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More on Regression Design, with Applications

by
Grace Wahba

Abstract

Earlier results on asymptotically optimal sequences of regression
designs are extended. The regression design problem is equivalent to a
problem of optimal approximation in a reproducing kernel Hilbert space.
From this point of view the results have numerous applications. Two
applications are discussed: i) Approximate golution of linear operator

equations, ii) Design of indirect sensing experiments.



1. Introduction. Let {Y(t), t € T} be a stochastic process of the
form

Y(t) = 6 f(t) + X(t) (1.1)

where 0 is an unknown constant, f(t) is a known functionon T, T is a

closed, bounded interval which we frequently take to be [0,1] , and

{X(t), t €T} 1is a zero mean Gaussian stochastic process with known con-

tinuous covariance kernel Q, E X(t)X(t')= Q(t,t"). The regression design

problem is to choose an n-point subset (or "design") T ={tl< By & oov BH B €T }

2
so that the variance o - of the Gauss-Markov estimate of © given
n

1Y, te Tn} is as small as possible,
This problem has been considered by Sachs and Ylvisaker, Wahba, and Hajek

and Kmedorf, [7] [19] [20] [21] [22] [25] . It is known that cr,% is bounded
n

' : af .,g;
away from 0 as A= m?x lti+l_t11 tends to 0 if and only if fe ‘HQ’ where "‘fQ
ig the (unique) reproducing kernel Hilbert space (RKHS) with reproducing kernel (RK) Q,

see [ 15] . It will be assumed that the reader is familiar with the basic properties
of RKHS as given in [15] , [ 25] , see also[1] .

For each fixed t, let QJE be the function on T given by

Ot = Ol (1.2)

By the properties of RKHS, Qtéﬁé, and

<@, f‘7Q = f(t), fe—J{D, teT, (1.3)

7 i

where (\ ,>

is the inner product in ’?‘JQ :

Q



Let PT be the projection operator in 'Q onto the subspace spanned

n
. =g 2 ~2 _ 2
by {Qt, t€.Tn}. It is well known that o-Tn = HPTanQ and o = uan S

2
where T is the variance of the Gauss Markov estimate of 6 given {Y(t), t& T} .

2 2
Hence O is minimized by minimizing || £ - PT fHQ . From this point of
n n

view the problem becomes one of choosing an optimal subspace in -J“ifo of the
form span {Qt' t&Tn}, for the purpose of approximating the given element f.
In this context, the problem has been considered by Karlin, [10] [11] .

The purpose of this paper is twofold. Firstly, we extend the results of
[7]1019][20][21]1[22][25] on asymptotically optimal sequences of designs
to a larger class of Q than previously considered. Secondly, we describe
two useful applications .

In Section 2 we review the known results on asymptotically optimal
sequences of designs. We will extend these results to the regression design
problem for nearly all stochastic processes equivalent to {X(t), t € T} of the
type considered in [25]. The equivalence classes of processes that we study
are described in Section 3. The results in Section 3 are a mild generalization
of Kailath and Shepp, [9][ 23] . Section 4 gives the extension of the regression design
results. In Section 5 we show how these ideas may be used to obtain good
approximations to the solutions of certain linear operator equations. A numerical
method for finding an approximate solution to a two point boundary problem
is given as an example, and the convergence properties of the method are
shown to be related to the results of Section 4. In Section 6 we describe the

experimental design problem for indirect sensing experiments, and show how

the present results apply.



Throughout the paper, we let «__-;%b be the RKHS with RK Q, and inner
product < > . We shall always assume that ff Qz(t t')dt dt'< o, and
will also denote by Q the Hilbert-Schmidt operator [2] on f [ T] with Hilbert-

schmidt kernel Q(t,t'). It will be helpful to know that g:VfQ = Q 2 (L 2[ T] ), where

I
Q? is any square root of Q, and I| £ []2 = o int ol 2 , where
. 1 "3{2[ T]

2 ¥
[ - ”.{2[ 1] is the norm in .:3{/2[ T). (See[ 16] , Chapter 3 or [ 26] for details).



wlleyes

2, Summary of Previous Results.

The character of the problem of choosing Tn to minimize || f—PT fllé
depends strongly on the nature of f and whether or not the stochasth;;rocess
{X(t), te&T} possess quadratic mean derivatives.

e
uppose K
f = Z e (2.1)

for some 4e ) , 48+, with's &8TF. Thenif k€fiand B €T ; v=1,2,sss:kK,
v v v o v 1

then B = § and (=R The process {X(t), t €T} possess a

s
2 Tnf llQ =0,
vth guadratic mean derivative at t if the function Q,Ev)(-) defined by

)y = (8% /85”) Qts, ), (2.2)

exists and is an element of .JfQ. Suppose {X(t), t¢T} possesses one quadratic

mean derivative for all t& T, and

e (2. 3)



Then if s, and s, +A are in T . itcan be shown that

2

lim [ f- Py qu =0 (2.4)

A-=0 n

but the limit is not achieved for the elements of Tn distinct. In

[711101[11][19][20][21][22][25], f's of the form
f(sk[ Qs,t)p(t) dt,  p >0 (2.5)
s

have been considered. This eliminates cases where the solution is either
trivial or non existant.

if {X(t) , t £ T} possess exactly m-1 > 0 derivatives continuous in

2
guadratic mean, further difficulties arise in studying | f- PT fHQ . The
n
problem may be simplified by letting Pm T be the projection operator in
’"n

_;,:Q onto the subspace of a‘Q of dimension < mn spanned by

{Q,E")(-), teT_,v=0,l,..., m=1} . (2.6)

It can be shown that

i - < i - i s
inf || £ PT f inf ||f-P T £l < inf || I PT

Tom nm Q T, n Q T, n

(e (2.7
Q

where the infimum is taken over all subsets To o Lo of T of the indicated
size. The right hand inequality in (2.7) follows because the subspace spanned
by {Qt(') , te Tn} is contained in the subspace spanned by

{Q,Ev) ("), te Tn, v=0,1,2,...,m-1} . The left hand inequality

follows because



lim  span {Q v=20,1,...,m=1} (2.8)

A0 t+v A
= span {in) , v=20,1,...,m-1} .,
Further information about the role of derivatives may be found in
Karlin [ 1] , especially Theorem 3(i) and Theorem 4, and Sacks and Ylivisaker
[ 21] . In particular, ([11] , equation (13), [ 21] , Theorem 4) if m = 2 and
other conditions are satisfied, the right hand inequalityin (2.7) becomes an equality.

