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ON THE DISPERSION MATRIX OF THE MAXIMUM LIKELIHOOD ESTIMATORS

OF THE PARAMETERS OF A DYMAMIC MODEL.

Dealing with multi-parameters problems, a central role is played
by the dispersion matrix (variance-covariance matrix) of the estimators of
the parameters: this matrix is an intrinsic part of the results on linear
as well as non-linear models. It is also the starting point in the theory
of the design of experiments: the particular form of the dispersion
matrix presented here was derived in connection with this design problem

(viort [15]), but is believed to be an interestina result per se.

I. Introduction.

The purpose of the following is to derive the dispersion matrix

of the maximum Tikelihood estimators of the parameters of the model
Y = 6'1(B)m(B)xt_b +ey = a1 05 Vs ass (1)

where w(B), 8(B) are unknown polynomials in the backwardshift operator

B defined by
Bx, = Xy (2)

the noise or error {et} being a known stochastic process.



The situation considered here is then a special case of the
"Transfer Function Models" or "Dynamic Models" of Box & Jenkins [1], who
generalized (and gave a powerful treatment of) models freauently considered
in the econometric (distributed lag) and engineering practice.
It is assumed that:
Al. (Stationarity Condition). A1l the roots of w(z) =0, &8(z) =0 are
outside the unit circle in the complex plane A¢;
A2. (Irreducibility Condition). There exists no cormon root Zg:
m(zo) = 6(20) = 0;
A3. {xt} is a stationary stochastic process with known normalized spectral
densityT fx(e) and variance oi;
AL, {et} is a stationary stochastic nrocess with known normalized spectral
density1 fe(e) bounded away from 0 and variance 02;
A5, {xt} and {et} are independent.
In addition and without loss of cenerality because of A3, the
unknown constant b in (1) can be taken as zero.
The estimation of the w- and &- parameters of (1) or of the

similar model

G(B)yt = m(B)xt + ét (3)

has been considered by many authors (see Box & Jenkins [1], Fishman [4],

]The terminoloay of 'spectrai density' is used here in the wide sense of

'generalized derivative of the spectral distribution function'.
(Schwartz [13]).



Griliches [6], Hannan [7], Parzen [11], Theil [14], Wahba [16] for
discussion, complete references and different approaches). There are two
. main difficulties:

1) The first one is that, as soon as &(B) ¥ 1, and {et} is not
white noisez, the "regressors" Yiop» --- are correlated with the
errors e, ... violating one fundamental assumption of the
standard linear regression theory (Malinvaud [10]);

2) The second difficulty is that the problem is non-Tinear, namely
the dispersion matrix is a function of the unknown parameters:
it is then necessary to use an iterative method and, in order to
‘start it, to have reliable preliminary estimates of the unknown
polynomials w(B) and &(B) (degrees as well as values of the
coefficients).

The complete iterative procedure of estimation is not the purpose
of this report (see Box & Lucas [2] for the theory, Box & Jenkins [1] for
numerical methods), and it will be assumed that the exact values of the

polynomials are known

w(B) = w

(4)
§(B) =1 -68B-...-68

P i : e s . . .
Another wide sense notation for i.i.d vr.v. (in discrete time).



II. Derivation of the dispersion matrix when fx(e) is absolutely continuous

with respect to the Lebesque measure on [0, 21].

II. 1. The results of Grenander & Szead [5].

The first step is the approximation of the dispersion matrix of a
stationary process by a circulant matrix.

Let f(®) be a real-valued integrable function on [0, 21].
Let

T
e” 1% £(9) do n=uiey =1, 0,1, ... (5)

O M

1
“hn T 7m

be the coefficients of the Fourier series expansion of f(8)., The matrix

T =l ,=c  smv=1,..,n (6)
is called the Toeplitz matrix (of dimension n) associated with f. It is
clear that, when f(8) 1is the spectral density of a stationary process,
Mn(f) is the correlation matrix of n successive observations. [MNote
that, when the process is real-valued, f(e) = f(2m-6) and Tn(f} is real].
When n s large, the Toeplitz matrices are closely related to

circulant matrices
C ={¢ : ¢ = iy for p-v = p'-v'(n); u,v=1, ..., nt (7)

whose spectral decomposition is very easy to find,



The approximation of Toeplitz matrices by circulant matrices can
be viewed in two intuitive ways, but its proof is more involved.

