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Abstract

The problem of minimizing a positive definite quadratic functional
subject to a continuous family of linear inequality constraints is
studied. Upper and lower bounds are given for the value of the functional
at the minimum. In certain cases, the given bounds coincide, and an
explicit formula for the solution is given. Convergence rates for a
sequence of (computable) approximate solutions obtained by discretizing

the constraint set are established.



ON THE MINIMIZATION OF A QUADRATIC FUNCTIONAL SUBJECT
TO A CONTINUOUS FAMILY OF LINEAR INEQUALITY CONSTRAINTS

by

Grace Wahba

1. ~Introdggzigg. Ritter, in [6] considers the problem of minimizing

a quadratic functional J(f) subject to a finite set of linear inequalities

of the form
a(t) < {nys f>}¥ <B(t) ,  teT . (1.1)

Here fe?)[-, a Hilbert space, Tn = {t], tys aees tn}, a finite (discrete)
index set, {nt, teTn} is a set of elements of 73(, <’> is the
inner product in *}f and J 1is a non-negative definite quadratic functional
on }% with null space of dimension m < n. The Hilbert spaces considered
are such that the linear functionals N¥ defined by

sz -+ f(v)(t), teTn, v=0,1, 2, ..., m=1, are continuous, and

f(m)e:i The {n., teT_} are representers of linear combinations of such
2 t n

continuous linear functionals. Thus the constraints become
m'] (.)
a(t) < § ci(t) FINE) <B(t) ,  teT, (1.2)
- J_=0 J - n
for some real numbers {cj(t), i=0,1, ..., m-1, teTn}. J(f) is of the form

1
IF) = [ (L, F(t))%t (1.32)
0



where

L f(t) = jgo 2,(t) f(t) L a(t) $0 in [0,1] . (1.3b)
It was shown in [6] that the solution to this problem can be
reduced to the solution of a (finite) standard quadratic programming
problem.
Mangasarian and Schumaker [5], and Laurent [4] considered generalizations
of this problem obtained by enlarging the constraint set by replacing
Tn by T=DUE, where D is a finite set of points and E is a finite

union of closed, bounded intervals. An example of such a set of

constraints is

! (9)
Loci(t) £190(t) < Bp(t) o teD = {g), &ys .ny £y} .

an(t)
D j=0 9

A

(1.4)

A

mi] b,.(t) f(j)(t) < Bp (t) teE, = [0,1], E = UE
3=0 ij "BE- ’ €ty = L9100, __ii

t
aEi( ) 1

Various characterizations of the (possibly non-unique) solutions are
discussed. Daniel [2] considered an approximate method of solving the
minimization problem with J and the constraints as in (1.3) and (1.4)
Daniel's procedure consists of replacing E; in (1.4) by the discrete set

Ein C:Ei’



A solution f; to the problem: minimize J(f) of (1.3) subject to

m-1 .
(3)
ap(t) < jEO c;(t) F9(t) < By(t) ,  ted
: (1.5)
m- "
agi(t) < jED b 5(t) #3) (4 < BEi(t), tek

may be found by the methods described in [6], and is taken by Daniels
as the nth approximation to the solution of the original minimization
problem with constraints (1.4). He discusses the convergence properties

*
f as n ==, No convergence rates are agiven however.

n

The main result of this paper is the establishment of convergence
rates for approximate solutions obtained by discretizing the constraints.
The minimization problem we consider is more specialized in one sense and

more general in another, than the one considered by Daniel.

7To ease the analysis somewhat, in this note we assume that J(f) is
strictly positive definite over "N, which is otherwise an arbitrary
separable Hilbert space. Then, without further loss of generality we may

Tet

= J(f) . (1.6)

||f||§¥

and 2 (F, ooy 11T AR 15,115,

As an example, let ’}¥ be the (Sobolev) space wm’2 ;

W2 o g f(m-1) absolutely continuous , f(m)eJiZEO,T]} (1.7)

and

-1 . 1
uﬂ=mzA4#ﬂmn2+ﬂLﬂﬂﬂa (1.8)
j=0 J o "

where A, >0, i=0,1, ..., m-1, and L is as in (1.3b). We also assume

that the constraints are of the form



0 < a(t) < e f># . teT (1.9)

