Original Version

DEPARTMENT OF STATISTICS

University of Wisconsin Madison, Wisconsin 53706

TECHNICAL REPORT NO. 313

October 1972

ON THE DISPERSION MATRIX OF THE MAXIMUM LIKELIHOOD ESTIMATORS OF THE PARAMETERS OF A DYNAMIC MODEL

by

Bernard Viort University of Wisconsin

Typist: Bernice R. Weitzel

This report was supported by the Air Force Office of Scientific Research under Grant AFOSR-72-2363 and by the Wisconsin Alumni Research Foundation.

ON THE DISPERSION MATRIX OF THE MAXIMUM LIKELIHOOD ESTIMATORS OF THE PARAMETERS OF A DYNAMIC MODEL.

Dealing with multi-parameters problems, a central role is played by the dispersion matrix (variance-covariance matrix) of the estimators of the parameters: this matrix is an intrinsic part of the results on linear as well as non-linear models. It is also the starting point in the theory of the design of experiments: the particular form of the dispersion matrix presented here was derived in connection with this design problem (Viort [15]), but is believed to be an interesting result per se.

I. Introduction.

The purpose of the following is to derive the dispersion matrix of the maximum likelihood estimators of the parameters of the model

$$y_{t} = \delta^{-1}(B)\omega(B)x_{t-b} + e_{t} \quad t = \dots, -1, 0, 1, \dots$$
(1)

where $\omega(B)$, $\delta(B)$ are unknown polynomials in the backwardshift operator B defined by

$$Bx_{t} = x_{t-1} \tag{2}$$

the noise or error $\{e_t\}$ being a known stochastic process.

The situation considered here is then a special case of the "Transfer Function Models" or "Dynamic Models" of Box & Jenkins [1], who generalized (and gave a powerful treatment of) models frequently considered in the econometric (distributed lag) and engineering practice.

It is assumed that:

- Al. (Stationarity Condition). All the roots of $\omega(z) = 0$, $\delta(z) = 0$ are outside the unit circle in the complex plane ξ ;
- A2. (Irreducibility Condition). There exists no common root z_0 : $\omega(z_0) = \delta(z_0) = 0;$
- A3. $\{x_t\}$ is a stationary stochastic process with known normalized spectral density¹ $f_x(\theta)$ and variance σ_x^2 ;
- A4. $\{e_t\}$ is a stationary stochastic process with known normalized spectral density¹ $f_e(\theta)$ bounded away from 0 and variance σ_e^2 ;

A5.
$$\{x_+\}$$
 and $\{e_+\}$ are independent.

In addition and without loss of generality because of A3, the unknown constant b in (1) can be taken as zero.

The estimation of the $\omega-$ and $\delta-$ parameters of (1) or of the similar model

$$\delta(B)y_{+} = \omega(B)x_{+} + \tilde{e}_{+}$$
(3)

has been considered by many authors (see Box & Jenkins [1], Fishman [4],

¹The terminology of 'spectral density' is used here in the wide sense of 'generalized derivative of the spectral distribution function'. (Schwartz [13]).

Griliches [6], Hannan [7], Parzen [11], Theil [14], Wahba [16] for discussion, complete references and different approaches). There are two main difficulties:

- 1) The first one is that, as soon as $\delta(B) \ddagger 1$, and $\{e_t\}$ is not white noise², the "regressors" y_{t-1} , ... are correlated with the errors e_t , ... violating one fundamental assumption of the standard linear regression theory (Malinvaud [10]);
- 2) The second difficulty is that the problem is non-linear, namely the dispersion matrix is a function of the unknown parameters: it is then necessary to use an iterative method and, in order to start it, to have reliable preliminary estimates of the unknown polynomials $\omega(B)$ and $\delta(B)$ (degrees as well as values of the coefficients).