Following [ 21] a sequence T;, n=1,2,,.. of designs is said to be

asymptotically optimum with derivatives if

) 2
| £ - Pm T f "Q
4
lim B = 1 (2.9)
n-oc inf ||f-P £l
Tn m’Tn =

For h a continuous positive densityon T = [ 0,1] , let

L = {ton, typyr e ’tnn} be defired by

tin

| h(x)dx = %1- . 1=10,1,2,...n. (2.10)
0

(For ease of notation we are now letting Tn contain n + 1 points).

Let f be of the form

lv
[emn

1
f(t) = [ Qts)e(s) ds p (2.11)
0

then the behavior of || f - P fl[é for large n, as a function of h

m,Tn

is known for various classes of Q and under various regularity conditions



on p. Using this information a density h* generating an asymptotically

optimum sequence of designs can be found. In this paper we have selected

regularity conditions on p to ease the proofs, and so shall omit discussion

of the weakest regularity conditions under which the following results are

known to hold. A sufficient condition is p > 0, continuous and p' bounded.
The known results are

Case l. (m=1). Let

9 MV
i) T T Q(s,t) be continuous on the complement of
ast ot

diagonal of the unit square for p+v < 2

ii) lilm 8—85—-— Q(s,t) - lim —(%—-—Q(s,t) = o(t) continuous, > 0

sTt sét
2 82 2
i) —= Q+,t)e A and sup || — Q(+,t) || < o
Btz Q t Btz Q
Then [ 19]
2 1 L 02(s) als) 1
I - PT £l = 2 g3 f L._Z__Qf..._ ds +O(“'2—). (2.12)

n Q n e h™(s) n

Case 2. Let

m-1 m-1
s t (s—u)+ (t—u)+
Q.Y = [ [ —moon mopr K(w,v) dudv (2.13)
0 0

where K satisfies the conditions i), ii) and iii) placed on Q in case L

with o(t) = o, a positive constant.



Then [ 21]
2 1 7
2 1 (m%) @ p (8)
Nf-"P £ = —£—=,— ds +
mTy g 2™ (2m).(2m+l)s Df TR it nZm
(2.14)
Case 3. Let
m 1
Q(s,t) = ) 1 Ty 0, (8) &, (1) Jaf G(s,u) G(t,u) du (2..15)
PV =

where G is the Green's function for the differential operator Lm’

me(t) &=

U=

2 am_j(t) f(j)(t) with boundary conditions f(v)(O) = 0,
yo= O,lf s> {:rLl v} are the entries of an m X m non-negative
definite matrix, {¢v}r3:1 span the null space of L and L is such that
the {d)v} 1r}n:1 are an extended, complete Tchebychev (ECT) system of
continuity class sz.

Then [25], (as a consequence of Lemma 21,

2 1 2
2 1 (m'.) p (S) a!S) il
5=k £t = CET B et
ml, Vg a ™ (Ewymh) Uf h2M(s) i
1 (2.16)
where «t) = >
a.. - {t)
m
BtV
Here —8-—_'—8-7“" Q(s,t) exists and is continuous on
s t

the complement of the diagonal of the unit square for p, v< m, a property

shared by Q@ d Case 2, and

2m-1 aZm—l

. 0 . ;
lim "'"m Q(S,t) - lim _—’Zrn__l_ Q(S .rt) :(_l)m C‘k(t). (2‘17)
sit 8s sttt 9s



Case 4.

1
Q(s,t) = f G(s,u) G(t,u) du (2.18)
0

where G is as in Case 3 except L satisfies only the weaker
conditions a, # 0,8 . ¢ g
0 m-j
Then|[ 7] , (2.16) holds.

Following [ 19] , asymptotically optimal sequences of designs may be

found from (2.12), (2.14), (2.1) by using a Holder inequality and the fact

1
that 0fh(s)ds = 1 to show that

1 I 1 1 12m+l
f Li—i”i at| > | [ 1p%® et ]2mar (2.19)
| L0 J
with equality iff
1
2 2m+1
[p7(s) als)]
h(s) = (2,210)
l 1
2
[ Te%u)etu) 1 .2+ qu
0
Thus if 1 1
in 2m+l 2m+l
2 ;
[ [p"(W) a(w)] =é~ f[p (Wa(u)] did. 1=1,2 044
0
F o (2.21)
on
then T = {t 1n . }, n=1,2,..., is an asymptotically optimal
sequence of designs with
2 (m)° IR ;zl i s
" _ i m', | m+ ;
e - Pm,T f”Q T 2m  (2m).(2m+l)Y | f[ p(0) (0)] de|
n n 0
L
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3. Processes Equivalent to m-fold Integrated Weighted Wiener
Processes.

It was the original aim of this work to prove that (2.16) holds for all Q which
are the covariances of stochastic processes eguivalent to a process with Q of
Case 3. Such a result might be presumed to be the maximal non-trivial general-
ization.