T =DUE, where D is a finite set of points and E = [a,b] is a closed,
bounded interval. The results go through for E a finite union of
closed, bounded intervals, we omit the details. The family {nt, teT}

is an arbitrary family in r}f except that we assume that the kernel

Q(s,t) defined on TxT by

Q(s,t) = ETE%ETEY <:§S, n€>>}¢ s S, teT (1.10)

is strictly positive definite on TxT (i.e., {nt, teT} are linearly
independent). These conditions will insure that there is a unique solution

f*e]# to the problem:
e e 2
minimize J(f) (= ||f|L}%)

subject to

a(t) < ‘61:’ f>}+ »  teT . (1.11)

In this note we reduce the study of the solution f* and its
approximants f: to the study of properties of the kernel Q. Section 2
has some preliminaries. In Section 3 we find upper and lower bounds on
||f*||?¥_ in terms of Q when Q is positive. When the upper and lower
bounds given coincide we may determine f* by inspection. This easy

result is summarized in



Theorem 1

If Q(s,t) >0, s, teT, then
Y4 * 1
i) inf sup ~—%1§4§l 3 |IF |l » sup ——— (1.12)
seT teT Qls,t J}* teT VOQ(t,t)
i) If there exists a (necessarily unique) s,eT for which

1 1

p s e (1.13)
and

Qsxs54) = 1'2?‘ Qsx»t) (1.14)
then

£ L (1.15)

" Ol 0l 5eusg) 5y

In Section 4 we find rates of convergence of a sequence
of approximate solutions {f:}, to £ in terms of the continuity
properties of Q on E = [a,b]. More precisely, let f: be the (unique)
solution to the problem:
minimize J(f)
subject to
.
a(t) < {ny, f//LF* , el (1.16)

where

—
n

DVJE (1.17)



*
fn may be found by solving a standard quadratic programming problem
(see Section 4 for details).

Let

t.| = A (1.18)

Then we prove the following:
Theorem 2
Let Q(s,t) have continuous mixed partial derivatives to order
2p - 2 and bounded 2p - 1 st order derivatives on ExE. Then

| S 1
g g s min(p - 5, 2)
If, - f 4 )

y = ol (1.19)

If the evaluation functionals N_f - f(s), and N:f - f(v)(s),
v=1, ..., m-1 are all continuous in —¥+, as is true in most of the
interesting examples, then (1.19) entails pointwise convergence of
f:(")(s) to £A9E) for v= B, 1, .ue, el as follows: 16 B

S

is the representer of NY

gf that is,

]
o
-
—
-

EF = i f>a4 - 10s) L e

0 .
NS = Ns

m-1, (1.20)

then

S #

* *
< |[RY[ |, I1f -flhr%.
o s }4, n ;

£ ) - Ny = ) K- 1 |
f}+ (1-21)



An as example of the application of Theorem 2 to a problem
similar to that considered by Daniel, let J(f) be given by (1.8),
where the {aj}jTO appearing in (1.3b) are of continuity class sz.
Then we may take iﬁﬁ to be wm’z of (1.7) with the norm defined by
(1.6) and (1.8). 1In this case the linear functionals sz > f(v)(t)

are all continuous for v=20,1, ..., m-1, te[0,1].

Let the constraints involving E be of the form

def (3)
o(t) < Mf = 3 b, (t)F/(t),  tela,b] (1.22)
j=0

where q < m-1. Since the evaluation functionals N F > f(t) are all
continuous 1in Hm,2 with the norm defined by (1.6) and (1.8), wm’z
possess a reproducing kernel, call it R(s,t).

By the general properties of reproducing kernels, we may always
find <:ns, nt:>§£ of (1.10), where N is the représenter of an
arbitrary continuous linear functional Ms’ if the reproducing kernel

R(s,t) is known. The relationship is

65, ”t>,#= Mg (u) Meyy ROUSY) (1.23)

where Ms(u) means the linear functional Ms applied to R considered
as a function of u. (For further discussion of Hilbert spaces possessing

a reproducing kernel, see [7] and references cited there.