The complete iterative procedure of estimation is not the purpose of this report (see Box & Lucas [2] for the theory, Box & Jenkins [1] for numerical methods), and it will be assumed that the exact values of the polynomials are known

 $\begin{cases} \omega(B) = \omega_0 + \omega_1 B + \dots + \omega_p B^p \\ \delta(B) = 1 - \delta_1 B - \dots - \delta_q B^q \end{cases}$ (4)

3

²Another wide sense notation for i.i.d r.v. (in discrete time).

II. Derivation of the dispersion matrix when $f_{\chi}(\theta)$ is absolutely continuous with respect to the Lebesgue measure on $[0, 2\pi]$.

II. 1. The results of Grenander & Szegö [5].

The first step is the approximation of the dispersion matrix of a stationary process by a circulant matrix.

Let $f(\theta)$ be a real-valued integrable function on $[0, 2\Pi]$. Let

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} f(\theta) d\theta$$
 $n = ..., -1, 0, 1, ...$ (5)

be the coefficients of the Fourier series expansion of $f(\theta)$. The matrix

$$T_n(f) = \{c_{\mu\nu} = c_{\mu-\nu}; \mu, \nu = 1, ..., n\}$$
 (6)

is called the Toeplitz matrix (of dimension n) associated with f. It is clear that, when $f(\theta)$ is the spectral density of a stationary process, $M_n(f)$ is the correlation matrix of n successive observations. [Note that, when the process is real-valued, $f(\theta) = f(2\Pi - \theta)$ and $T_n(f)$ is real].

When n is large, the Toeplitz matrices are closely related to circulant matrices

 $C_n = \{\tilde{c}_{\mu\nu}: \tilde{c}_{\mu-\nu} = c_{\mu'-\nu'} \text{ for } \mu-\nu \equiv \mu'-\nu'(n); \mu,\nu = 1, ..., n\}$ (7)

whose spectral decomposition is very easy to find.

The approximation of Toeplitz matrices by circulant matrices can be viewed in two intuitive ways, but its proof is more involved. A. The first way consists in writing, using (5) and (6)

$$T_{n}(f) = \{\frac{1}{2\pi} \int_{0}^{2\pi} e^{-i(\mu-\nu)\theta} f(\theta)d\theta ; \mu,\nu = 1, ..., n\}$$
(8)

and, for n large, the integral can be considered as the sum^3

$$\frac{2\pi}{n}\sum_{k=1}^{n} e^{-i(\mu-\nu)\frac{2k\pi}{n}} f(\frac{2k\pi}{n})$$
(9)

suggesting that:

$$T_{n}(f) \simeq U_{n} D_{n} U_{n}^{*}$$
(10)

with

$$U_{n} = \left\{ \frac{1}{\sqrt{n}} e^{2i\pi \frac{\mu \nu}{n}}; \mu, \nu = 1, ..., n \right\}$$
(11)

$$D_n = Diagonal \{d_{vv} = f(\frac{2\pi v}{n}); v = 1, ..., n\}$$
 (12)

where U_n is not only a circulant, but also a unitary matrix (see Hannan [7] for another interesting interpretation of U_n). D_n is a circulant,

³ If $f(\theta)$ is \Re -integrable, a sufficient condition being that $f(\theta)$ is a.e. [dx] continuous.

and the set of circulant being closed for matrix multiplication, (10) shows that $T_n(f)$ is in some sense approximated by a circulant. As n increases, it is dear that a fixed element of $U_n D_n U_n^*$ converges to the corresponding element of T_n , but it is also dear that this is not a proof since this type of convergence is not uniform on all the elements, their number being precisely n.

B. The second way is to consider the fact, that since the c_v 's are the Fourier coefficients of $f(\theta)$, one has by Parseval's inequality

$$\sum_{\nu=-\infty}^{\infty} |c_{\nu}| < \infty$$
 (13)

so that the c_v 's are all negligeable for $|v| \ge p$, p large enough. One can consider the Toeplitz matrix and the circulant

or, if one considers only the 2^{nd} diagonal, and assuming n even (> 2P):

