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A Class of Approximate Solutions to Linear

Operator Equations

By

Grace Wahba

Ly SUMMARY

We consider a class of approximate solutions to linear
operator equations where the domain and range of the operator
are both Hilbert spaces possessing continuous reproducing
kernels. The (broad) class of operators considered here
includes integral, differential, and integro-differential
operators. The specialization to Fredholm integral equations
of the first kind has been considered in detail in [6]. The
main convergence theorem has been proved there.

The purpose of this note is to reformulate the
approximate solutions and convergence results of [6] in a
more general framework. Then these results are applied to
obtain approximate solutions and related convergence rates
for two-point boundary value problems and associated integro-
differential equations.

We note that there is an interesting history of the

use of reproducing kernel Hilbert spaces to solve problems



in approximation theory. See, for example Golomb and
Weinberger [2], and, especially, Ciarlet and Varga [1l] who
consider approximate solutions to differential equations.
However, it is believed that the approximate solutions
described here for boundary value problems are new, in

the generality discussed here. The approximate solutions
studied here are exact on a certain n-dimensional subspace

which may be identified, (n large).

In Section 2 we give the approximate solutions and
convergence results, restated from [6] in the context of
general linear operator equations. The properties of repro-
ducing kernel spaces that we use here are stated briefly in
Section 2. For more details the reader may see [6] and
references there. In Section 3 the results of Section 2
are applied to the approximate solution of 2-point boundary
value problems. Section 4 gives an éxample to show what the
method is doing and to indicate that the convergence rates
with this method cannot be improved in general. The method,
applied to me = o, EFeB, whevre L, is an mth order linear
differential operator, and &3 is an appropriate set of
boundary conditions, is eguivalent to the following: g is
interpolated at n values of the ordinate by a linear combina-
tion of suitably chosen functions, to obtain an approximation
g. The approximate solution %, then, satisfies exactly
L f = §, feB. Section 5 gives the application to linear

m

integro-differential boundary value problems.



2. PROPERTIES OF REPRODUCING KERNEL SPACES. THE APPROXIMATE

SOLUTIONS AND THEIR CONVERGENCE RATES

Let }¢R be a Hilbert space possessing a (real) repro-
ducing kernel R(s,s'), s,s'eS, where $ is a closed bounded
interval of the real line. By the properties of reproducing

kernels, the function R defined by
Rg(*) = R(s,*) (2.1)
is in jp and

CiR p = £l8), 888, fe . (2.2)

where <?'i>R is the inner product in 4/ Let N be any

R"
continuous linear functional on ;QR. Then its representer

n(+<), is given by the following formula:

NE z<n,f>R ; n(s) =<n,RS>R = NR_. ' (2,85

Let T be a closed, bounded interval of the real line.

T

We consider operators K defined from //_ into the real

R

valued functions on T of the form

Kf = g (2.4)



(KE) (£} = gilk) = <”t'f>R y LET (2.4)

where nte?i » teT. That is, K is required only toc have the

property that the linear functionals {Nt, teT} defined by

Ntf = (REY{R) 6 o (2.5}

are all continuous in A _. Given K with this property, T

R
is found by
ne () =ng Ry = (KR (8) (2.6)
t \Mer =g/ R s *
Let V be the span of {nt, telnd, in QéR' Then the
null space of K in ?¢R f5 5y, Ehat de.
<ﬁt,§>R = 0, teT, feﬂlh —> fevt, £2.7)

Tet - Av= {tl T Ey 5 el 8 toe tiET}. We let the (nth)

approximate solution %EQ#R to the eguation

KEf

I
Q

be that element of minimum RéR—norm which satisfies

(KE) (t) = <nt,f>R = g(t) , teh (2.8)



If £ is any element in ?%R satisfying (2.8), then f is the

projection, Pv f, of £ onto the subspace Vn of V spanned by
n

{nt, teA}. Let Q(t,t') be the non-negative definite kernel

on TXT given by

0(t,t") =<nt,nt.>R. (2.9)

2 {nt, teT} are linearly independent, then the nxn matrix
Qn with 1, jth entry O(ti'tj)' ti,tjEA is strictly positive

definite, and we may write f(s) explicitlv as

o Bl del = (S)pntz(s);---,ntn(s))Q;l(ql,gz,...,gn)'

