Fredholm determinant appearing in the R - N derivative can be evaluated,

for the cases studied here, by a formula given by Kailath.

Let X(t), 0 < t < 1 be a zero mean Gaussian stochastic process. Let

My be the measure induced on path space by the covariance

1
Ro(s,t) = IOGO(s,u)GO(t,u)du (1)
(amiily
GO(S,u) Se——xt— c(u), (xX)+ =x, x>0
(m=1)
(x)+ =0, x<0

where co(u) > 0, Since X(t) has a realization under u, of the form
X(t) = = (t—u)$_L - tl tn-1
-] — (wai(u) = j dtj’ dtl...] c (u)aw(u) (2)
o (m-1) o o o =
where W(u) is a Wiener process, we call X(t) an m-1 fold integrated weighted
Wiener process,

Let Wy be the measure induced by the covariance



i
R (s,t) = j G, (s,u)6, (t,u)du (3)
0
If Ul(s,u) = 04 & %< 1, then Gl is said to be a Volterra square root of R,.
We have the following
Theoreh:
Suppose
1) Gl(t,u) =0, t <u
SiE e
ii) ——:ITGl(t’u) = 0, j = 0,1,2,.-0,]‘“‘2
i t¥u
arn—l
139 atm"l Gl(t,u) = co(u) >0
: thu
x c, (u)
iv) 5;5 Gl(t,u) = cl(u) s With ESTET continuous
ttu
gl
Let M(t,u) = - e s Gl(t,u) and suppose
0 dt
d ; 5 : >
v) 3¥-M(t,u) exists and is bounded in t 0 <u <t <1
F% M(t,u) exists and is bounded inu, 0 €u<t <1
Let M be the Hilbert-Schmidt (Volterra) operator on Lg[O,l] defined by
*
(MF)(t) = [ M(t,u)f(u)du (1)
0

and let M® be the adjoint of M.

Then W, is strongly equivalent to Hg and



m-1 m=1
1 ¢l @8 =) dx - ilx)
du & J-J'j’ H(s,t)
Eﬁi (X) = (det (I - WL -183) 2 &2 )gdy ') CREI I )
0
where H(s,t) is the Hilbert-Schmidt kernel for H = I - (I - M*)_l(I - M)_l
and
T L L EE;E; du
CAeElT = MT ~ M) 2 = 82 g 52" (5)

Remark: The case co(t) Z ¢., a constant, is discussed in Shepp [8].

0

We have here the conditions that x(j)(o) = 0y i =0, 12, gni=1,. and
EX(t) = 0, under uy and Mye Shepp's study without these conditions goes
through directly for ¢, not required to be a constant, and we omit

discussion of these cases. We note that if i) - v) hold and Gl(t,s) is

a sufficiently smooth function of s, then

2m=1 2m=-1

2 : 9 : ] .
(—l)mco ('t) = iil‘: B-E:ﬁ:l-Ri(S,t) - ;.il: WRi(S’t)’ 1. = O,l (7)

If Gl(s,t) is a Green's function for a differential operator of the

form

(L £) = -

]

Hne-13

a .(t)Djf(t) (8)
g M1



then

e e
CO(t) S ao(t)
a_(t)
e () =
= a, (t)

The situation (9) covers the processes considered in [10].
An outline of the proof of strong equivalence goes as follows.

Letting Gy i = 0,2 be the (Hilbert-Schmidt) operators defined by
Lok
(G.f)(t) = [ G, (t,u)f(u)
i L

we note that

-1 m:
(G, (ME))(t) = jt (F;X;?, jx 2 G, (x,u)£(u)
¢ S 0 ox

= t (t- x)$ o

= j du £(u) ] e — Gy (x,u)dx
ox

: and since
£ (t-u)$_l t (t—x)w-l "

Gl(th) = *—TE:ETT-CO(H) + ju TR axm Gl(XgU)dX

we have

@
]

L= Go(T = M.