A. The first way consists in writing, using (5) and (6)

2 . -
T () = Gz f e TV g(e)de s uw =1, ey ) (8)
0
and, for n large, the integral can be considered as the sum3
. 2kI
n =i(u-v)=—
a1 e " AL (9)
k=1 :
suggesting that:
f %
Tn( ) = U Y, (10)
with
M, 2N 5
U, = {—l-e ¥ 51 = s maes 0 (11)
L/ |
o 2Ny N :
D, = Diagonal {dW = f(—ﬁ— ;v=1, ..., n} (12)

where Un is not only a circulant, but also a unitary matrix (see Hannan

[7] for another interesting interpretation of Un)' Dn is a circulant,

3
If f(9) isR-intearable, a sufficient condition being that f(e) s
a.e. [dx] continuous.



and the set of circulant being closed for matrix multiplication, (10) shows
that Tn(f) is in some sense approximated by a circulant. As n increases,
it is dear that a fixed element of unnnu: converges to the corresponding
element of Tn’ but it is also dear that this is not a proof since this type
of convergence is not uniform on all the elements, their number being

precisely n.

B. The second way is to consider the fact, that since the cv's are the Fourier
coefficients of f(8), one has by Parseval's inequality

P -« |

Pleyl <= (13)

\): -=C0

so that the c_'s are all negligeable for lv| > p, p large enough. One

can consider the Toeplitz matrix and the circulant

' . N, b
N \ \\ . <
c -
\\“ - n+'| \‘\\ c p
. N

-p AN

& P \\ C 5 ~ \\\ \\
S o Y N
%, N, . AN ™ N
~ NN - \
. . & \\\\ N
Toeplitz Circulant



or, if one considers only the an diagonal, and assuming n even (> 2P )t

Toeplitz: c

el cn-p .cg.. .cp.. ¢1 S5 C. c_p .c_g.. Cp-n <4
Circulant: c3 ...c_p...c_g.. cp ¢y S c_p.. .cD .. cp -Cq
2
Number of elements " "
on the parallel to 1 p 5 n-p n-1 n n-1 n-p 5 D 1
the first diagonal
and one can measure the distance of the two matrices by
; :
1 2
d(T,¢) = | =} IT -¢C | (14)
[:n 0,v=1 uv uv

where (TUQ) represent the Toeplitz and (va) the circulant matrix.
The rigorous proof of the approximation is the justification of
the intuitive feeling that d(T,C) can be made less than any small fixed

number for n large enough, since

c5 = (15)
n
2 2 2 2
d{T.C) = g ) ] v[cv - Cv-n] (16)
;
p
_ 2 2 2 2
- ﬁzv=lv[cv-cv_n] + ﬁzv=p+1v[cv'cv—n] (17)

and, as will be shown below, as n + e«

P 2
¥ \ - 1
L J[Cu cn—vJ

=]

I

fixed

¥
gz ]
-
—

[0}

v=1



while

n
? 2
Xp+] vle, - c I~ € (19)

I

where Ep can be made arbitrarily small by choosing p large enough.
In order to prove the approximation it is useful to use a suitable

approximation of f(8). Let therefore

p .
= _ ol omive
£,0) = ] ey e v (20)

and consider the diagonal matrix

P=ydP = 2vy . o o
Dy {dW fp( = Y 292 Vs samy 0l (21)
Let then
P P *
T = B B (22)
and consider d(Tn, TE)

Using the matrix Kg

KE = {(1 - lE%EL B PR S 1, ..., p¥1; 0 elsewhere} (23)

one has:

d(T,, T0) <d(T , K2) + d(K0, ) (24)



The terms of the right hand side will now be considered separately:

P
Ao d(T . KD

Since

0 < Di3-< 1 ve[p+1, n] (26)

P 2 e ; :
and since Z[cv] is a.c, it is possible, given € > 0, to choose p such

. =
that ) . le,| <.
v=p+]
So, as n > e
2 p kp
ATy ko) £ 5=+ (27)
with
k=1 lcl° (28)
p 1P
B. d[K., T
2P Py . 2 _ 2. 2
d|K> Thl < & {U=1 Wl =2 e, (29)
p
<2y e ) (30)
v=]
< kp (31)
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and now, using (27) and (31)

d(T, ) < ’Eg- + \15§-+ o (32)

. ; : 4
i.e. the Toeplitz matrix Tn can be approximated to any degree of

accuracy by a circulant matrix.