It is well known (see, for example Kimeldorf and Wahba [3]) that
W2 with the norm defined by (1.6) and (1.8) possess the reproducing

kernel R(s,t) given by

m=1 ¢5(S)¢j(t) min(s,t)

Ris,t) = : + é G(s,u) G(t,u)du s, te[0,1] (1.24)
j=0 J
where
Lm ¢J =0 j=b, ¥, 2, , m-1
PSR A s
J \)J il b ] 3 ] ) [ ]

and G(s,u) is the Green's function for the problem

L.f

n
(=]

|
o
-
<
!
o
-
el
-
no
-
=
[
el

£ (o) =

Then

1 el
Qs>t) = Srsyarey <<”S’ ”;j%¥+ = a(sTaleT Ms (u) (v REU-Y)

; (1.25)
I i AR [a.,b]
= b:ts b LE : R(s,t) , s, tela,b
als)alt] 5 g=0 377K aedatk
By recalling the properties of Green's functions, we see that
ad K
e Blsd)] & Js =05 1a seus O 5« Tela.b] (1.26)
5sJat

has continuous mixed partial derivatives to order at least 2(m-q) -2
and bounded (left and right) derivatives of order 2(m-q) -1. Thus if
o, bjecz(m“q) 2 2lmq) =1 bﬁ(m‘Q) 1 bounded, then O of (1.25)
satisfies the hypotheses of Theorem 2 with p = m-q.



2. Transformation of the problem to canonical form. Let ﬁ}% be a

P P P g Pt g P o g ol P Pt P P g Pt P P N Pt Pk Pt P Tt P R Pk Pl gt ol Pt Pt o P P Pt Pt d Pt ok Pl P P

Hilbert space, let T be as in (1.9) and Tlet {nt, teT} be a family of
linearly independent elements of "§{. Let V be the span of {ny, teT}
in M. We seek to find feq. to

a3 2
minimize !If[|—%+ (2.1)

subject to

0<e<alt) < <”t' f),H_ . teT . (2.2)

For any fe'3f, let f = f, + f, where f.eV and f EV$. Since
1 2 1 2

(s f27,:)}_ = 0, teT, then f satisfies (2.2) if f, satisfies

(2.2) and it is obvious any solution to this problem will be in V. Let

Q(s,t) = ETE%E(ET <i?S’ nt:>}¥ s 5y tel (2.3)

Then 0 1is a symmetric non negative definite kernel on TxT, and we
assume that 0Q(t,t) = ||n£|I%H_ is strictly greater than 0 for all
teT. Thus there exists a unique reproducing kernel Hilbert space ’}{Q

of functions defined on T with reproducing kernel Q. Denote the inner

product in }"LQ by <-=->Q %Q has the usual properties that
the function Qt defined by

Qi(s) = Q(t,s) seT (2.4)

satisfies

0 & g ¥ teT (2.5)



10

(:?t, 9)q° a(t) , ¥ 9€ Hq teT . (2.6)

and the family {Qt, teT} span }FJQ. There is an isometric isomorphism

between VY and "}*Q generated by the correspondence
ET%T eV -~ Qts:%lq . (2.7)
This follows since {nt, teT} span V, and

1 .
a{sTale) \/35'%>%=Q(s,t>= <Qs,ot>q- (2.8)

Furthermore, feV -~ gei}}q i
1 ' ‘ _ -
(T <<%t’ f:%§4 = g(t) = <<§t’ é:} Q> teT . (2.9)
If feV ~ ge -}4n, then
111y = sl - (2.10)
Thus the problem may now be reformulated as: Find ge"}¥0 to

minimize ||9||S (2.11a)

subject to

s Qp o) gmalt) e (2.11b)
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* *
Then, if g is a solution to this problem, a solution f to the

problem of (2.1) and (2.2) is given by finding f* which corresponds to

g* under the isomorphism "." of (2.9).
* *

In many cases (2. 2) may be solved analytically for f*, given g*

by noting that if
" L
g (t) = ) ;0 (), (2.13)
j=1 J

for some constants {Cj}iil’ then

£ () = £§1cj ntj(t)/a(tj) (2.14)
and, if

" g

g (t) = lif j§1 Cig Qtjg(t) (2.15)
then

* . %
f(t) = 1im jZT Cig ntjg(t)/a(tjﬁ) " (2.16)
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3. A class of problems for which the solution may be obtained by inspection.

o s s g o B st P o g ot s I P Pt Pt Pt ot P NS e Pt Pt Pt Pt ot Pt Pt s et P Pt ol P N N R Pk Pt D ol P T 8 P Pl S Pl P P P h i o Pt g P ot Pt g Bt Pt g B g Pt Pt Bt Pt ot ot

S = {b:s vy o [wl] =1, w(t) > 0} (3.1)