To be more precise, let {X(t), t¢[0,1]} be a zero mean Gaussian
stochastic process, which, under the measure Bor has the continuous covariance
Qo(s,t), s,te[ 0,1] , and under the measure by has continuous covariance
Ql (s,t), s,t=[0,1] . Now let Q0 and Q1 also denote the Hilbert Schmidt
operators on ,.z’z[ 0,1] , with Hilbert -Schmidt kernels Qq(s,t), and Q1 (s,1)

respectively,

1
(Q,p)(t) =0f Q;(t,s)p(s)ds pead,[0,1),1=0,1. (3.1)

A version of the Hajek-Feldman Theorem stated in Root [ 18] says that

Ko and by are equivalent measures iff

-1 -1
2 2

Q Qp* =1-B, (3.2

1
where Qi 2

is the symmetric square root of Qi_l ,1i=0,1, B is a Hilbert-
Schmidt operator, and I - B is invertible. For simplicity we will say that the
kernels Qo(s,t) and Ql (s,t) are equivalent if (3.2) holds. Let Ql be a kernel

equivalent o Q of Case 3 of Section 2. 1t will be shown that this entails that



il

m o { Bzm_z T T azm |
(-1) ot)” 3T % m-1 ., m-1 Ql(s't) - ff P Ql(u,v)du dv.
| 9 s ot ou ov
i ls=t=71 00 |
(3.3)

We have succeeded in proving that (2.16) holds for all Ql equivalent
to Q of Case 3 with one further condition, reminiscert of iii) of Case 1.
The results are stated precisely in Section 4. We next develop some
further information about processes equivalent to those of Case 3.

Some of the statements to follow are mild generalizations of statements
in Shepp, [23] . We begin with a special case.

Let

(s—uﬁ?"l
GO(S,U) = W c(u), (3.4)
where (x)+ =x, x> 0, (x)+ = 0 otherwise, and c(u) # 0, Consider a

process {X(t), te[0,1] } with arealization of the form

t t tl trn—l
X(t) = fGO(S,u)c(u)dW(u) = f dt f dt; ... f c(u)dw(u)
0 0 0 0

(3.5)

where W(u) is a Wiener process. Extending [ 23] , we call X(t) an m-fold

integrated weighted Wiener process. The covariance of X 1is then given by

1
EX(s)X(t) = QO(S,t) = f GO(S,u)GO(t,u)du (3.6)
0

and the Hilbert Schmidt operator QO may be written

QO = GOGO (3.7)

where GO is the adjoint operator to GO with Hilbert Schmidt kernel



S

GO (s,u) = Go(u,s). {3.8B)

1 1 o
= 2 e
-—% —% : Sy ; -1 -1
QO Q1 QO is unitaily equivalent to GO QIGD
and
e L oo
2 PR
QO QIQO I1-B (3.10)
with B Hilbert-Schmidt and I-B invertible iff
a4 Sl
e *-F _
GU Q1 GO I+ A (3.1}

for A some Hilbert-Schmidt operator with I + A invertible. Thus,

QO and Ql are equivalent iff

Q= GylI + A) G, (3.12)

for A some Hilbert-Schmidt operator with 1 + A invertible.
We summarize these remarks as

Theorem 3.,1. A kernel Ql is equivlent to QO of (.6} I6f

1 (s-u u i 1 [8=u) (t-v)
Ql(s 1) = (J (mjl)'. (m_B : Cz(u)du + Ofof (m—-;) ] (m—li‘. c(u)A(y, v)c(v)dudv

where (3.13)

Ll e
[ [a e tdedic =
0 0
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and I + A is invertible, A being the operator with Hilbert-Schmidt kernel A(s,t).

Note that
2m-2 min(s,t)2 &
5]
s (9 (g 1) = ¢ (u)du + c(u)A(u,v)e(v)du dv (3.14)
Bsm 1 Btm 1 1 Of Ofol
and ; f
| 2m-2 i T T 2Zm |
2 d l 8 1 8 E
c (7) = < = Q.{s, 1)} - — Q,(u,v) dudv}
dT iasm—latm 1 1 i o ofof aul g, 1 J
{ Pg=t=T
= a(t), @ .15)
also
- 8Zm--l 2m-1
('_1) Q‘(t) = llm ..._.._._...:_._ Q (Slt) = ]-j-m e = Q (Srt)r (3'16)
g1t aszm 1 0 st 882m L 0
thus verifying (3.3).
Corollary 3.1,
Let
1
Ql(s,t) = fGl(s,u) Gl(t,u) du (3.17)
0
where
) Gytm) =0, t<u
5
ii) — Gl(t,u) =0, 3= 0,1, ,m-2
t)
tlu
m-1 ]
iii) ] Gl(t,u); = c(u) ,
| tyu
and
11 2
iv) ff M7 (t,u) dt du < e
0°0
where
M(t,u) = - = 8"
. c = Gl(t,u) .

3t (3, 18)



~l4-

Then Ql is equivalent to QO.
Proof: Letting Gi’ i =0, 1be the (Hilbert-Schmidt) operators

defined with kernels G, and G, of (3.4) and (3.17) and M the (Volterra)

0 1
operator with Hilbert-Schmidt kernel M(t,u),

we note that
m-1

t (1:-—x)+ X gm
(GO(Mf))(t) = de r Pl Glfxlu)f(u) du (3.19)
0 ax
t ¢ (gl m
=[d f(u) f + 2 G,(x,u)dx
P (m-1). , m P
0 1 X
and since
(t—u)_,f’“'l t (t—x)f'l ,m
Gy (t,u) (m-1)" c(u) + Tl oz G (x,u)dx (3.20)
we have
Gy = GO(I - M). (3. 21)
Thus
Q= GGy = GO(I+A)GO (3.22)
where
A= -M-M + MM . (3.23)

Since Mis Volterra, (I-M) and (I-M)(I-M*) = I + Aaeinvertible. See,
for example Petrovskii, [ 17] .

It follows from Corollary 3.1 and the properties of Green's functions,
that all Q of the form of Case 3, with O_ij = 0 and aS (t) = 1/a(t) are

equivalent to QO af (3.56).
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We next extend these results to the class of (Normal) processes

equivalent to those with covariance

~ =1 T IR
Qyls, 1) = ‘7,0 by(s) 500 + J e Tmop ¢ (W du (3. 24)
]:

where (L 0)(s) = ag(s)e™(s) = 0, 3 = 0,1,...,m-1, $")(0) =5, _, .