Toeplitz:
$$c_{n-1}\cdots c_{n-p}\cdots c_{n}\cdots c_{p}\cdots c_{1} c_{0} c_{-1}\cdots c_{-p}\cdots c_{n}\cdots c_{p-n}\cdots c_{1-r}$$
Circulant: $c_{-1}\cdots c_{-p}\cdots c_{n}\cdots c_{p}\cdots c_{1} c_{0} c_{-1}\cdots c_{-p}\cdots c_{n} c_{p} c_{1}$ Number of elements
on the parallel to1 p n_{2} n_{2} $n-p$ $n-1$ $n-p$ n_{2} n_{2} p n_{2} $n-p$ $n-1$ $n-p$

and one can measure the distance of the two matrices by

$$d(T,C) = \left[\frac{1}{n} \sum_{\mu,\nu=1}^{n} |T_{\mu\nu} - C_{\mu\nu}|^{2}\right]^{\frac{1}{2}}$$
(14)

where (T_{\mu\nu}) represent the Toeplitz and (C_{\mu\nu}) the circulant matrix.

The rigorous proof of the approximation is the justification of the intuitive feeling that d(T,C) can be made less than any small fixed number for n large enough, since

n

$$c_{-j} = c_{j}$$
(15)

$$d^{2}(T,C) = \frac{2}{n} \sum_{\nu=1}^{\frac{1}{2}} \nu [c_{\nu} - c_{\nu-n}]^{2}$$
(16)

$$= \frac{2}{n} \sum_{\nu=1}^{p} \nu [c_{\nu} - c_{\nu-n}]^{2} + \frac{2}{n} \sum_{\nu=p+1}^{2} \nu [c_{\nu} - c_{\nu-n}]^{2}$$
(17)

and, as will be shown below, as $n \rightarrow \infty$

p

fixed
$$\frac{2}{n} \sum_{\nu=1}^{p} \nu [c_{\nu} - c_{n-\nu}]^2 \neq 0$$
 (18)

while

$$\frac{2}{n} \sum_{p+1}^{n} v[c_v - c_{n-v}]^2 \neq \varepsilon_p$$
(19)

where $\boldsymbol{\epsilon}_p$ can be made arbitrarily small by choosing p large enough.

In order to prove the approximation it is useful to use a suitable approximation of $f(\theta)$. Let therefore

$$f_{p}(\theta) = \sum_{\nu=-p}^{p} (1 - \frac{|\nu|}{p}) c_{\nu} e^{-i\nu\theta}$$
(20)

and consider the diagonal matrix

$$D_{n}^{p} = \{d_{vv}^{p} = f_{p}(\frac{2\Pi v}{n}) ; v = 1, ..., n\}$$
(21)

Let then

$$T_{n}^{p} = U_{n} D_{n}^{p} U_{n}^{\star}$$
(22)
$$d(T_{n}, T_{n}^{p})$$

and consider

Using the matrix
$$K_n^p$$

$$K_n^p = \{(1 - \frac{|\mu - \nu|}{p})c_{\mu - \nu}; \mu, \nu = 1, ..., p+1; 0 \text{ elsewhere}\}$$
 (23)

one has:

$$d(T_n, T_n^p) \le d(T_n, K_n^p) + d(K_n^p, T_n^p)$$
 (24)

The terms of the right hand side will now be considered separately: A. $d(T_n, K_n^p)$.

$$d^{2}(T_{n}, K_{n}^{p}) \leq \frac{2}{n} \sum_{\nu=1}^{n} (p-\nu) \frac{\nu^{2}}{p^{2}} |c_{\nu}|^{2} + \frac{2}{n} \sum_{\nu=p+1}^{n} (n-\nu) c_{\nu}^{2}$$
(25)

Since

$$0 \leq \frac{n-\nu}{n} < 1 \qquad \nu \varepsilon [p+1, n]$$
 (26)

and since $\sum_{\nu} |c_{\nu\nu}|^2$ is a.c, it is possible, given $\varepsilon > 0$, to choose p such that $\sum_{\nu=p+1}^{n} |c_{\nu\nu}| < \frac{\varepsilon}{2}$. So, as $n \to \infty$

$$d^{2}(T_{n}, k_{n}^{p}) \leq \frac{kp}{n} + \varepsilon$$
(27)

with

$$k = \sum_{-\infty}^{\infty} |c_{v}|^{2}$$
 (28)