(2..10)
where 9s 5 g(ti), tieA. In the remainder of this paper it
will be assumed that {nt, teT} are linearly independeht. i o

may be shown that

T = =k
o(t,t') = (Mg ”tj>R = NN ,R(",*) (9. 413

where Nt is defined by (2.5) and is applied to R considered
as a function of the first argument, and Nt' is applied to
R as a function of the second argument. To see this, note

that, for any reproducing kernel Hlilbert space, the family



{RS, seS} span ﬁ#R. Then let nég). né%) be the 2-th members
in two Cauchy sequences tending to Ny and Nea respectively,
%
(%)
n = I cC, R
t =1 alE Sig
(2412
2
(2)
iy & .8 Bunyy B
t o ilt Sig

5\
and use the fact that <FQ'RSU)R = R(s,s') and hence

2 L
(%) (%) i
<ﬁt ' nt':>R =k L R Cae it BIEL g ey le (2.13)
i=1 j=1
Suppose that Q(t,t') is continuous for (t,t')eTxT,

then {nt, teT, £ rationall is dense in the st {nt, o).

Let PV be the projection operator in )¥h onto V and let

&l = mix ‘ti+l - tii, {(2.14)
where we assume that t1 and tn are the boundaries of T.
Then it follows that
1im e £ - ¥, £fl. =0 (2.35)
lafs0 Y LS

for any fixed fe A Obviously we have no information from

R"



g concerning f—PvaV*. To study ]Pvf(s) - P f(s)| we use

\Y
n

the inequalities

[Pvf(s) - D

i

v £ (s) |
n

f <(Pv“Pvn’ £, Rohpl

]

(P, ~P., )F, (P.~P_ )R \
I</ YN il S/RI

gl Eiebe RSB Rl (2.16)
n n
Let )+0 be the reproducing kernel Hilbert space with
reproducing kernel Q(t,t') given ky (2.11). (,wb always
exists uniquely for positive definite Q). Let Qt be the
element of ﬁTQ defined by
Qt(.) = Q(tl.)‘ (2.17)
Let <},°>Q be the inner product in fﬂQ. Since
{Qt, teT} span j¢Q, and {nt, teT} span Vv, and
.-‘ .‘A.\ = ' Al “r‘ '|\
\\nty nt,)R Oit,L") \?t’ Otv>0 (2:18)

there is an isometric isomorphism between V and };h generated

by the correspondance

n, €¢ Vv~ 0, € )¢0. (2.19)



Then feV - ge)#o if and only if

g B)e = glE) = <Qt.g>Q

in other words, fe¥ - ge}%h i F

g(t) = (Kf) (t).

Thus the range KL@LR

is a 1:1 invertible operator from V to AL..

(220

[ 2:20)

) of K is }#', and K restricted to V

To discuss rates of convergence of the right hand

side of (2.16) it is convenient to perform the calculations

in )ib and make use of the isometric isomorphism generated

by (2.19). To this end we list the following table of

corresponding elements and sets, where the entries on the

left are in ;#%.

3
T ;JQ
f-~g g(t) = (M, B, te
He = 8¢
i T, = Span {Qt, ten}
P. R r (8) = ( bR = ¢{n.,R
e g Y = AN S é)R = A M s

N,

/R

{(2:22)

= nt(S)



If the dinear functiohal D: defined, for fixed s, by
0of = £ (s} 65,04y

is continuous in }JR, then it has the representer R:

defined by
v\;(v), i
Ul 08 2 1y, sl
where, by (2.3),

v
v v 3
Rs(s') = DsRs' = g;v R(§',8). (2.24)

e : : -
D, is continuous if REEyVﬁ. TE R:eﬁif, then
f=

v Y]
Rs = Ys (2.25)
where
v o 8
YS(t) = 5—'5*"\-)- 'Ys(t) i (2.26)

A proof of (2.26), for v=1 proceeds by noting that

AT & 14m &
= xedb _(PVR5+E

: I
- P,R_ ) ~ lim =(v -y.) =¥ (2a2:7)
e E Vs el £ 5%

& S

where the limits are taken in the strong topology of V and
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?jb. Let P,, be the projection operator in }#b onto the
) - )

subspace Tn of (2.22)}. Thus, if Rze;%g, by the isometric

isomorphism of (2.19)

av ae f
& Wb By Tt B =<Pf—P f,R>
dsv 4 dsv vn ¥ Vn = R
AY)
= - P Y
<é Tng' s)bl
=3 o e v
n n ]
v v
Sllg - Pn g s
l Tn 0 S Tn s‘ 0
where g=Kf. (2.28)

Some of the convergence properties of the approximate
solution (2.10) to the equation (2.4) may be obtained by the

following Theorem 1, proved in [6], equation (2.19).