Vil = 0.1, 440 ,m=1; that is, <1>].(s) = sJ_I/(j—l)‘. « Extending [ 23] , we call
such a process an unpinned integrated weighted Wiener process, A process

{X(t), te[ 0,11 } with covariance (3.24) has a representation

m=-1
X(0) = ) x (o) ¢, () + (X(t) =P X(t) , te[0,1] (3. 25)
v=10
) () e, T
where P_ X(t) = E{x(®) 1xX")(0), v= 0,1,...,m-1} and {x")(0)}
) v=(

have covariance matrix Imxm where Im:x:m is the mxm identity matrix. The process

X(t) - Pm 0X(t) has covariance QO of (3.6) Tor Ky to be equivalent to

oo the measure corresponding to QO of (3.24), it is necessary and sufficient
m-1

that {X(V)(O)} wE O exist in g.m. under “1 and have a covariance matrix

of full rank, and that the process X(t)—Pm 0X(t) has a covariance Q

under By which satisfies (3.13). In this case X(t) has a representation of

the form i
xw =Y xU")0) ¢, 0+ & - P, (X0) (3. 26)

v=0

where il
bm= 3 IExem o, (3. 27)

i=0

and
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(=¥, Y=Ao,}, o, = Ex) ) xY0), v.j=0,1,...,m-1.

- v V]
(3.28)
Then, —_ .
EX(s) X(1) = Qs,0) = ) () 0% Gy 1) + Q s, 1) (3.29)
j
where Ql satisfies (3.13), and
v ~ .
Exx®0) = Q (t9)] . @ E Q. ., H (3.30)
ds s=0
m-1 _
The functions {va} must all be in "VIS , Since by the properties
v=20 1
of RKHS [ 16] , any function of the form h(t) = EZ X(t) is in Ay Q if Z¢ span
- i 1
{X(t), te[0,1]} . If Q is equivalentto Q,, then f¢ ¥ < feNY
) 1 A le QO
This follows since ¥ ~ = Qiz[_c-ﬂ;"é[ 0,11, i=1,2, and (I+A) 3] /2[ g1 =

9

;JI:VZ[ 0,1] if (I+A) is invertible. We summarize these remarks in the following

Theorem 3.2. (compare [ 23] , Theorem 8) Q1 is equivalent to QO of

(3.24) iff
m-

Qs.t) = 2 () W, (1) + Q5,1 (3.31)

l:

' (m-1)

where abs. cont., L[J.(m) X[O,l , the m x m matrix 7 with
1 1 2 L

ij th entry O-Vj

PR g - wa)um) (3.32)
V] Voo Lo Yi iR
bs” ot i=0 i s=1t=0

is of full rank, and Ql(s,t) satisfies (3.13).



-

m-1
Wi = . D £ : :
We have that ¥ 5 il D span {qu} npg s end if T includes
2 2
i - £ - - f- f) 12
the point t= 0, then | Pm, Tn fH5 I PQl( Pm,Tn ) ”Q
1 1
where P is the projection in %X onto the subspace # . Thus we may
Q} Ql Ql

and will, without loss of generality consider QI of the form {3.13). This

remark holds of course, whatever the rank of the matrix Y :
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4, Asymptotically Optimal Experimental Designs For Some Processes
Equivalent to Unpinned, Integrated Weighted Wiener Processes.
In this Section we generalize the results of (2.14) and (2.16) to a class

of Q's almost including all Q's equivalent to QO of (3.25). One additional

regularity condition not entailed by equivalence was used in the proof. We have

Theorem 4.1.

Let Q, have a representation
1

4"k =
Qs 1) = ) (), )
=l
g™ el 11 (=w®! (uh
+0f P e ¢ (u)du + Ofof I =T c(u)A(u,v)c(v) du dv

s,tél0,1] (4.,1)

where ~ ,
i) wi(m—l) abs. cont., lei(m) 59?}2[0,1]

ii) & >0, ¢ bounded
11 >
1ii) ff A(u,v) dudv < =
00
iv) The function Y; given by

S
= B Sy
¥, (s) kof 5t o Aty M) cln) dn
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is well defined and is in the RKHS "*"E< with RK K| given by

1
min(s,t) , s t

Kl(s,t) = j( ¢ (u) du + ff c(wA(u,v)c(v) du dv (4.,2)
and 0 00
where || - | is the norm in %/, .

] K
Suppose

1
£(t) =0f Q,(t,s) p(s)ds (4.3)

with p >0, p'bounded, and let T_={0= 1ty , Gn tan thot e tan” 1}

with
in i
f h(u)du= = ,i=0,1l,...,n (4.4)
0 n
where
1
f'kﬂu)du = I, h > 0, h continuous.
0
Then
lt-p . f° = - (m:)* fl p(s)els) 4 4 o
m, T Ql n2m (2m). (2m+1)" . th(S)
2 (4.5)
where o = ¢
Remarks:
1. We conjecture that the hypotheses of Theorem 4.1 insure that
If-p, £1° < N £-p _fIF (0+o) ) (4.6)
T = m;T ! :

nm Q 'nQ
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See (2.7) and [11] , Theorem 4. If this conjecture is true, then since

| £ - Pm,T f]l2 < JE - PTnf ]]2 always, we have

2 1 2

1 (m.) f p (s)a(s) g 4 1
2m  (2m).(2m+1)"! 2m Ot 2m |
i 0 h™ " (s) n
> Zm (
m E s)a(s)
n Q n (s) ‘n

(4.7)
2. The hypotheses of the Theorem do not include I + A invertible,
On the other hand, if I + A is invertible then condition iv) is equivalent to

Y, € 1< , the RKHS with RK

0 :
min(s,t) 5
Ko(s,t) & gf ¢”(u) du, (4.8)
where _':?‘JK = {f: f(0)= 0, f abs. cont., g -‘:-'.Jfé} . Thus if I +A is
0 c

invertible and (ii) holds then (iv) is equivalent to

1 2

9 1 ' A

2 _1 A(t,m)] dn< M<ow, 4.9
f.‘ e ot ( n);_, n (4.9)

0 t)

Condition (iv) is similar to (iii) of Case 1, This condition is used in

the proof of Lemma 4.1 to follow, and we see no way to eliminate it there.
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3. The proof below follows closely along the lines of the proof of
Theorem 1 of [ 21] , generalized with the aid of [ 25] .