II. 2. The approximate inverse of Tn(f).

The preceding approximation will now be used to derive the
approximate inverse of a Toeplitz matrix. A sufficient condition for the
existence of an inverse is that f is bounded away from zero. Assume

therefore that there exists & > 0:

f(e) >8>0 6e[0,21] (33)
400 ;
Since fo) =] ¢, e (34)
Y= =co
_5 P vl -ive
e =] - (35)
one has
fo) - £ @2 <5 e Rray ol (36)
& " fvmepp? Y vep+l Y

The approximation is valid in the distance d(-,-): In order po use 1it,
it is necessary to make sure that the topoloay is compatible with the
usaqge considered.
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Given € > 0 it is possible to choose P1s Py (p2 > py > 0) such that

ﬁ < & (37)
p2 - 2k
2
and
e 1 < § (38)
v=p+]
and Py > D (39)

(where p, k are the same as in II. 1).

Then
P 5
1f6) - f ()2 <]  Llelf+2 1 e ff<e (40)
P2 v=-p, P V=P +1
T 1
For 0 <ege < g one has simultaneously
£o> g >0 (41)

p
and d(T_(f), T.(f_ )) =d(T (f), T 2(f)) < e for n large enough (42)
n n'p, n n -

Since
P2 . P2 21V ‘
D" = Diagonal {d & = fpz(—ﬁ- P = Ly caap B (43)

is invertible, a classical theorem on linear operators {see Schwartz [12])
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says that T is invertible and has the approximate inverse (in the

distance d(-,-))

-1

o T 2T
T =u D 17U (44)

or, using the definitions and (40), for f(8) bourded away how O:

~ -1
] ‘
f%ﬁ'f o1 (B f(e)d5¥> = U: [Diagonal{d1 = ;Hv }]Un (45)
1_ 0 B} w o =]

II. 3. Linearization of the model (1).

w(B

S

Consider now the ratio Because of assumption Al, this

(@2}
o

ratio can be uniformly approximated on [2,2I1] to any desired degree of

accuracy by a polynomial in B

w(B) _ P
Sy =T+ MyB *+ ... + 1B (46)
and the corresponding model is:
iy Hoxt + ...+ fot-r t e, t=...,-1,0,1, ... (47)

The dispersion matrix of the maximum 1ikelihood estimators of

H(r) = (Hn, ceny HY')| (48)



is, because of assumptions A4, A5:
-1,+-1
) = [X'[} 1 'x]
Tipy e
for n observations one has:

P2 e 4w ¢ o
X = {xj—k 3 d =T ceas B3 K2 Ly T

n
and
2 &
n rc 2n . i
- -i(n-v)e ) -
Ee 1_?H é e £ (0)de 5 uwv =1, ..., éﬂf
-1
Using (45), ) can be approximated:
r)
S | ﬁl .o
¥ = X, U, Diagenal ¢ 2Hv pou X
ey L,e 3
and since
r n 2imEY
ro | 7 :
U X, 1f’ﬁ Ev=1e Xpop 3 W =T, s 05 k=l
one has

l py |
s
—
n
-
t~
b=
A
1
=
1)
1
ro
- )
=]
>
T
L]
)

13

(49)

(50)

(51)

(52)

=1| “v= | B xvl_{]/ oMy, |
H(erjk u= L v=1] J v'= & f ( Hu)

The attention will now be focused on the quantity:

ee' ' n

(54)
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1.n -ZiHE% n Zinﬁg—
S * & Zv=1 e X 3 zv'=1 e Xyt -k (55)
10 n Zin(v'-v)E (58)
= - e ) I 56
" Tu=1 vi=l R W=k

the double sum in (56) represents the sum of all the elements of a square:
one can perform first the partial sums of the elements on a same parallel

to the main diagonal, and then the sum over all such parallels:

1 2-1 2imds n-|d|
S = = e X .X
Mo gen(ne1) g oK
(57)
; n zn*l 2imd: En-[dt B
+ X .X + e .
el P v=-k d=T o -d-j"v -#}
and, since {xt} is a stationary process
1. Nl 2ind: n-|d
Su n Ed=-(n-1) ) v=] x\"jx\)"'d'k (58)
, 2in(§-k)E -1+ -k 2imdd n-[d-(5-K)|
_ n n
=n € e XoXo+d
L d=-(n-1)+j-k v=1
and, as n ==, since |j-k| <r
-2im(j-k)¥  n-1 2imdt  n-|d|
-1 n n
S, = e (no1) e - XX o4d (60)