Theorem 1

Suppose that Q(t,t') satisfies

I
(1) Eﬂ@ Q(t,t') exists and is continuous on TXT (2.29)

ot 2

for t#bt, 1=0,1,2,...,29; %_I Q(t,t') exists and is
t

corntinuous on TXT for 2=0;1,2;...:26g~2,



-

42q-1 52q-1
(ll) 1lim —-—i—:i- Q(t,t’) and lim "'—2—_—I Q(t,t') (2.30)
tre! at°9 tet' at°9

exist and are bounded for all t'eT.

and suppose that h has a representation

{ii1) Bitl = [ Q(E,&75p (L) de? (2.31)
T
for some p bounded.y
Then heQMQ and
(2:32)

I = e 2l = oI
n

When studying the case K is a differential operator,

it will be convenient to use

Theorem 2

Let Q satisfy the hypotheses (i) and (ii) of

Theorem 1. Then, for each teT,

1

4Ty
IIQt = By Qt‘l = Ol &l %) (2,33)
n Q

Theorem 2 is impliecit in the proof of Theorem 1 in

[7] and is a direct consequence of equation (2.36) of [6].

3. APPLICATION TO THE APPROXIMATE SOLUTION OF 2-POINT BOUNDARY

VALUE PROBLEMS.

Consider the problem

4 In [6], this assumption is replaced by peC[T]. However, the

proof there uses only p bounded.
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Lk =g fed? (3.1)

where

m 5
e (3) g 0
L £(t) = jioam_j(t)f (t) teT=[0,1]=S

and we assume that facrhl, érégiz[0,11, ao(t)35>0 and
max (2m, 2 (r-m))

ajEC e R e
CB = {f va =y W= 11 RPN o (3.:2)
m-1 . ; m=-1 .
pE= sie Bl b 3 Eooptilon,
j=0 J j=0 ]

where the {Uv}vz? are linearly independent. Without loss

of generality, we will take mv=0, V=l,2, s e, dn (3.2) .  We

have gscqvl, g(q)eﬁfz[o,l], g=m-r.

We seek an approximate solution f in a Hilbert space

2¢R of functions

?#ﬁ = ffs facr_l, f(r)eﬁfz[orl]. EegAl. (3.3a)

Suppose that



<8

Mo = tg: £sc™ L, £ Pl 0,113 2

(3.3b)

with reproducing kernel R(s,s'), s,s'eS, and Uv' V=D ,.2 5 e sy

are continuous linear functionals in }LR.
Then the set fe,%ﬁ, UUf:O, v=1,2,...,M is a suhspace of ﬁﬁh
of co-dimension m. If the reproducing kKernel R{s,s') for

)ﬁp is given, then the reproducing kernel R(s,s') for this

subspace may be found as follows. Let

where

Let <.">R be the inner product in ,@ﬁ, and let A

be the mxm (positive definite) matrix with ju,vth entrv auv,

i <{'ﬁu’(b\»‘,> e B

where Uu(s) means the linéar' funcltional applied:to the

{3+5)

g-lE}\:'c'm'lples of }#R and associated inner product mav be found
in [4] and [6]. A slightly specialized case will be found

in Section 4.



-14-

function with argument s. Then

m
Ris,s"') = Rig,s") —~ x d (s) e I = Bl
W u v
VES]
Ol e
It may be verified that R(+,s) and R(s,*)e(3 for

each fixed s. Fquation (3.6) may be verified by letting

P¢ be the projection operator in D%R onto the suhspace

~

spanned by {¢v}v=?' Then, we must have

\ 2 s i % 5 .
S =3 ) <R P | &RS'RSl/R <R p¢B 7 ]35" P¢ES'>;{

~ ~

The approximate solution f(s) is then that element

of minimum 9+h norm satisfying

where %(t) is given by (2.10) with

N i8) = L R_[¢)
m Bj
=0 B oan (b Rils E)
=g 3 at)

{3.7)

(3.8)

{343)



~15=-

and

m m

— ’ g = b ¥ . £
O (s55) <ps e R a2 kzoam_J(s)am_k( )

aj+k

R(s,t) £3.:109)
statk :
For the examples of R given in [4], {”r' tE[O,l]} of (3.9) are

always linearly independent in }{P and. O(t,td) is gkrictly

positive definite. See [3], Theorem 8.1, p. 547. Here

Mot 95EaEE ek ol

We remark on some properties of the approximate

sodution. (2.310) with nt(s) and; gty ') given by, (3.9). and
(3.20) .

