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I. Summary.

A method is presented to find an approximate numerical
solution of the Fredholm integral equation of the first kind.
The method is a modification of the procedure initiated by
CHAHINE [l1] and extended by SMITH [2]:

- Spline functions are introduced in order to reduce
consistently the computing time and to increase the
flexibility of application,

- Acceleration parameters are introduced in order to

improve the empirical rate of convergence.

II. The problem.

Given the measurements: uio, i=l,...,n and the kernel:

K(x,y), K(x,y) > 0 find a function fo(x) such that

uio = I K(x,yi)fo(x)dx (1)

where the Yy i=l,...,n are also given.



It is well known that the solution of this problem is
not unique and many different methods have been proposed to
find a solution restricted to a given space of functions.
This type of problem appears in different fields like:

- In meteorogical remote sensing where fo(x) represents

an unknown temperature or humidity profile as a
function of altitude and K(x,y) is a kernel represent-
ing the spectral transmissivity gradient.

- In studies of light scattered from small particle
suspensiocons where fo(x) represents an unknown particle
size density as a function of particle radius and K(X,y)
is a kernel derived from Mie theory.

- In statistics, where the Wiener-Hopf integral equation
corresponds to the special form of kernel: K(x,y) =
K(x-vy).

- More generally in situations where the measurements

are linear functions of an unknown distribution.

III. 1. Chahine's Method.

Chahine based his algorithm on the following idea: Let
f(l)(x) be a first approximation of fo(x), and consider the
corresponding

L 1 ;
e K(x,yi)f (x)dx [ e % (2)
In order to get exactly uio, one solution is to consider the

function
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and the same remark is valid for all i=l,...,n. Since the
modified function.@io/uil)fl(x) appears with the kernel
" function K(x,yi), Chahine suggests the use of this function
when K(x,yi) is relatively important with respect to the

K(x,yj), (j=1,...,n; 3#i) in the following way:

" h uio K(x,yi) e
I £f7(x) =— n for ¥ K(x,y.) # 0
i=1 u. I Kix,v:) 1 ]
=
£2(x) = (4)
n uo n
ik 1 i
= _Z £7 (%) e, - for % K(x,yj) = (
i=1 i, 1
i
the iterative formula being then
o
= nou, Kix,y)
) = ) 1 —r (5)
Al B L OK(X,y.)
=l £
where :
TR f K(x,y,) 0 T (x)dx (6)

III. 2. Remarks on the convergence of Chahine's method.
The convergence of the method is not mentioned in the
original article: it seems to be a difficult problem since

the method is nonlinear.



However there is the relationship:
n n
& T =T : (7)
1 & gk
which means that if (n-1) of the uiN converge to the corre-

sponding uio, then the last uiN converge also to the corre-

sponding uio, as N=+w,

Proof:
n n
T =g j K(x,y.) £ (x)dx (8)
i i
1 1
o)
A N-1 n n uj K(x,yi)
= £ ) B o ) =T dx (9)
i=1 5 =1 u. "
J L R(x,y,)
k=1
o
Ml a0 ol
= j f ()% _7§%I K(x,y.)dx (10)
j=1 n, J
J
n
= RS (11)
el 2
since
ug_l = J K(x.yj)fN-l(X)dx (12)
n
More generally, if instead of the sum EK(x,yi) we consider
1

n

a linear combination £ AiK(x,yi), ki > 0, i=l;..3,n there
:

is the relationship:
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where
T f K(x,y,) £ (x)dx (14)
1
and
(o]
ol n . K(X:Y-)
£ sy 2 g ey i : (15)
N D ARy

J=1

ITII. 3. Computational aspects.

Since it is necessary to compute n integrals of the form
j KGx,y,) £ (x)ax (16)

for each iteration, with sufficient accuracy, the application

of the method turns out to be very expensive.