It is well known (Jenkins & Watts [8]) that, as n + o

(59)



15

-2im(j-k)E »
E[s ] = e B cxfx(ZﬂE) (61)

but that

Var(Su)—k+ 0 (62)

(which is the main problem in the estimation of the spectral density).
At this point, it is important to remember that, according to
(54), one is not interested in the individual values of Su’ as it is

the case in the estimation of the spectral density, but in the average

n S
u
e (63)

=1 Ugfe(—ﬁiﬁ
This situation is extremely favorable since averaging is exactly
what is suggested in spectral analysis in order to obtain convergent
estimators [the counterpart of the reduction of the variance being a bias of
the expectation and some correlation between the estimators].
In order to see how this works here, lets assume first that fx
and f, are continuous functions of 6 on [0,27m].

Given € > 0, let & > 0 be such that

Ilfx(eﬂ - £,(0,)] < ¢

|64-8,] < & => (64)

Llfe(e1) - fu(85)] < e

let N be an integer such that
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N> (65)
and for h integer given, take
n = (2h+1)N (66)
then
n S N v(2h+1) S
u= Uefe(—ﬁ—J v=1 yp=v(2h+1)-2h Oefe( ﬂﬁ)
Now for u elv(2h+1)-2h, v(2h+1)]
(64) => £ _(2n¥) = £ (on W(2h*1)-hy (68)
e'"'n e n
and with
- 2im(j-k)¥
= e 25 (69)
H H
= LR v(2h+1)-h
E[Su] = oxfx(2ﬂ=———7r————) (70)
Var{Su] = Vv (71)

The different Su being independent,

~

v(2h+1) _ Su

Ry =L 5 PRy (72)
u=v{2h+1)-2h o>f_(27%)
ee'"n
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is now a random variable with expectation

~no

o fx(g%ﬂv(2h+1)-h])

E[R ] = (2h+1) — (73)
v cﬁfe(%&[\)(zhﬂ )-h1)
and variance
Var(RU) = (2h+1)Vv A (74)
so that
. 2v(2h+1) §u -
75
20T % (2041 )-2h czfe(ZﬂE)
is a r.v. with expectation
o £ (ZTu(2n+1)-h])
5~ (76)
Tq fe(uﬁ{v(2h+1)-h])
and variance
Vv
T (77)

and, for different v's, the R 's are uncorrelated.
By choosing h Tlarge enough, and accordingly n Tlarage enough,
it is possible to show (Jenkins & lJatts [8]) that:

~

Y 5

p=1

EIT— o2f, (EL{v(2h+1)-h)

w1 Gof (3%{v(2h+1)—h)

u /
‘ 2 U ee
oefe(Zﬂﬁ)




18

or since all the functions are assumed to be continuous,

& - N oo (BT
[E ]Jk_" (Zh'ﬂ) I :

____,_____ 79
Tir) v=1 9 2¢ (2Tv) W

or, using the argument of II. 1. A, since now- r is finite and fx/f

is ?%4ntegrab1e.

[Z-] 1. P, N(2h1) UE ?“ _2im(i-k)e Tx(8) (' )
. , NM(2Zh+1) “x do 80
o) jk o Ug . £ [RQ)

or, if one is interested in the dispersion matrix “for one observation"

- f_(8)
J—1H O; f -2in(j-k)8 ?Eéﬁj'de s 3,65 1y wes r-L (81)
(r ; J

Note that, since r 1is now finite, it is not possible to use here the
results of II. 1, II. 2 to derive the exact form of the dispersion matrix.
Mow it is important to remember that this result is derived with the implicit
assumption that the approximation in (52) is cood = this point will be
verified now.