~

Let §=me. Then, singe
(T Ml sde = O, (8) (3,118}
we have
gls) = 0Ab. Asd O Azl 0, (s))o t ffr \ (3.11b)
= b t ¥ t 4 ] ,,t = -.—.n §- 1 \ -

13 2 - n | c]

.". GZ 1

! {

]

i g

\ /

\In /
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where gi=g(ti). Note that § is the solution to the problem:

Find @e/ig to minimize H@HQ subject to §(t;)=g,, i=1,2,...,n,

and, if g is any element in /{

0 with g(ti)=gi, then g=PT s

n

Thus, the approximate solution satisfies
(/ 2 .
e L_f—g>Q il g 0 ST (310

demonstrating a passing resemblance to a Galerkin method,
albeit with a change from the usual 312 inner product.

For any gekﬁé, § is the orthogonal projection in /#é
of g onto‘the n-dimensional subspace Tn spanned by
{Qt, tel}l, ‘Thiis, the method dis exactk if qun, or equivalently,
if fevn.

We may now apply the results given in Section 2 to
the approximate solution %(s) of the equation (3.1), where
F(s) is given by (2,10}, nt(s) and Q(t,t') are defined hy
(3:9) and {3:,10), and ‘R{g,8"} is given hy (3.6) with B(s,s')
chosen as in (3.3b). If ;ﬁ% is as in (3.3a) then the
assumptions on aj guarantee that Q(t,t') satisfy the
hypotheses (i) and (ii) of Theorem 1, with g=r-m.

Theorem_i

‘Let fe)#%, or, equivalently, qa;?é, where Q(t,t"')
given by (3.10) satisfies the hypotheses (i) and (ii) of

Theorem 1. Then
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5 4y = B eyt = GE[AITE 080, 0000 e e T (3.13)

]
i - a-
(298 o RO nt o Bl (3.14)

If g has a representation

gle) = £IO(t,t')o(t')dt' (3.15)

for some peC[0,1], then
ey o BV Rl o OB s e L s el (3.16)
Tauos e L e O("Aqu_i) | (3.17%

2
Remark: The condition (3.15) entails that geC <

Proof of Theorem 3.

First, we note that me=0, faﬁ#R => f=0, since

/%RCHﬁm Thus V=-%h. By the assumptions on the differential

operator, there exists a Green's function Gm(t,u) such that

il
fls) = | 6 ds,i)gly) == 5. f =6, feds, (3.18)
0 m m ;

and such that o:(u) defined hy
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Il

5 ) = Sl N DL e S | (3.19)

is a piece wise continuous function of u for each fixed s. We wish to.
apply (2.32) to the right hand side of (2.28), with Y: of
(2.28) satisfying hypothesis (iii) of Theorem 1. Y; is the
element in }¥é corresponding to R; under the isomorphism
(215}
To obtain a formula for Y, We note that, for me=q,

fsjﬁn, f-g and

; 1
- /
\jsrg>0 = \Rsrf>R = f(s) = é Gm(s,u)q(u)du (3.208)
Therefore
; 1 1
T lE) = '\YS,O_t>Q = é Gm(s,u)Qt(u)du = é Gm(s,u)ﬂ(t.u)du (3.21)

andr by differentiating 1,2,...,m-1, times with respect to s,

1
Yolt) = [ o(t,u)p_ (u)du V0,1, 25 M1, (3.22)
=] O

Thus, Y; has a representation of the form (2.31), and hence

{2.32) holds, giwving
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v
= I

s - anys o o(af® , v=0,1,2,...,m-1

To study yg, note that

I

(L £) (t) <;anm_v(t)Rz, ) = <gt,g>Q = g(t), teT,

so that

\V
Oamuv(t)Rt

1}

Q¢

=

\"

under the isomorphism of (2.19). But R: ~ y; so we must

have

N~ 8
fu
o
<
il
(@]

(o e
L 1 B v
Ts aofs) "9 anis5 Ys

Now

{3.23)

(3.24)

(3.25)

[ 3286



A
3
e
]
B =
b
-

tof =

g-
odfall .

by (2.33) and the assumptions eon tlie cosfficients av(s).
Anplying 13,23 gng (3.27)Y to (Z2.28) gives the

result.