We may write

A

where Gih is the adjoint operator to Gi'

(9)

(10)

(11)

(13)

(14)

(15)

(16)



(2]

[ee] [ee]
Let {ai}i=l and {¢i(t)}i=l be the eigenvalues and orthonormalized eigen-

functions of RO and let

1/2 4
B
0 :

1=1

(f,¢i)¢i (17)

3
ol |

oo

whenever z E£ (f,qu)2 <, A version of the Hajek-Feldman theorem stated
i=171

in Root [8] says that Hy and M, are equivalent if and only if

~-1/2 -1/2 _
RO RlR0 =I-2B (18)

where B is Hilbert-Schmidt and I - B is invertible, Using the terminology of

Hajek, My and H, are strongly equivalent if B is of trace class and then

172

det(I ~ B) exists, Now Ral/zR RB is unitarily equivalent to

2

-1 # . fe] % Frstics = o
GO GlGl GD = (I = M(T - M%) =T (M + M MM#) (19)

Since M is Volterra, (I - M) and hence (I - M)(I - M®) are invertible, See,
for <xample, Petrovskii, [7]. Thus, 0 is not in the spectrum of (I - M)(I - M%)
and-. is not in the spectrum of K = (I - M)(I - M%) - I, K is obviously

Hilbert-Schmidt, and hence u, = u Assumption v) insures that M + M* and

i 0°

hencee M + M*® - MM®, and B are of trace class, as follows. Upon integrating

by parts,

((M + M5)E)(t) jt M(t,s)f(s)ds + [1 M(s,t)£(s)ds
0 T

1]

M(1,t) jl f(s)ds + Il CUEAD) Fluw) (20)
0 0

where

cltu) = Jl A(t,s)IS(u)ds
0



with

I (i) =1 s > u
S ——
=0 8-S
and
5 d :
A(t,S) =~y = TS-M(t’S) A1
= 2 M(s,t)
= - == Nis, t

Since M + M* has a representation as the sum of a rank 1 operator plus the

product of two Hilbert-Schmidt operators, it is of trace class.

I - (I - M)(I - M%) of trace class insures that

Rieir ST T T s )

is also of trace class. Let

o= SMET = M)
that is,
(T = h)is (et

themn
H = h +-h#* 4 hh*
and h is given by the convergent Neuman sgepries [1]

higm), & 2 Mj(t,u)
3=

Ml(t,u) = M(t,u)

MYt u) = jt (£, E)MCE,u) dE
u

(21)

(22)

(23)

(2u)

(25)

(26)



The (Fredholm) determinant (6) may be evaluated by noting that
det(I - M)(I - M%) = det(I - H)™1,
and then using the following formula, given in Kailath [6].
det(l = m) > = JERLIANT)
Equation (6) then follows from
tr(h+h®) = Jl(h+h*)(t,t)dt

0

and

(h+h*)(t,t) = =(M + M%) (t,t) = Sty

ba

(27)

(28)

(29)

(30)



If M(t,u) = M(t - u), then h(t,u) may frequently be found explicitly by operational
methods (see Erdelyi [2]).
We briefly outline a proof of (5). Missing details can be filled in
from Sections 10 and 12 of [9]. The only substantial difference between
the argument here and that of Shepp is due to the fact that we take into
account the fact that the eigenfunctions of R, and R, are not necessarily
the same. The idea behind the algebra below is the simultaneous diagonalization

of two covariance functions. (See [41]).

Let
n
x (t) = jglvj %5; ¢j(t) (31)
where
Vj = ;%§ [i X(s)¢j(s)ds (32)

Under Hys (21) is the nth partial sum of the Karhunen-Loeve expansion
of #(t) and under either u, or Y Xn(t) converges in quadratic mean to X(t).

Vel 0 -1
Now note that ¢j' J =02, i lssin the domain of GO = L,, where

il

(LO £t = -

- f(m)(t). since ¢ju}fR , the reproducing kermel Hilbert
0 0
space with reproducing kernel RO.