The proof begins with Lemma 4.1.

Lemma 4.1.

Let

min(s,t)
Kls. 0 = f c®(w) du (4.10)
min(s,t) s t
K0 = o” (wdu " fof o) Alw,v)c(v) dudv  (4.11)
fo(t) = Oj' Ko(t,w) p(u) du (4.12)
1
() = of K (t,u) p(u) du (4.13)

11
where f f Az(u,v) dudv < «, where ¢, p > 0, continuous, c¢',p

boundeod .0 Let

jK , i= 0,1, be the RKHS with reproducing kernels
i
K., i = 0,1, and inner products <., -‘} and 4“":- T} respectively.
i N KO N/ Kl

Suppose further that, for each t, the function Yi defined by

S
v = f = St At ) ol dn (4.14)

satisfies

£ _i:'i' <
Y e ¥y llthKls My <e, te[0,1] . (4.15)



= Bl

Then, there exists an ¢ independent of p such that, for sufficiently

large n,
- P, £ ]I
1 Tn 1 Kl
l1-eA < > <1+ &A, (4.16)
0
where
A = max lti+1,n_ tinl. (4.,17)

i

Here, for i =0, 1, PT fiis the projection of fi in ,..s‘.-w‘fK' onto the subspace of
n 1

e X, spanned by {Ki t e Tn}’ where Kit(t Y Ki(t,t }:

-t’

Proof, . For i= 041,

1
. 2 Mo ol 5 N o & £
LE-Py £ 8-Bp By = (5AF £ = f cloiE ) ~ Py S ) du.
I n n n
K K, 0
: (4.18)
Then
n-1 t
gFp o Il = L p(w)(fy(w) = Py £5(u) ) du
KD i=0 tl
n=l fy b
= Z f p(u) du f Bi(u,v) p(v) dv (4.19)
i=0 t, t,
1 1

where, according to [ 2 5] Bi(u, v) is, for u,ve [ti, ti-Fl]’
the Green's function for the differential operator La‘m Lm = g with boundary

conditions f(ti) = f(ti_l_l) =4l

LF 1.0 W=a 5 — S . (4.20)
c(t)
Similarly, iy
A Y () =P, £(u) ) @ (4.21)
f. - P, f = ) ( u) - u U .
Ity Tnan i=Z0 tf plu) 1) .
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Since fl(u)-PTnfl(u) =0 dor &= tistpseet ,and f) - PTnf1 ..»12[ B.1] &

we may write

o

_ d 1 S g
fl(u)—PTnfl(u) = f Hilu:v) 5= =5 o ;\fl(v) Pp £(v)

t, c (v)

jo N
S

dv,ue[H}ti+ﬂ

4|

(4.22)
where Bi is as before. But, since

f (t fK (t,u)p(u)du + f (u) du ff c( E)A(E, n)c(n)dédn, (4,23)

then
@ el O ) = (t)+fl()d BB s oot A, (A
dt 2,. dt a\v=r J PAWAU J =™ S ¢ IS O .
c (1) 0 0
1
= 4,25
(t)+0f p(u) v (u) du (4. 25)
By our assumption, Y, . ‘:,,"“K , so that (4.25) becomes
1
L st d_ £ (1) = (t)+l() (W) = p(t) + Iy, ¢ (4.26)
dt 2 at 1\ TP fpu\’tu‘p Y1’;1» : .
c (t) 0 l
Also

-1

(PTnfl)(t) = (Kt 1), K(t,t), .. K (t,t ) K n

(F(t), £(t) ... 5 ()"
(4.27)

where Kl s the n x n matrix with i j th entry Kl(ti’tj ). Now, for t+# £
3

_d 1 | .
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so that, for each fixed t4¢T_,

d 1 d _ = '
c (t) n
n K
1
Thus, by ( 4. 21), (4. 22}, (4. 26), { 4. 29),
5 n=l ty o
16-Pp 517 = Y [ p(wdu [ B(u,v) p(v) dv
n i=0 t, T
Kl | i
r\fl Y i+1 ) §
+ ) f p(u) du f Bi(u,v) /'Q"V’fl_PTnfl ?K dv
i=0 ti ti 1
(4.30)
Now p and Bi are non-negative, so we may write
i+] Y4
‘ f p(u)du f Bi (u,v) N\ fl— PT f1 B dv |
t, £ n =
i i ]
i tin
£ p(wdu [ Bi(u,vdv x Ml §-Pn §1 (4.31)
n
T; s K
i i 1

where Ml is defined in (4.15).

Now, letting

1
o) = [ Xy(t,w) du (4.32)
0
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it may be shown that!

R Yy b1 ) .
Y[ ewdu [ B(u,v) dv = fy-Py Iy, Eg-Pp £, - (4.33)
. n n
i=0 t, t, K
i i 0
By (2.16),
_ oL 1
I6g=Pp £oll = My(: 1+ o0(3)) (4.34)
n KO
for appropriately chosen 1\/12.
Thus
M
2 2 3 B "
H-Pp 17 = I fy-Pp £5 17 + 8 —= || £-Pq £1 JI£ -Py £, ]l (4.35)
n n n K n K
K K 1 0
1 0
for some 6 with |6| < 1 and I\/I3= M1M2' and so
2
& M, 1
=1+ — (l+o(=)) . (4.36)
I £~ £ 017 f -
0 TnO
K

0
Since Hl < A, the lemma is proved.

Lemma 4. 2.

Let
5 t (s—u)T_2 (t—u)T"2
Qi(S:t) = OfO (m=-2)" (m=2) Ki(u,v) dudv i= 1.2

(4.37)

' Equation (4.33) may be checked by following the argument of Lemma 1 of
[ 25] , see equations (3.4),(3.5) and (3.22). Equation (3.4a) there should
read f(t) = EX(t) X(u)p(u)du.