A EI_XAT"EP LE
In this section we give a simple example, in an
attempt to give the reader a feel for what the method is
doing. In this example, the convergence rates of (3.23)
and (3.27) are attained. Let m=2, (3: {£(0)=Ff(1)=0},
Let

1
R(u,v) = f Glu,x)G(v,x)dx + ¢(u)o(v)
0

where

{3.27)

(4.1)
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G(u,x) = —(l;u) (uz—xz) - %(l~x)2 u>x
< - 2(1-w)? u<x
and
ey wf o (4.2)

G(u,x) is the Green's function for the'problem D3f=q,

£(0)=Ff(1)=£"(0)=0. }#h

%0 tlai=eiy=0, £'%) sheolubsly centinucus, £t 0 1

is the Hilbert space

with inner product

1 : _
/ A za (3) (3) " "
\fl,f2;R = g £, ta g, (nldu ¢ £7(0) £5(0) . (4.3)

¢ is that function which satisfies ¢(0)=¢(1)=0, ¢"(0)=1,

¢(3)

(u)=0. The choice of the bhoundary condition f"(0)=0
in the selection of the Green's function and the concomitant
choice of ¢ satisfying ¢"(0)=1 is arbitrary. IHere r=3

and g=1l. Let me=f". Then

a4

Ofs,£) = ;c?—a? Ris,t) = min (s,t) + d= (4.4)

and Eﬁg is the llilbert space
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{g: g absolutely continuous, g'sﬁﬁz[o,l]} {4.5)

with inner product

1
<§1rg2>0 = g gi(s)qé(s)ds + gl(O)qz(O) (4.6)

Let t:=0, t. =1, Then, it may be verified that, for this
i n

example,

k) (t—ti)

RN T U -
o R by TSR ekl

tE[ti,'t ] (4.7

i+l

We note that (4.7) implies that minimum norm interpolation

in )#é is linear interpolation, that is,

git) = P glt)=Ch.  g,0 3 . =Lg,P -0
T Nt Trke e SNTitEns o

t.) + —/—— g {t. P o o QPR .
. = . g( . S - = - '
it1+l tli 3 (t1+1 tlj i+1 i i+l

Il

(4.8)

Since

=
Hh>

(t)

i

gley; (4.9)
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where %(t) is given by (2.10), we have, exactly

o) 1
£(t) = [ G,(t,u)§(u)du (4.10)
0
where Gz(t,u) is the CGreen's function for the equation
f"=g, £(0)=£f(1)=0, which is bheing solved approximately.

Gz(t,u) =4 L) u<t. (4.11)

-t (l-u) uwrt.

The approximate solution is thus equivalent to the solution

found by interpolating g linearly between = and t, and

i+l’
then integrating exactly. In general, the approximate
solution is equivalent to the solution found by interpolating
g at tedA in the minimum norm fashion in )#O, and integrating

exactly.

We wish to calculate a more explicit expression for

Hyz = B anz ; v=0,1, to illustrate that the rate in
n

(3.23) and hence (3.13) is actually obtained. Using (3.22)

and the explicit formula for P, Qt in general, it may be
n

shown that



= Dlliee

<’v v % Vs, fl fl 5 3
Y =P Yo, Y."P Y.y = — G, (t,u) G,(s,v) x
t L e S Tn s/b Gl atv 2 asv 2
- - 3 = 1.
<Lu B g a . QV? dudv, v:0, (4.12)
n n 0}
By (4.7), it may be shown that
/ 2
\Qu-PT 0.0 P Qv> = 0 aelt.. & o (4.13)
va[tj, tj+l]
Let
B, (u,v) =<<ou-anou, Qv—anq§>b i E e ] (4.14)

In this example, Bi(u,v) is the Green's function

for the problem f"=g, f(ti)=f(ti )=0, te[ti, It

41 tieale

can be shown that Bi(u,v) has a factorization of the form

ti+l
Bi(u,v) = f Hi(u,x)Hi(v,x)dx. (4.15)

i
1

(Details mav be found in [5]). We may then write (4.12),

with s=t, as



=D

1 S4ed Bl

va—P YV : = n; f CA G, G ) 2" G, (t,v)B, (u,v)dudv
TP e o ’ e ’ :
SR O T g ey
1 3
nel Fisd [Ried 4V 8
« 5 [ gut | H G, (t,v)dv) , v:0,1. (4.16)
; i N 2
i=1 &, ty At