IV. Introduction of cubic splines.

The spline functions, (Schoenberg [3], Greville [4]),
are of frequent use in approximation theory. The underlying
assumption is that the unknown function fo(x) can be well
approximated by piecewise polynomials, given its values at

the points (often called "knots") XoyrooorX .



Without entering into the details, let just give the
example of the cubic spline:
given the knots Xgreesr Xy

and the values fo{xo),...,fo(xm)

the cubic spline of approximation will be the function

f(x) = aoi +agix +oayxt 4 agx [17)

for X € [xi*l, xi]

=i, i

where the coefficients Ay k=0,...,3
i=l,...,m

are uniquely determined by the following conditions:

n e £

Sl- f(xi) = f (xi) l-o,-t-,m

82: f£1(x) and £"({x) are continous functions of x
% 1 = e e

83. 2 (xo) £ (xm) 0

-~

The first condition means that f is an approximation of fo,
since they take the same values at the points where £ is

known.
Note: or equivalently

= 9 3
f(x) = a  (x=-x. BN a3i(x-xi_l)

Jok a21 1—1)

+ ali(x—x (17")

0i i-1
for x ¢ [xi_l, xi]

form leading to more accurage numerical results in the following.
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The second condition means that f is a smooth function
over the whole range of x, since its first two derivatives
are continuous,.

The third condition, necessary to grant uniqueness, has
a less appealing meaning.

Intuitively one can think that, if the function to be
approximated is smooth enough (continuous and not too oscillating)
the spline approximation with a sufficient but reasonable
number of knots is a very good one. In order to illustrate
this point, two examples are given in Figure 1.

Returning to our problem, the advantages of this modifi-
cation are related to:

~ The economy of computing time,

the quantities

X
m

uf = f K(x,yi)fN(x)dx N=0,1,... (18)
) .

0

can be approximated by

m
piN = J K(x,yi)fN(x)dx (19)

X0

-~

when fN is an approximation of fN, and (19) turn out

to be
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flefTERE 225 Lo J K(x,y.:) (x-x 2 ) dx (20)
1 k=l a=0 ak i £ k-1
k-1

this means that the quantities

e
I WALy Y o (21)
X
k-1 B [
k=1,.oo|m
a=0,...,3

are computed once and for all with great accuracy, and
then stored for future use.

- The flexibility of function handling.
A smooth function is then represented by m+l values

f(xo),...,f(xm)

instead of an analytical form. This is of great
interest when it is desired to vary the shape of the
different functions (unknown distribution fo(x) as well
as first approximation fl(x))

A possible disadvantage appears clearly when considering

the discretized iteration formula:

n n 2 RilX. 5¥1)
N s | i k'Yi
(xk) = f (xk)iil 5 o (22)
M3 T K(xk,y.)
j=1 :

namely the fact that the influence of the different kernels
K(x,yi) can be systematically biased by an unfortunate choice

of the knots X 3 the use of spline approximation introduces
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a new dimension to the problem of 0ptimalAdesign.

Hdwever, the present approximation reduced the computing
time by roughly a factor of 100 as compared with Chahine's
algorithm. The examples presented in the following section

were therefore all derived with splines.

V. Two improvements of the method of Chahine and Smith.
V. I. Normalization.

The method using the relative value of the kernels, it
therefore seems sensible to introduce some kind of normaliza-
tion in order to give a comparable importance to all the
kernels: if one of the K(x,yi) is always greater than the
others, for instance, it should not mean that it is more

important as would be.implied by

K(x,y.)
= (23)
n
LRy o)
j=1 )
since K(x,y) > 0, the kernels were modified in such a way
that
*
f K" (x,y,)dx = 1 i=1,...,n (24)
* K(xtyi) A
i.e. K (x,yi) i=1...:50 (25)

J K(x,yi)dx
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It is to be noted that this is not the only possible normaliza-

tion, and one can use for instance
3
* 2
[f [K (x,y)] dXJ =1 (26)

V. 2. Introduction of acceleration parameters.

Since the rate of convergence depends on the ratios
~ O

(T
—iﬁ the convergence may be accelerated by the use of
!
T
Hi o
e ob I3l % (27)
Bi

when all the ratios approach 1.