Consider

5 oy e dxim'l)(s) dx;m'l)(t)
. (B K Lt), HE X ()} [0 ]o & o H(s,t)———zgr?y——

[n]
1

n
: Se e )V 33

where



and

1
-
-
-
n
(o

-1 -1 - -1

1
o
-
A
H
e
V)
(9]
o
~—

duy

We show that the gq.m. limit of %~Z is the exponent in — .
n duo

= : :
Let {Yi}i“l be a complete orthonomal set of eigenfunctions for the trace
class symmetric operator H = (I - )" (1 - M1 - I and denote the eigen-
o
values of H by {(1 - %—)}?zl, where we know that- E ]l - é-l gom e LR HEs
e : :

i=1 i,
a null space, complete the eigenfunctions in any manner). Let

n
0, = ‘Z (V557 Kon = 1 245 : (36)
i=1l
Then
i dxim'l)(s) dxim-l)(t) n
Jo e o e L GLE G HE Y
0 0 1,3=1
IRAM) .
= V.5 (5., Y, )(E.,y, ) (1-=—)
1 i 192 le 2l dk
Rl ' (37)
s kn Ok

Letting Ei be expectation under My i = 0,1, we have

v, = 1o 1

0 18 |
=0, 177
and hence
n n :
EoBhnun = Fo,L (ViBisn) L (V5E507p) | ' (38)
i=1 j=1
n
= 1 B sw N v
v=1

= (PnYk, PHYQ)



where Pn is the projection operator in] 5 onto the n-dimensional space

spanned by {§ = It then follows that'ekn, n=1,2,... is a Cauchy

VI

sequence for each k,

q.m. 1
ekn — ek
with
L (39)
Now,
= i
AN 7(}: % CIR N
= ;%= ;é=(¢i,eo(I-M)(I-M*)Gz¢j)
Sl
= (B= Glp. ,(I-M)(I-M%) A= G 9.)
e a 0%
= (EJ.,(I-M)(I-M='=)F,].) (40)
since
AR e
‘/oT; e T ‘/OTl Gy s = Ega (41)
Thus
n n
Ef0gn = 1 L (Bramd(E5avp ) (E,, (- (I-M)E,)
i=1 j=1
= (PnYk,(I-M)(I-M*)PnYR) (u2)

Since (I-M)(I-M*) is bounded, and (I-M)(I-M*)Yg = 0gs R A oty spdit

then will follow that for each K,



10

q'm.’ul 8
Bkn = k
with
E6,0, = SM’GE (43)
The {82}Z=1 are complete in the Hilbert space spanned by X(t), 0<t<l, and
.10, d

mh e G L i e B
7] bk a c . (s) J CE(EE)EN (%H)

k=1 k 0“0 0 0

It will then follow that
du 1 e 1
L ey T 18- (u5)
duo (. U.)l/2 k=1 k
1=1°3
1 fl fl ax{™(s) Ty ax'™ (1)
) i 2 g 5
=(det(I-M)(1-M#)) M2 2 Jg fo TS S e
This ends the discussion of the proof of the theorem.
Suppose, on the other hand, that Rl is an arbitrary Hilbert-Schmidt
operator with a representation
; (47)

Then, the necessary and sufficient conditions for ul to be strongly

equivalent to Mo is that K be a trace class Hilbert-Schmidt operator with

-1 not in the spectrum of K. If, say, K has a continuous kernel K(s,t),

then



11

8i+]
._Jl,,__:——.R.l(S,t) = 0 i,j = 0,1,2,.-. m=1 (LI‘B)

ds 9t

s=t=0
and
1 a?m
R.(ast) & KEs ), . 8ft, (49)
co(s)co(t) Bsthm 1

as in Shepp where <, is taken to be a constant. The discussion concerning

Zln used only the assumption that H = I - (I + K)-l is of trace class, so
thai , if My is strongly equivalent to ,, then (5) with the substitution
(27) always gives the likelihood function.

It is known that if, for example K(s,t) is continuous and -1 is not
an cigenvalue, then there always exists a Volterra operator h, with h(s,t)
continuous for 0 < t < s, satisfying (25). See [5] and references cited

there, Thus, if the right hand side of (7) is well defined, then the left

hand side must give co(t). Further, there exists an M solving (24).
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