0
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where Ki’i: 1,2 are as in Lemma 4.1 , let

1
f Q,(t,u) el L& 12, (4.38)
0

Then, there exists an & independent of p such that, for sufficiently

large n, >
1P g
1o EA % L <1+en, (4.39)
R £l
0 m,Tn 0 Qo

Here P f. is the projection of £, in A , 1 =0,1 onto the subspace
m,T i i Q,
f(2.6) with Q = Qi'

The proof of this Lemma is contained within the proof of Theorem 1
of [21] , p. 2065 Eqns (2.28) to (2.31), where it is shown that (4.16 )
implies ( 4. 39.

The Theorem now follows by using the proof of Lemma 3 of [ 25] to

show that

2 ( 1
I fo‘Pm,T Il = lZm (2] f — ds + o ( Zm) :
no g n (2m)% (2m+1)}. O (s) n
0

(4.40)
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5, Application to the Approximate Solution of Linear Operator Equations.

We will describe a class of linear operator equations for which approxi-
mate solutions may be obtained as projections in an RKHS. Some convergence
properties of these approximate solutions are then related to the results of

Section 4.

let .4 be, for the moment, an arbitrary Hilbert space, with inner
product <\, >¢7 . let T be a closed, bounded interval, and let {nt,teT} be
a bounded family of elements in H with the property that every finite subfamily
is linearly independent.

Let V be the closure of the span of {nt, teT} in &, and let ﬂ“a/Q
be the RKHS with reproducing kernel given by

Q] = g, ¢ 0 EET. (5.1)

There is an isometric isomorphism between V and GﬁfQ generated by the

correspondance

nteVNQte.?fQ. ‘ (5.2)

To see this, note that {nt, fETr apan v, {Qt, teT} span J%’Q,

and

{n, mt.zf - olet) = 0.8, - (5.3)

Furthermore, fer,_E,fQ corresponds to x in V iff

<Qt,f>Q = (D) = <’”tXZf . BT (5.4)

Now let N be the linear operator which maps dﬂ@f onto %

according to the formula

Nx= f [5.58]
where

(N3(D) = £(8) = ny, % "y teT (5.6)



e

The null space of N in .2/ is V'L, since xeV™ => :\’int,x\), =0, teT.
. ':,1{"

A large class of linear opertor equations may be set in the form
(5.5) and (5.6) including m-point boundary value problems, Fredholm
integral equations of the first and second kind,and mixed integro-differential
equations. (See [6] [26] ,[27] ).

If x is any element in -# which satisfies (5.5), then the (unique)
element in % of minimum % norm which satisfies (5.5) is given by va,
where PV is the projection operator in % onto V. To see this , merely note

that x = P, x + (I - Py)x , with N(I-Py) x = 0. For fé\.;_.%.x’Q, denote by

v
+ & »

N £ the element x in .% of minimal .% norm which satisfies (5.5). The

operator N+ so defined has all the appropriate properties of a generalized

inverse., (see, for example, Nashed [14] ). Let ?{n = N; f denote that

element of minimum .% norm which satisfies

def

+ _ 4 - .
(NN D) ()= {n, xn> = §(t), el (5.7)
A i A
Then X, 1s given by
8 = ) Q7 (), £(t,), ... E(E)) = NT
n = My, My, My S R TR e My n-

(5.8)
In the examples cited in [ 26] [ 27] and below, (5.8) gives a computationally

feasible algorithm for finding an approximate solution to (5.5).

We have
Nt fé}i’Nfeﬁ-f’b, (5.9)
X e M~ 2/
X € h PT fe (e (5.10)

n
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under the isomorphism of (5.2), where PT is the projection operator
n
in 'JQ onto the subspace spanned by {Qt’ t tTn} .

Thus
+ A Z _ 2
INTE =% 1% = 1E-Py £1° . (5.11)
P n Q

Therefore, under suitable conditions on f and Q we understand the
convergence properties of the algorithm, see (4.7).
As a simple concrete example consider the problem of finding an

approximate numerical solution to the 2 point boundary value problem

Ix = f (5.12a)
x (0)= 80
x ()= 81

where

e [0, 1]; (5.12b)

»

(Lx)(t) = ao(t)x“(t) + al(t)x'(t) + az(t)x(t)

and ay >0,

We must be able to choose % = FR an RKHS with RK R with the
following properties:

(1) the linear functional which maps x ¢ R into (Lx)(t), is

continuous, for each te[0,1]

(ii) The null space of L is in :,.54-¥;{

(iii) f g€ ”:?";Q' where
Qi ) = <”t' T, ) . = L(t) L(t‘) R(t,t")

and L(t) is the linear operator L applied to R considered as a

function of t.
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Here

nt(t') = L(t) R(t,t"). (5.13)

and

(Lx)(t) = ”t X > R * (5.14)

Since L(}J’R} = —'»’JQ, condition iii) says 4 x ¢ Jr—’R 3Lx = f. Itis
possible, however that there is no solution to the boundary value problem.
Let Rt be the representer, in f_,;‘fffR, of the evaluation functional at t,
Rt(t') = R(t,t'). There may fail to be a solution, if, for example, some
linear combination of RO and Rl is in V = span {nt,t & T}. In that case
the system

{noxy =), teT
. 'R

RD,X>R = 0, (5.15)

is overdetermined. Thus assume further that

iv) RO and Rl are linearly independent over V

Since V* is the null space of 1, ii), iii) and iv) guarantee the existence

of a unigue solution x & k:@’R to the boundary value problem.