Considering (49) and (52), one has the square of the distance
between the true inverse of the dispersion matrix and the approximate one

L S 1 _
d(X ze X, X'U D1ag0na](—zr~?3;ﬁI;}lJnX) =d (-)

ee'n .
(82)
_] r n ‘] * 1 2
or zj,k=1 Zu,v=1]xU"j(Ee " Uz Unhy Xo-id

ee'n
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R (TR X S e gy} Ay L e
< = -UD.{=——5—}1U X .X 83
-r . n - 2, (2mu nfpvléy o u=jtv-kt
Hyv=1 e Gefe(_ﬁ_) j,k=1 B
pon [T 1 i T 2|
<=1 (Y - U D l5—=—} U ) [°(] |x. .x, 1) (84)
-r o ; n 2. s2mU n‘uv Lt B=TV=K
u,v=1 L e oefeb7rﬁ j,k=1 ‘J
r‘ - . L B
Now zj=k=]|xu_jxv_k| is bounded in probability, so that
2y 3
dn(-) =0(n) as n->w (85)
dn(-) = 0(vn) (86)

and, for the dispersion matrix for one observation

d {=
PR (). (87)
%

n

i.e. d-£-+ 0, which is the desired result since only the convergence in

probability was considered in (78), (79), (80).

The assumptions on fx and fe can be now weakened since it is
obvious that the same demonstration, with easy modifications, holds when
fx and fe are continuous but for a finite number of points, since it

holds for each subinterval where fx and fe are continuous and there is

a finite number of such intervals.
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II. 4. The dispersion matrix for the original parameters.

The final step is to return to the original parameters.
Let m = pt+q+l (88)
be the number of parameters and

P o= (Pya vens Poygs Prags oo Bp)' = (gs vees s 875 oeny 60)" (89)

represent the vector of "unknown" parameters.

In the preceding it was tacitly assumed that r > m.

The II-parameters are non-linear functions of the P-parameters
but, using now the assumption that the exact values of the P-parameters are

known, one has the approximation in the neighborhood of this known value

(ﬂTO—-a-?ﬁ— dp0+"'+§_ﬁ;dpm+&:0
J (90)
oIl oll
r r
dll =2 =—dps + ... + =—dp_ + ¢
L r api 0 apm m r

Since the dispersion matrix of Tipy s ), the dispersion

. RO
matrix of P is immediately
-1
Tl ' fal ]
=’ ] 9ty
T e byt e
Pl ey OFJ
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with the notation

aH :
oL = — =1, ..., ry k=1, ..., m
: apk j (92)

Define now

o) = 2leT2) — (93)

g€ ")

which, because of Al, is continuous and bounded on [0,27]. In addition

it is easy to check that all the partial derivatives %%7{6) are

continuous and bounded on [0,27] so that using Loéve [2], the derivative with
respect to pj of the expansion of G 1is the same as the expansion of the

derivative of G with respect to pj:

i

GW)=HD+Hﬁ- + ... - (94)
3l 1
3 _ 9y 1 _-i6
— G(8) = — + e . (95)
Pj ?y P

and, since only a finite number m of parameters are involved, it is easy
to choose r 1large enough so that, to any dearee of accuracy, the m+l

approximations are satisfied:

G(e) = Ty + T4 18y 4 I, g e
(96)
| oM,  om . A .
i 9 w0 -i0 r -ird .
— G(8) E5s—t+ e + ...+ —¢ J= Vs sasy M
Lapj pj BPJ Bpj
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Consider now the matrix product

e RS
M= J%%I J’e"(J'k)e s ik =1, ..., r} %%1 (97)

since

I;Hj ‘ -1(\]--k)ejI 3G _-i(v-1)e '}
FEE-f <e p = N e s B ® Ly anew B2 9= s sspg ¥ (98)
)L J W
one has
3G BG‘L
M= _— / (99)
apu pr !
and finally:
2
o1 f o f_(8)
.41 % 3f‘Ll_"(il
12 2{‘; ap —(—-)-de,u, =1, veuy jS“OO)
e

IT1I. A Transformation.

When Wy which can be considered as a scale factor, is known
-1
= p+q and it is nossible to find an expression of the matrix | which

is sometimes more convenient than (100). B
Consider the matrix M defined in (99). Returning to the

parameters w and &, it is possible to partition M:

|
i
i
M:I ----- -f ------ (101)
[
i
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where, with the notations:

§ =810 ; 15| = 63

{ (102)
w=w(e ) ; 0% = W
( . 3
R U L R
11 2 f
|8 J

| e )
<M.[2= {Glglze-l(a k)e;‘]=], ssss P 3 k=]5---:q\1 (103)

. > .
| My = {l‘i’%e"““k) s 3.k = 1, q‘L

L Ll |
so that
_- u- ' - -- .-
1512 . i(j-k)e WS e i(j-k)e
M = !—(# e S S (104)
a f s 1 2 f s
s e-1(3-k)e | leZ e-T(J-k)e
'i -~
= — M
7
[8]