A first strategy was used that consists in starting with
a=1 and then changing to o=2 after a fixed number of iteration.

- A second strategy was to start with o=1 and to change a

for o', where

a' = p/// i (o) 0od ipidal (28)
i
max T ash 1
o i lli
as soon as:
S0
My
max 5 i § <p 0 2 p.< il
i ﬁi

so that, in each case:
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~ 0O o
‘ L
either max e = 1+ p (29)
i 1
i
~ O-0a
My
or min ?—ﬁ = ] - P (30)
i ui

VI. Numerical Results.
All the curves presented in Appendix II correspond to the

same kernel
K(x,y) = {sin(xy)/xy - cos(xy)}2 (31)

which is an approximation of a diffraction kernel used in
atmospheric physic for small angles (for more details see
Appendix I). Due to the origin of the kernel, the variable
y will in the following be referred as "angle" or "angle of
observation" since it corresponds to the angle between the
direction of the source of light under study and the axis of
the instrucment of measure.

Figure 2.a represents the general shape of K(x,y), which
is more or less "stretched" along the x—-axis according to the
value of vy.

It is to be noted that this kernel does not correspond

to a favorable situation, since the functions K(x,yi) are not
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Figure 2.a. K(x,y) as a function of x for fixed Y.

hJ

Figure 2.b. Type I "true" fo(x). Figure 2.c. Type II "true" fo(x).
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"orthogonal" (in an intuitive sense: K(x,yi) being large when
K(x,yj) is small).

Two types of '"true" unknown functions £°(x) where con-
sidered, and are referred to in the following as Type I (see
Figure 2.b) and Type II (Figure 2.c) .

For these two types, the following points were investigated:

- Influence of the first approximation fo(x) or the

solution. Four different first approximations were
considered, and are shown in Figure 2.d.

In order to make a comparison, all other factors
(angles, number of iteration,...) were the same in all
cases. The results are in Appendix II (Table 1,2 and
Figure 3,4), which contains the graphs as well as the
values of ﬁio and ﬁiN.

- Influence of the angles.

Four sets of angles were considered. They are presented
in Figure 2.e. All othér factors (first.approximations)
were kept the same. The results are in Appendix II,
Figure 5-6.

o

- Influence of an error on the ﬁi 5

A gaussian noise was introduced, such that

e T el R (32)

where Ei are Normal independent variables, with mean 0

and standard deviation proportional to the value of ﬁio.
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Figure 2,d. The four first approximations.
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Figure 2.e. The four sets of angles (in degrees).
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The proportions considered here were 5% and
10% and for each type of true distribution, and each
proportion, five replications are considered. They are

presented in Appendix II, TFigure 7.

In all the cases, the number of knots was 11, and the

corresponding abscissa X, were
SR B ko0, 108, 2.0, 28 Johs 355 oG A s 5.0

In all the cases, n=12 measurements were considered, and the
approximate solution shown on the graph is the lSEE iteration.

An outline of the program is given in Annex II.

VII. Conclusions.

The set of resulﬁs of Appendix II seems to favor the apriori
belief that the method does converge--but the proof, if any,
is still to be demonstrated. Another iterative method using
the same type of ideas but taking care of the linearity of
the problem is now being investigated.

It is also interesting to note that the "discretization”
introduced by the use of spline functions reduces the problem

(1) to the solution of an (ill-conditioned) linear system
U = Xa (33)

where U g R

X

Il
2
,_l‘
Lde
o)
+
by,
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with (Xijm) = T K(x,y;)x dx (34)
xj—l
1=1 654,00
j=1:- « oM
=80 0 eI
and j_ o= 4(j-1) + = (35)

a

a being the vector of coefficients aaj of equation (17)
satisfying the conditiqns 82 and 83 of page 6. Using the
explicit form of 82 and S3,

leads to a system of m+l equations with m+l unknowns, namely

it is easy to prove that this

the wvalues of fo(x) at the knots!