For this example, let §%n be the element in H/p

of minimal

_i-";R norm which satisfies
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A _ _ // f »,
xn(O) = GO = -RO'xn >
R
_ _ /.{4' .’"I l\\‘._
X, (1) = 81 = Rl’xn, . (5.16)

(Lx )0 = 10 = {nx, ;:R ,  teT
Then ;cn is the projection of the true solution onto the subspace ﬁ'i’R
spanned by {RO'RI' Y t cTn} . If R is equivalent to an unpinned,
r-fold weighted integrated Weiner process with r-1 > 2 , and a >0,
then this subspace is of dimension n +2 (see[ 25] , Theorem 1). Then,

h

using the fact that nt,R = nt(s), gives

SH"R
A ‘-_]‘ \
o : \
x = (Rg Rymg ome venesmy) R(0,0) R(1,0) ;m (0) m (0) m, (O)\ / 9, i
1 2 n Pl 2 no ?
| R(O,]) R(LD (D) =m O = @O [ 6 |
- | 2 n | !;'
om0 n @ | ,/f(t)
A N T
: | [
) . * Qn ‘ .
| |
\ . . | I -
. |
m (0 m ) [\ )
v n n / \ /
where Qn is the n x n matrix with i,j th entry Q(ti,tj) .
Since V_ = {nt, te Tn} C span {RO,Rl,nt, teTn} , we have
Ix-% 1% < Ix-p, xI% = || £-p, £ 1I° (5.18)
x=x "< IIx an = T . .
R R Q

If the a; in (5.12b) satisfy a, € Cm, aO >0, and R is chosen to be
equivalent to an unpinned m+2 fold integrated Wiener process, then Q satisfies
the hypotheses of Theorem 4,1 Then under suitable conditions on f the con-

vergence properties of this algorithm are understood from (4. 7).
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6. Application to the Design of Indirect Sensing Experiments
Let
Y(t) = [K(t,s) X(s) ds + €(t), teT (6.1)
S
where S,T are closed, bounded intervals of the real line, Y(s), s #8S, and
€ (t), teT are independent, 0 mean Gaussian stochastic processes with
E X(s) X(s') = R(s,s'), Ee(t)e(t') = P(t,t') and K(t,s) is a known Hilbert
Schmidt kernel with K(., s) ¢ LZ[ T] , s€S; K(t,*) € LZ[ S], teT. Letg be
a function defined on § such that stfg(s) R(s,s') g(s') ds ds' < «, It is
desired to estimate
7 = fg(s) X(s) ds (6.2)
S
based on observations Y(t), te Tn' and to choose Tn so that the error variance
is minimized. A related situation is discussed in[ 22] . More generally, one

would like to estimate

A =Sf gv(s) X(s)ds, #2120 egDe

Methods of going from the univariate (p=1) case to general finite p are
discussed in [ 20] , we omit further discussion of the case of general p.
Let

O, t) = E Yl vty = ffK(t,s)R(s,s') K(t',s') dsds' + P(t,t'). (6.3a)
S“s

and suppose Q(t,t') is continuous. Then, the Hilbert-Schmidt operator Q
is given by
Q=KRK +P. (6.3Db)

*® o, -
where K is the .—A:i-=_2 adjoint of the operator K with Hilbert Schmidt kernel Kit, =)



.

We assume as usual, that for any finite n, and any distinct tl,tz, o ’tn

in T, the n x n matrix Qn with ij th entry Q(ti,tj) , is strictly positive

definite, Then f

. = E{z Y (), t=t,t,,...t } is givenby

A N =1 .
Z, = (E(t),8(t,) .06 )) QUYL Yit),.u ) ). (6.4)

where

f(t) = EZY(t) = ff K(t,s)R(s,u)g(u) ds du. (6.5)
s'S

Furthermore,

E(Z—zn)‘zs= fsfg(s)R(s.s') g(s)  dsds’ - (£t £t)) ..., £t ) JQ (E(t) £(ty) . .. £t )"

(6.6)
The right hand sideof (6.6) is minimized by choosing the second term
as large as possible, Since f« __ﬁ,b, the second term on the right hand
side of (6.6) equals || PTn f”; , and is maximized by minimizing || f—PTnf I
Net, let Q
y(t) =Sf K(t,s)x(s)ds + & (t), teT 647)
7 = f gv(s) x(s) ds , R P (6.8)
S

where x ¢ My £ ¢ ,}@, and where §,T,K,R and P are as before, It follows

that ye,;xs"'Q . Here x is considered to be an unknown function describing

some physical phenomena which one wishes to investigate by obtaining
estimates of the quantitites {z' } I:}:l. £(t) is a disturbance, for each t, and
y(t), t".Tn is measured. This set up is common in meteorologial and geophysical

experiments, see, for example [ 3] , [4] , [ 5] , and is called an indirect
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sensing experiment., For an example, consider an experiment to determine
the particle size distribution of a volume of aerosol fog [ 4] [ 8] . x(s) ds is
the number of particles of diameter between x(s) and x(s) + ds. A laser beam
of unit intensity of monochomatic light is aimed at the fog. K(t,s) is the
intensity scattered at angle t by a unit number of particles of diameter s,
y(t) is the sum of the total intensity at angle t scattered by the mixture of
particles of varying diameters, plus noise. K(t,s) is determined from
physical scattering theory.

By adopting a Bayesian point of view and assigning prior (Gaussian)
joint distributions to {x(s), s¢S} and {&(t), t €T} , we may sometimes use
the preceeding results to obtain a good design Tn' It may be appropriate to

set Ex(s) = m(s) # 0, but this will not affect the choice of optimal design.

Consider next the solution to the problems Find xu R to minimize
f 2 2 S _1
Ix)=1lly - KxIl” + lIxlI”" = (P 2f-Kx), P 2y-Kx) ), (7]
R R 2
_ 1 1
+ - 2
R Zx, R =% 18] (6.9)

where K is the Hilbert-S&hmidt operator with Hilbert-Schmidt kernel K(t, s)
of (6.1), and all the operator square roots are the symmetric square roots.,

In (6.9) we are also assuming that the null spaces of P and R in -/ 2[ T] and
‘-17-/2[ s] respectively are 0. Arguments similar to those below can be carried
out without this assumption by using the appropriate generalized inverse,

we omit this discussion,
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The remainder of this section owes much to [16] . Using standard
gradient techniques, see, for example [ 13] , also [ 16] , we find (formally)

that the solution must satisfy

i P"l(y~ K%) + R4 = (6.10)
or
AT e Rl el (6 .11)
Using the operator identity
= - —_ * = * =
TS G i G R T
gives L
% = RK*(KRK* + P) Ly (6.12)