S is closed because it is the intersection of the boundary of the unit

ball and the closed hyperplanes {w:.<@, Q£>h > 0, teT}. Define

_ 1
Al‘b = Slttp W . (3.2)
Then, ge?**o and g(t) > 1 entails that
g = (n, +6) (3.3)

for some yeS, and & > 0. Then

[allg = (8, + ¢) (3.4)

and it is obvious that the solution to the minimization problem of

(2.11) is of the form

9= Aww (3.5)

for some yeS, with ||g||Q = A, . Then the problem becomes: Find

"
*
peS  for which Aw is a minimum, that is, find ¥ for which



=l

13

; 1 1
inf sup = sup 54— (3.6)
PeS teT W) g v (t)

This may be recognized as a problem in game theory.

Player I chooses teT, player II chooses €S and the payoff to

*
player I is ] . Here we are trying to find a good strateqy ¢ for
u(t)

player II. (See, e.q. [1]).
The following Temma will be useful in the sequel.

Lemma 1

Let A be defined by

; 1
A = inf sup IET (3.7)
pesS teT vt
and suppose
- i=1, 2, (3.8)

12f $1(t) ® K:E;'s

where ¥, i =1, 2 €S and (of necessity) e; 20. Llet €= max(e1, ez)

Then
Proof. By definiti f d the f h (w](t)+¢2(t))J2 S
roof. y definition of A, and the fact that f|(¢]+w2)/2||Q €S,
(b ()h0y(1))/2 : ]
r (3.10)

> igf ||(¢]+w2)/2’la = Th+e) ll(¢]+wé)/2|‘Q ) 1.1 2
(A+e)(é+§<:%1’ w2:> o)
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giving
s 92 2 207(14e/W)E =121 - aen) (3.1)

Lemma 1 shows that if {wn} is a sequence of elements in S with

1
. ) . 2
Awn szp EETET ¥ A (3.12)

then {wn} is a Cauchy sequence in the closed set S. Thus a solution

*

¥ to the problem of (3.6) always exists and is unique, as is well known.
* *

Furthermore A = Aw*; and g = Aw*w* with ||g ||Q = A, is the unique

solution to the problem of (2.11). The unique element f eV satisfying

is the solution to the problem of (2.1) and (2.2) and

1
* * *
15711 = 11711, - (3(£))% = A (3.14)
In certain cases, the solution may be obtained by inspection. In
any case, Theorem 1 gives upper and lower bounds for A
Theorem 1. Suppose Q(s,t) > 0, s, teT.

J0(s,s) 1

= LB SUp (3.15)
st teT  0(t,t)

i) dinf sup
seT teT

ii) If there exists a (necessarily unique) s, for which
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sup 1 - 1 (3.16a)
seT VQ(s,s) JQ(s,,5,)
and
Q(sgs Sg) = inf Q(sy, t) (3.16b)
teT
then
o = s (3.17)
HQs*” )
and
* 1
F s oGSy s, (3.18)
Proof: The right hand inequality in i) follows from

the Cauchy-Schwartz inequality:

olt) < (ops f*>%s el Ryl #7115 = a(VRTED & (3.19)

The left hand inequality in i) follows by considering the set

Q
- s
{"-I'Q—S'ﬂ'a}, seT}C S. Then
I \
inf Sup oy = inf sup ———T-jil inf sup ——%L§l§—-3 A (3.20)
Pes'! teT seT teT Q(t seT teT Qls,t

If (3.16) holds, then

1 _ 1 . Q(s,s) 1
———————— = \/Q(s5,,54) sup e,y > inf sup 5[;1::;: S 1§
Q(s,554) et Wsaot) = ooy et AUsst) - V0O(s,,5,)
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so that
A= 1V0(s,08,) = sup — [ 54/1q (3.22)
= S4sS4) = SUP = sup ’

*35% : lb*(t) ‘ Q(S*,t)

and
QS
o = : (3.23)
||QS*||Q

Equation (3.18) follows from (3.17) by the remarks following (3.12) and
by the fact that the solution f to (3.13) is given by (2.14).