The empirical study which results are presented here

leads to the following conclusions:

* The main role of the first approximation fl(x) is to
introduce in the solution the behaviors that the kernel
functions are unable to detect (here, the behavior of
the true distribution in the neighborhood of the
origin--see the results with the first approximation
(:)). Except for that fact, the solution is not very
sensitive to the exact form of the first approximation,
as long as this first approximation is not too
oscillating.

* As mentioned earlier, the influence of the angles of
observation is more difficult to summarize: there is
clearly a problem of "optimal" set for a given number
of angles, since the kernel functions are absolutely

not orthogonal in this case.
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* There seems to be no substantial loss of accuracy due
to the use of the spline approximation, since the
number m+l of knots can be chosen large enough without
any difficulty, to give a good representation of the
unknown £°(x) as well as the kernels K(x,v;).

* The effect of noise seems to limit the use of the
algorithm to accurate measurements (noise < 5%) but it
is to be noted that only 12 measurements were considered
here; in the case of a Type iI curve, this seems to
be a small number and, even in this case, the precision
can be increased by taking multiple measurements for
the same angle and considering the mean so that, when
multiple measurements are possible, this is not a too
serious limitation.

But another interesting point shown by the graphs of
Appendix II, Figure 7, is the "unstahility" of the problem,
or the algorithm, or both: a relatively small change |
in the uio induces an important variation of the
"solutions", i.e., of the functions giving almost the

same measurements uiN when observed through the filter

f K(x,yi)fN(x)dx (36)
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Appendix I.

Atmospheric physicists have exhibited considerable
interest in determining size distributions of aerosols.
Although aerosol particles may be collected and measured
individually, this is a tedious task which can be avoided
by employing optical scattering measurements.

It is feasible to measure light scattered forward by
relatively small angles 0 to derive information on aerosol
size distributions. The phase function can be derived
‘rigorously from Mie theory, however the computation is time
consuming. We therefore employed an approximation to the
Mie scattering kernel i(6,r) due to Shifrin [5] which is valid

for "soft" particles, namely those with

2mr 2
AO (=1) = & and -ﬁ (“‘2‘1) el
m- +1

m: refractive index of the material of which the spheres are

composed.
0! characteristic particle radius

A: wave length of the incident light

The phase function is
P(8) = const. J 1.(0 peinlc)idr (A.1)
0

this integral equation was transformed by Shifrin and

Chayanova [6] into

uly) = f K(x,y)f(x)dx (A.2)
0
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f(x) = r04x2n(x)
1 X 2
K(x,y) = (cos xy - Xy sin xy)
b 41Tr0 S 6
A 2
X =r
[z,

the computations were conducted for

m= 1.1 r, =i = ,5u

A beam of light entering a turbid medium consisting of

(A.3)
(A.4)

(A.5)

(A.6)

spherical aerosols is extinguished in accord with Bear's law.

The extinction coefficient, K, is a function of the size

distribution of the aerosols, n(r)

K= J Qnrzn(r)dr
0

where Q is the ratio between the optical scattering cross-
section and the geometric cross-section of the aerosol
particles. This quantity can be derived by Mie theory, but
we will employ an approximation which is valid for |m-1| < 1

in order to facilitate the numerical analysis

Q= 2 - g sin p + = (1 - cos p)

2
P

where

4Tr

(A.7)

(A.8)

(A.9)
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Although the extinction coefficient was initially used
to derive the aerosol size distribution, it contributed little
information in comparison with the phase function computations.
The results shown here were therefore computed without recourse

o' JoR L o
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Appendix II.