By the mean value theorem, we may write

a e 5 g ]
’ “ 3 [ci(t{J Jodw g f H, (v,u)dv|
0 i=1t ti 1o

Vv v

N~ Ve
n

I

f f B. (u,v)dudv, v=0,1,
i
.
(4.17)

v
Y i 9 Y v
where ci(t) e G2(t’ei) where Si £ [

i t 1#'v=0,;1.
ot

i+l

It may be calculated, or found in [5] that

ikl 14l ;e 3
{ f B, (u,v)dudv = 5 (By0q = &) (4.18)

By using (4.:17), and



-26-

2 et = 4
NE CZ(L,u) u ust (4,199
= ~(1-u) u>t
and letting (ti+1 - ti) =hn ili= s, 2t R
We have
2 3 J n-1
”yt - P, YtH = §$§T P [Bg(l—t)]z F8 ft(l—e‘i’)]2 (4.20)
n o Sl 20 i=9+1
Sonni e e
i 3 o
e} =
where ei £ {ti, ti+l] and t € [tj, tj+l]’
Jj n-1
e ST e e e
|RETN L s TR | j+1

2 / 3 3 \
TNE Al (1-t)
= 5???\‘? ¥ mp— 4+ 0(a) (4.21)

Thus, the convergence rates of (3.23) are attained.
Since there exist examples for which the Cauchy-Schwartz
inequality of (2.28) is an equality, the rate (3.16) cannot

be improved upon. In this example, Yi=0

e and it can be
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shown that the rate of Theorem 2 cannot be improved upon.
It appears that no convergence rate for [ g-P, QHQ holding
i all o6f /q% gan be fourdd, Tf thisg is true,nit is
plaudsible that the rates of (3.13), (3.14), and (3.17)

cannot be improved.

5. APPLICATION TO THE APPROXIMATE SOLUTION OF INTEGRO-

DIFFERENTIAL FQUATIONS.

Consider the equation

1
[ Fieuyetuiau + 5 £48) SRigHipe, SO (5.1)
0

where F is a Hilbert-Schmidt kernel, Lm and 3 are as in
Section 3, and suppose gECq_l, g(q) £ 2?2{0,11, and, without

loss of generality, suppose HFGm” < 1, where G is defined by

f = Gmg

(542)
i
foey = G (t,u)qg(u)du
0

Gm being the Green's function of Section 3.
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Then, we may write (actually for gs?fz[o,l]),
f = Mg

where M is the Hilbert-Schmidt operator

2 3

M = Gm(I = B (F‘Gm) - (FGm) i)

We seek an approximate solution in,A#R, where
mav be chosen as in Section 3, based on the assumed
properties of the solution f£.

Then (5.1) may be written

(nt,f>R = g(t) , teT , feso

X;

where

i3 m Bj
() = [ F{t,\)R(s,u)du + I a__.(t) ——= R(s,t).
0 L

Observing that

s

&

{5.3)

(5.4)

(5.5)

(5.8)



=P GE

] " 1’) -
e g,
[ [ F(t,0)R(u,v)F(t',v)dudv
075 &)
i 53
£ L Pltu). L a o (t!) ——= R(u,t')du
0 j=0 ™73 at ']
i -m aj
dsifs a alt) — R{t,v)F(t! vjav
0 4=0 ™77 at]
m m aj+k
e o Ea slbFa. - (") R{E,t") (5. 7)
J=th ap T K TEPYR '

an approximate solution %(s) is then defined by (2.10) with
nt(s) and” gt EY) given bV (5.%6) and (5.7).

To use (2.28) and (2.32) to obtain convergence rates
for !f(v)(s) - %(u)(s)l, we need an expression for Y;, the
element in }%é corresponding to R: under the isomorphism
of (2.19). Following the reasoning of (3.20)-(3.22), we

use, for fe AL . gehl.,
R Q

1

<ﬁ54§0==(%yg%z=f(g = [ M(s,u)g(u)du, (5.8)
; ) : ¢ :

where M(s,u) is the Hilbert-Schmidt kernel for M of (5.4).
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Thus
¢ 1
et =g nl s = é M(s,u)Q, (u)du (5.9)
+ AV)
yiit) = | Q(t,u) ¥ (u)du T e ] (5.10)
0
where
v Bv
ws(u) = Mg, u). {5.11)
98

If F(t,u) is sufficiently smooth, then Q(t,t') will
satisfy hypotheses (i) and (ii) of Theorem 1, and w:‘will

be piece wise continuous, v=0,1,...,m-1. In this case

|

g ‘satisfies (3.15); thHen (3.16) holds.,

\Y v

Y = Prpdfzfon o([4]9) and hence (3.13) holds; if further
n 0
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