As an example of the application of part ii) of the Theorem, we

Wopid 2

seek the solution to the problem: Find f €l to minimize

1
I(F) = A F20) + A (£1(0))% + [w(t)F"(¢))dt (3.24)
0
subject to
a(t) < £(t) , teT = [3,1] , (3.25)

where AO, A] >0, and o and w are given positive functions. The

reproducing kernel for W22 with I[f[l2 = J(f) is
min(s,t)
R(s,t) = %—-+ §5-+ ) 1—5"-:-9-2-(-t-:9-)--du (3.26)

0 1 0 wz(u)

To obtain the representer Ny of the continuous linear functional N%

defined by N%f + f'(t), we use the fact that

du. (3.27)

- ! _ | _ 0 .S
nt(s) - <]t’ RS>?# B NtRS - 5-{. R(S:t) - A_]_+ f



Here
a(s.t) = 7 )]( 3 e ch R(s,t)
S, ~als)a(t <}S’ nt>{H G.(S)OL(t) 9sot s
1 1 )
- als)a(t) i;'+ q(min(s,t)) s S, teT
where

S

1
q(s) = du.
g W (u)

If a(t) is non-increasingon T = [%,1] then, with s, =

1 1
sup =
teT VO(t,t)  V0(s4,54)

Q(s%sSx) = inf Q(s4,t).
teT

Thus Q with s, = 5 satisfies (3.16) and

f = L n
a(s,)Q(54554) Sk .
a(1) min(s,2)
() s 2 |5/ 5
(= + al3)) T 0w(u)

Similarly, if

(1+0q(t) ooy T
rnamy 2 et 2 (4H)

17

(3.28)

(3.29)

(3.30)

{3:91)
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n

*
then Q with s 1 satisfies (3.16) and

f = AT ™ (3.32)
f* o) Js Y (s-u) d 0 = 9
) &+ o) i SRR

4. Properties of the approximate solution. Let f: be the (unique)

Tt Poh P Pt P N T Pt S P Pt P N N N P Pl P S P N S N ot N Bt Pk Pt P It o ot ot P g Pt ot ot ot P

solution to the problem
minimize IIflL}+ (4.1a)

subject to

a(t) < (f, nt>§3t e, 4 (4.1b)

where Tn = {s], Sps =ees So sieT} .
*

fn is obtained as follows: For any fé}#; we may write

n
f= ) cn. fals;) +p
i=1 1 S'i 1

where <”t’ p>_#= 0, teT . Then 4.1a and 4.1b become

minimize cQc' + <<%, p:> , (4.2a)
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subject to
<Q.c' (4.2b)

where c = (c], Cos wves cn) and Q, is the nxn matrix (of full rank)

with 1 jth element

_ 1 -
[Qn]ij = Wési, nsj>;’[.— 0(51-5 Sj)

It is obvious that p must be 0 in (4.2a). Thus the problem is

reduced to finding ¢ to minimize chc' subject to (4.2b), a standard
quadratic programming problem. Let ¢ = (c;, c;, cees c:) be the
(unique) solution to this problem.

Thus, f:ev is given by

A (4.3)
j=1 1S
and
* n 4
I = 121 ciQsi (4.4)

*
is that element in "qaLQ corresponding to fn under the isomorphism

of {2.7). g: is the solution to the problem

minimize ||g|1Q (4.5a)
subject to

1< 9 0y = alt) ,  teT . (4.5b)
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Let feV and Q*EJF*Q be the unique solutions to the problems of
(2.1), (2.2) and (2.11) respectively. MNote that
* *
lHallg < 18%1q = A o
It is our purpose to study the behavior of |[f - f ||9+. Since
: N = ) 3 estrict our attention to
[1f, = T ||§¥,- 19, - 9 [lqs we may restr
* *
||9n -4 ]lQ-

For notational simplicity we let T = {Ei}§=1lJ [a,b] where {gi}
are & 1isolated points not in [a,b]. The argument below may be carried
through for [a,b] replaced by any finite union of closed bounded intervals.
The behavior of |1g: - g*||Q proceeds by studying Q. We have the
following

Lemma 2. Let T =DVE, Tn = D\JEn, where E 1is a closed,

bounded interval [a,b] and En ={a = t] < t2 < ++s <t =Db}, with

n

A = max]|t til' Let Q have continuous mixed partial derivatives

i+l
of all orders to 2p - 2, and bounded mixed partial derivatives to order

2p - 1 on ExE.