Influence of variation of the first approximation fl(x):

A,
Table 1-2: value of observed uio and approximated uila
(1=) ..., 12) for the T6ur different fl(x).
Figure 3-4: True and approximate solutions.
B. 1Influence of variation of the angles.
Figure 5-6: True and approximate solutions.
C. Influence of errors.
Figure 7: True solution and variation of the approximation.
D. Influence of an acceleration parameter (Figure 8).
18
i
= k3
mie | 1° | @ @ @ ® ;
1 .00 .00 .00 .00 .00 1
2 .00 .00 .00 .00 .00 2
4 01 .02 «0a . 02 .02 3
6 .06 .06 .06 .06 .06 4
8 = odi2 cdd i 12 5
10 +9 «19 + 9 «19 «19 6
12 ie5 28 . 25 25 s 25 7
14 «28 «29 29 «30 w29 8
16 «30 « 31 P 2 3 38 .30 9
18 .31 - B e | « 32 « 30 10
20 «30 +30 .30 29 sa D 11
22 .29 29 .28 .27 29 12

For Type I, and
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18

Angle ﬁio' (:) (:) (:)' (:)
1 .00 .00 .00 .00 .00
2 .03 .03 .03 .03 «03
4 .30 231 a3 3k a0
6 .70 .68 .67 .67 .68
8 .74 W86 - 1565 .66 .70

10 .54 53 s 02 <53 .56
12 55 .62 .62 .62 .63
14 07 o 11 i dik od2 .73
16 .69 .68 .68 «69 .72
18 .68 <67 .67 .68 .69
20 .67 .66 267 .66 +53
22 +b65 .66 .66 .64 .58
for Type:-IL.

10
1l

12



|
3

nix)

X2

NORMALIZED PARTICLE SIZE DISTRIBUTION,

.
NORMALIZED PARTICLE SIZE DISTRIBUTION, x*-n(x) ‘-{'

oO I 2 3 4 5
NORMALIZED PARTICLE RADIUS, x=r/r,
(n

NORMALIZED PARTICLE SIZE DISTRIBUTION, x®-n(x)

0

NORMALIZED PARTICLE RADIUS,
(3)

Figure 3.

unimodal solution of Fredholm integral equation.

True solution, — — —.

=< .8} g
€
"=
= 7 —
Q
2
E 6 4
[72] -~
o ” \
o) r’ \\ -
m N Ay
\
w .4 ’l \‘ —
R \
Q \
& 3 -
g
(=]
4 2 )
e
<
z | o
[®]
- %
O
GO 2 3 4 5
x=r/rg NORMALIZED PARTICLE RADIUS, x=r/r,

Iterated solution,

(4)

Effect of various initial trial solutions on iterated

Trial solution,



-26-
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Appendix III, Outline of the program.

There is no major difficulty in the program, as soon as
good subroutines for computation of the spline coefficients
and for integration are available.

Are to be chosen:

- the knots xo,...,xm
- the angles of interest Yyre sV,

- the values of the true distribution f(xo),...,f(xm)

- the values of the first approximation fl(xo),...,fl(xm)
- the number of iteration.

Then:

1. The quantities

B &

a
K(x,yj)(x—xi_l) dx

X

%
i-1

or

X
J K(x,vj)(x)adx
B S

(depending on which of the equations (17) or (17') will be
used by the spline subroutine to give the spline approximation)
are computed for i=l, viwsm

I=d % s ¥

a=0,...,3

and stored in a (tri-dimensional) array.



b

2., The values of the weights

n
LoRior i)
i

are derived and stored in two-dimensional array.

3. Using the spline subroutine and formula (21) first with
the (xi, fo(xi)), then with the (Xi' fl(xi)) the gquantities

1 are derived for j=1,...,n.

. andels
H Uj
4. The fz(xi) (i=0,...,m) are derived using (22). Using
the spline subroutine and (20) with (xi, fz(xi)), the quantities
U ; (j=1,...,n) are derived, and the program goes back to 4

with N+1 instead of N as many times as the chosen number of

iterations.