It is easy to check that each element of M is a quadratic form in the

~

parameters (w,8), and that each of the four matrices ﬁ]], N]Z’ HZ]’ ﬁ22

has the same elements or parallels to the "main diagonal". It turns out that:

M= 9 P (105)
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with

T By owa w6

\\ 1\ q\ 0
0 g % N
1 6] —_— - 5q B
_ | ! 06)
wo\_ — Up\ .
s ¥ 0
O \\ \\
N ~
UJO - - - - mp
and
M = {e-i(u-v)e s ULV =1, ... m} (107)
The proof is by direct matrix multiplication:
A. Take mjk € M]]
Map = 1 "o, eiluve % (108)
jk u,v=1 gJU kv
m ¥k i fon
- -i(j-v)e -i(j+1-v)e . o ~i(j+a-v)e. (109)
Zu=1[e " =iy = Syt Wy

re-1(3-k)e _ 616-i(j+1-k)e .- éqe-i(j+q_k)8] }

i Gq[e_'!(‘]_k-q)e ) 6.[e_.|(‘]+'l_k_q)e - - (Sqe—'l(\]'}'Q'k'Q)e] (-!-IO)
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s 3Ky s 10 o -igeq o d8p. o -i6_ . -iqg
e {(1 §;e - qu ] §e [1 G]e e dqe ]

_ - i90pq _ -i8 _ _ -ig8
s sqe R 58 cen 6qe 1} (1171)

29-i(j-k)e

|5] (112)

) e [e-i(i-v)e _ 61e-i(j+1-v)e )

v=1

~i(j+g-v)e @
L - 848 ] fkv (113)
=y [e'“j'k)e - g, HI=KIE s e'i(j+q’k)e] + ...
0 1 q
+ mp[e'i(j'p'k)e - 61e'1(j+1'p'k)e - e =8 e'i(j+1'p'k)e] (114)

= e'i(j-k)e{[wo[l - 51e'1e - aws =8 e'iqe]

+ mpeipe[1 - G]e'ie - sy * B e'qe]} (115)

s o~ Wiki® (116)

~

For the elements of ﬂ22’ the computations go as for M]] replacing

—
-~ Py

the &'s by the w'; and M21 = M12'
As a final result, one has:.
The dispersion matrix per observation for the parameters P = (w,§)

of the model (1) is )} with:
P
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-1 [ 2 2T sz f (9) 1
£ " og 0 [8(8) | F (0) |

IV. Generalization to the case where fx(e) is a generalized function.

In order to make the result (117) applicable to a wider class of

situations it is necessary to weaken the conditions on fx(e). This 1is also

a good occasion to show how a rigorous treatment of the special densities

should proceed.

The spectral density is introduced as a consequence of the spectral

representation of a stationary stochastic process continuous in quadratic

mean:

F(e).

where

In most of the usual processes, F = F1 +

the central role is played by the spectral distribution function

(see Cramer % Leadbetter [3]).

F(6) can be decomposed in three parts:

F=F +F,+F, (118)

F1 is a.c. with derivative f1 called spectral density,
F2 is a jump function with a finite number of jumps,
F3 is continuous but has no derivative.

F2, and it is possible to consider

the generalized derivative of F as the sum of the derivative of its a.c.

part and a finite linear complication of Dirac functions.

The corresponding

Rieman-Stieltjes integral is then the sum of the Rieman-Stieltjes integral

corresponding to the derivative of the a.c. part and the linear combination
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of the value of the function at the jumps of F.

Mow the jumps of F correspond to deterministic components in
the process, so that for these components the variance in (62) is equal to
zero: they can be treated separately and exactly, and II. 3 shows then
that the inverse of the covariance matrix is the sum of two matrices,
one (81) corresponding to the derivative of the a.c. part of the spectral
distribution function, one corresponding to the deterministic part of the

process, which is the Tinear combination of the values of the matrices

.

J1 % -ili-k)e f, (6)

1?w 02 fe(Bi
e

at the jumps of F, so that the extended definition of the integral makes
(117) a general result for |
- fx(e) generalized function with a finite number of discontinuities,
- £,(6) function with a finite number of discontinuities, bounded
away from 0,

conditions which include a very large class of actual situations.
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