We next show that RK*(KRK* + P)_1 is well defined as a bounded linear
1
operator from ’#’Q into —;”R This is seen by noting that yf)/Q =y= Q2p-=
1

i . 1 Sk
(KRK*+ P)Zp for some p ¢ X,[T] . Then, since R® K (KRK*+P)” 2 isa

bounded linear operator from o’?ﬁz[ Tl . tH 552[8] ’

1 = 1 i o
R? K*(KRK* + P "1y = R? K(KRK+P) 72 pe L[ 8] . (6.13)

T
Next, since ‘%(R = R-’-(sz[s]) , we have that

1
2

R 2 §
(RZ K*(kRK* + P) 1) ye ¥

R 4 (6.14)
If 3re .NJQ, it can easily be checked that
J(X) < J(% +6)
for any 6 ec.“’f*’l% with H 6“; # 0. Thus, (6.12) gives the solution % e 5@;{
of the minimization problem of (6. 9) for any v e ,,’-\/Q.
We now seek to find an approximate (computable) solution %n € f;fR

to the minimization problem (6.9). Letting
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n.(s) = Sf K(t,u) R(u,s) ds,
we have

k9 (0 = {n, x> .
R

Let g\{n € ,’.?*;‘"R be the solution to the problem: Find x ¢4 to minimize

R
n L]
Y (wt) - x> )P ) - Gy Lx) )+ ke (6.159)
=1 >R ] “HTUR R
where
ptl = [pl P = {P(t.,t) } (6 .15D)
n __ij’ n T ’

A
The solution };n is given by

4 (s) = (n, (8), M (8),eewsm, (8)) Q7 (ylt), ylty), e, y(t) )" .
n tl tZ tn n 1 2 n

(6.16)

Here Qn is the n x n matrix with i j th entry Q(ti,t].) ,

Q(t,t") = /nt,nt. \) + P(t,t") = ff K(t s)R(s,s")K(t',s')ds ds' + P(t").
' ~ R S”8 ’
(6.17)
To study the convergence properties of /;én to ?{, let n’; be that function

on T defined, for each s, by

ng (1) = n(s) . (6.18)

For each s £ S we know that n: € Q . To see this, note that

() = EX(s)¥() = EX(s)Y (%) (6.19)
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where

R(s) = E {X(s) | Y(¥), teT} . (6. 20)

and {X(s), s €8} and {Y(t), t €T} are as in (6.1)
Thus gﬁ(s) is in the Hilbert space spanned by {Y(t), t¢T} and so,
A 2
for each s the function of t defined by E X(s)Y(t) is in J-*?"Q, where

Q(t,t") = E Y(t)Y(t'). For future reference,nde that this same reasoning

gives
¥ N o op Ree) Rt = LT -1 % ,
Ngr 'ﬁS.,Q = EX(s) X(s') = (RK"(KRK" + P) " K" R) (s,s"), (6.21)
and so
In* 1% = EX%(s) < Ex%(s) = R(s,s).
0

We have, for each fixed s, that (6.16) may be written

; \ s *
x ()= ¥, P y> = <P, m., P, v . (6.22)
'S Tn /Q 'Tn IS Tn >Q

Now, let % be the function on S defined by
X(s) = <%, Y> , SEeS. (6.23)
\.' S / Q

I 2

y(t) = Tf Q(t,t") p(t') d t' (6 .24)

for some p ¢ ,sz[ T] , then

~ ;, % .
X(s) = {m_ ,y)
Q

]

& Tj n% (0 p(1) dt = SfR(s,u) dquK(t, u) p(t) dt (6.25)
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and, since p = Q_l y, we may write x of (6.25) as

~ * —-1

== REQ y=RK*(KRK*+P)'1y=§‘. (6.26)

Since the class of y of the form (6.24) with p e “’2[ T] is dense

in ‘.;.'n‘li"Q, the formula

%(s) = {n:,y>Q = (RC'(KRK* + P)1y) (s) (6.27)

is valid for y\rQ , and gives the solution to the minimization problem of

(6.9). We now have the convergence properties of the approximate solution

given by
py A 7k L *
|%(s) = %.(s) | = | <ngy ) - LB Mg B 70|
, Q n n Q
V4 * % * *
=] Ln, = PTnnS, y - PTny> L< “s"PTnT's I ”Y"PTnY||
Q Q Q

1
1 2
i RZ(S rS) iiY"PT Y” .
n

Q
(6.28)
Note, for comparison with (6,16) that, in the model (6.,1)
n(s) = EX(s) Y(t) = [ K(t,wR(u,s)ds (6.29)

S
and

BX(S) 1Y), £€ ) = (g (), M (5), o (&) Q7! (v(t), ¥ity), ..., ¥(t)).
n

(6.30)
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Thus, the method defined by (6.16) may be expected to give good

practical results in finding approximate solutions :fin to the equation

y(t) = [ K(t,s)x(s) ds + &(1) (6.31)
S

when the "data" {S f K(t,s)x(s)ds, te Tn} is contaminated by a "disturbance"
{E(v), te Tn} . This is, in fact, the case. The method is, for suitable

choice of R and P, equivalent to the so-called method of regularization, which
has been applied in a number of experimental situations, and studied extensively.
See, for example [ 5] , [ 24] . In[ 5] , the method is used to approximate the
solution of an integral equation involved in the determination of atmospheric
temperature profiles. There, P(t,t') is takenas & if t = t' and 0 otherwise

in (6.15) The constant o is called the regularization parameter. In [5], a
series of numerical experiments were run in an attempt to study the properties

of the method with various Tn and a. A test function x is chosen and E(t),

e Tn is chosen by a Monte Carlo procedure. vy(t), te Tn is then calculated
using (6.31) and X _(s) computed using (6.15). Then

sup | Qn(s) - x(s) | (6.32)
S

is determined, where x is the original test function. The variation of (6.32)

with changes in Tn and @, were studied experimentally.
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