Then there exists k = k(Q) depending only on 0 such that

min(p-3, 2)

* *
9,(t) > 1 - kllg,llq & (4.92)
. 1 teT
min(p-5, 2)
>1 - kA A (4.9b)
Proof. Since DC:Tn, it is only necessary to consider teE.

n
Let {di}i:I be any set of real numbers with d. >0, } d; = 1. Then
=1

) * n *
since g (t:) > 1, J dig (t;) > 1, and
i=1
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n o n
o8 - T eyt = 1 oo 0y - T dj0

n
< l!9:llQ 19, - _ZTdiQtillQ (4.10)

i=

Thus
* %* n

9,(t) > 1 - [lgpllq 1104 - iz} diQtilla (4.11)

For p =1, 2, we find, for each t, a set of {di} for which

n p-3
Qg - izl diQtiIIQ < k(0)a (4.12)

For te[tj, tj+1], let di =0, i$j, j*+1, and

- t) (t - tj)

_ h i
G TR Ye Ty £ | (4.13)

J

Then, for t [tj, tj+]],

2
|l

. = Q(t’t)"zde(tj:t)'Zdj+]Q(tj+'| ,t)

-d.Q, -d.

2 2
d30(t;,t;)42d d, 400t 5,t5,0) + 4570t 5475t54).

(4.14)

-

For p =1, Q has a bounded first derivative in each variable and
Q(u,v) = Q(tj, ts) + (u-ty)ky + (v-ti)k, (4.15)

where k1 and k2 are bounded in absolute value by
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max I——-Q t, x)| (4.16)
t,x oX
Substituting (4.15) into (4.14) with u, v replaced by tj, t and

k as appropriate, the zero th order terms all drop out, leaving only

j+1
terms involving (u-t]) and (v-t]). So, for ts[tj, tj+1], Jk = k(Q)

such that

2
A ldip w0 p=1 (4.17)
t Tty i+ ti4) Q

For p =2, Q has continuous mixed partial derivatives to order 2

with the 3rd order mixed partial derivatives bounded. Thus we may write

Q(u, v) = O(tj, tj) + [(u-tj) + (v- ts )] o

(u-t.)2  (v-t.)2
Pl g

(u-t, )(v-tj) (4.18)
i

J
+ 51 B

(u—t.)i (\;r-t.)3'1
J J k
0 il (3-1)1 i+3

3
)
i=

where

Q
—

1
Q2
x

=)
—_
ot
>
g
x
ot

R
™~
1]
N‘
Mo
—
ct
»
P
—
|

i x=t (4.19)
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and the ki’ i=3,4,5, 6 areall bounded in absolute value hy the

bound on the absolute third mixed partial derivatives of Q.

Substituting (4.18) into (4.14), some tedious calculations, partly
reproduced in the Appendix, show that all but the third order terms cancel

out, giving the existence of a k = k(Q) such that

A e
|10, - 450, - dj+10tj+]||q < KA (4.20)

[

If gelf, with p 2 3, then, by
the existence and continuity of the mixed partial derivatives of (Q to

order four, we have

[sup g"(t)| < sup[lim (g(t+s) - 2g(t) + a(t-8))/25]
teE teE §+0
< sup]11m <ig, AN £ Qs /Zﬁ/’Ql
(4.21)

A

9| | sup|lim|[(Q,, « - 20, + Q. <)/28]|
el ly y MI! £4+5 g 0 s Q

1
2

4
3
lgllq supf——=— Qlus v) |, ...
Q t azuazv e

We may now expand g in a Taylor series as

t
g(t;) = g(t) + (t; - t)e'(t) + { (t; - wg"(u)du . (4.22)
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For te[tj, tj+]], choose {di} as in (4.13). Then

t. t
j+1
la(t) - dyo(t) - dypq0(tyg)] = [d; I (t5-u)g"(u)du + d,, j (t47-u)g" (u)du

2

< Kllallq 2 511911y o2 (4.23a)
where
€= sup | 2 o ) (4.23b)
tp 32u3 v DV ymv=t
Thus we have proved (4.9a) for p > 3.
We may ask if these rates may be improved upon. Suppose
(1) —§§Q(t,t') exists and is continuous on ExE for
t#t', =0, ?f 25 aviv £Ds _Q; 0(t,t') exists and is continuous
on ExE for 2 =0, 1, 2, agp -2,
5ep1
(i) il? 5;7"_T 0(t,t') and 11$| ;;ﬁ—:T 0(t,t') exist
and are bounded for all t'eE.
It may be shown (see [7] and [8]) that if (i) and (ii) hold,
that there exist constants, {e;} for which
n p-3
110 - 121 eiatillQ =0(a %), (4.24)

but, evidently, this rate cannot be improved upon.

We now examine the case for p =3 to see if some improvement

qal

there is possible there. Consider ”}%h =W with the norm given by

IIGIIQ ZO (a1 (0))%/51 + f (g1 (u))3au (4.25)
J=
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Here we may expand g in a Taylor series with remainder to order 2 and

have

n
lg(t) - g o(t;)d;(t)] = [o(t) - ] {(a(t) + (t;-t)g'(t) + (t,-t)%/21q"(t)
i=1 i=1

+ }i (ti-U)z 1'ﬁ( )du d;(t)} 4.26)
{ —zr—9 (wdud | (4.

In order that the right hand side is o(Az) we need, in addition

n
to ) di(t) =1, d,(t) > 0, that
i=1 v

n n 2
0= J (t;-t)d;(t) = } (t;-t)7d; (t)
i=1 i=1
or
n

t = 121 td.(t)

g . 0 2
tc = 121 tidi(t)

But if {di(t)}iQI is viewed (for fixed t), as a probability distribution
on the points t1, t2, — tn’ then t and t2 are its first and second
moments. But then, the only way that {di(t)}izl can be a probability
distribution is for the variance to be zero, that is, dj(t) =1 for
some j and 0 otherwise, and then we must have tj = t. Thus, there
exists a set of {di} to achieve o(A) only if tj =t for some j.
We are now able to prove the following

Theorem 2. Let T, Tn and Q0 be as in Lemma 2. Then

1. 1
min(p-5, 2)
A? 2 )

£ - €11 = o (4.27)
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* * * *
Proof: We may replace ][fn - f Il—?f by lfgn - g ||Q :
min(p-3, 2)

Let k be as in (4.9a) and let T = kAA . Then by Lemma 2
we have
*
infg(t)>1-v (4.28)
t n - n
Since
*
g,(t) x
T 21 and |lg 1y < 11911, (4.29)

we must have

*
n 1 * *
ll(]-Yn)llo = (]—Yn) IlgnIIQ > A > |'9nflq > A(]'Yn) (4.30)
and so
*
g, 11 = 201 - oy,) (4.31)
*
for some 6<[0,1]. Hence, letting g: = ||g:|]Q w: and g* = Ay gives

* * * *
ey - o118 = 1A - ev,)yy - 1013

2 2 5
= 0501 - oy )% - 2(1 - Byn)<apn, ¢’>Q £1} . (8.32)
Now
*
g (t) -y
inf g (t) = inf —p—> — M= ] (4.33)
t t |I9n|!Q n
where
Ay

En = "(1%)- . (4.34)
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Therefore, Lemma 1 gives
* *
<wn, v >Q > 1 - 4y /(1) (4.35)
and (4.32) then gives

= 0" 115 < 0%4(1-0y,)2 - 2010y )(1 = 4y /(1-y)) + 1

A

81%(y, + oly,))

min(p-1,2)
3 2770+ o(1))) (4.36)

8kA~ (A

or

1 . 1
min(p-5, 2)
[lgp = ol = 0(a% )



Appendix

Table For Calculations, Substitution of (4.18) into (4.14).

61=(t-tj),62=(tj+1-t),6=6]+62=(t

j+l

- t,
3)

28

Coefficients in (4.17)

'Q(tj,tj)

%

1
7T %2

Coefficient of

: 2 2
(u,v) Q(u,v) in (4.14) (u—tj) (v-tj) (u~tj)+(v-tj) (u-tj) +(v-tj) (u-tj)(v-tj)
2 2
§ % ) +1 61 61 1 261 26] 5]
§
2 2
(tipqst) 2 8 5 1 §+6 52452 86
j+1° 8 1 1 1 1
63
- + %
(t;st5) 2 0 0 1 0 0 0
8.8
172 2
2
(ti,stssq) ] 5 5 1 25 25° 52
J+1° 73+ 62 ’

To obtain the coefficient of Q(tj,tj) in (4.14) with (4.18)

substituted in, multiply entries in column 2 with the corresponding entries

under the column headed by Q(tj,tj), and add. To obtain the coefficient

of Gy s multiply entries in column 2 with the corresponding entries under

the column headed by oy and add, and similarly for oy

results are all 0.

and B.

The
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