B. $d|K_n^p, T_n^p|$

$$d^{2}|K_{n}^{p}, T_{n}^{p}| \leq \frac{2}{n} \sum_{\nu=1}^{p} \nu(1 - \frac{|\nu|}{p})^{2} |c_{\nu}|^{2}$$
 (29)

$$\leq \frac{2p}{n} \sum_{\nu=1}^{p} |c_{\nu}|^2$$
(30)

 $\leq \frac{kp}{n}$ (31)

and now, using (27) and (31)

$$d(T_n, T_n^p) \leq \sqrt{\frac{kp}{n}} + \sqrt{\frac{kp}{n} + \varepsilon}$$
(32)

i.e. the Toeplitz matrix T_n can be approximated 4 to any degree of accuracy by a circulant matrix.

II. 2. The approximate inverse of $T_n(f)$.

The preceding approximation will now be used to derive the approximate inverse of a Toeplitz matrix. A sufficient condition for the existence of an inverse is that f is bounded away from zero. Assume therefore that there exists $\delta > 0$:

$$f(\theta) \geq \delta > 0 \qquad \theta \varepsilon[0, 2\pi] \tag{33}$$

Since

$$f(\theta) = \sum_{\nu = -\infty}^{+\infty} c_{\nu} e^{-i\nu\theta}$$
(34)

$$f_{p}(\theta) = \sum_{\nu=-p}^{p} (1 - \frac{|\nu|}{p}) c_{\nu} e^{-i\nu\theta}$$
(35)

one has

$$|f(\theta) - f_{p}(\theta)|^{2} \leq \sum_{\nu=-p}^{p} \frac{\nu^{2}}{p^{2}} |c_{\nu}|^{2} + 2 \sum_{\nu=p+1}^{\infty} |c_{\nu}|^{2}$$
 (36)

⁴ The approximation is valid in the distance $d(\cdot, \cdot)$: In order to use it, it is necessary to make sure that the topology is compatible with the usage considered.

(39)

Given $\varepsilon > 0$ it is possible to choose p_1, p_2 ($p_2 > p_1 > 0$) such that

p₂ > p

$$\frac{P_1^2}{P_2^2} \le \frac{\varepsilon}{2k} \tag{37}$$

and

$$\sum_{\nu=p+1}^{\infty} |c_{\nu}|^2 \leq \frac{\varepsilon}{4}$$
(38)

and

(where p, k are the same as in II. 1).

Then

$$|f(\theta) - f_{p_{2}}(\theta)|^{2} \leq \sum_{\nu=-p_{1}}^{p_{1}} \frac{\nu^{2}}{p_{1}^{2}} |c_{\nu}|^{2} + 2\sum_{\nu=P_{1}+1}^{\infty} |c_{\nu}|^{2} \leq \varepsilon$$
(40)

For $0 < \varepsilon < \frac{\delta}{2}$ one has simultaneously

$$f_{p_2} > \frac{\delta}{2} > 0$$
 (41)

and $d(T_n(f), T_n(f_p)) = d(T_n(f), T_n^{p_2}(f)) \le \varepsilon$ for n large enough (42)

Since

$$D_n^{p_2} = Diagonal \{ d_{vv}^{p_2} = f_{p_2}(\frac{2\Pi v}{n}) ; v = 1, ..., n \}$$
 (43)

is invertible, a classical theorem on linear operators (see Schwartz [12])

una

says that T_n is invertible and has the approximate inverse (in the distance $d(\cdot, \cdot)$)

$$T_{n}^{-1} \simeq U_{n}^{*} [D_{n}^{p_{2}}]^{-1} U_{n}$$
(44)

or, using the definitions and (40), for $f(\theta)$ bounded away how 0:

$$\left\{\frac{1}{2\pi}\int_{0}^{2\pi}e^{-i(\mu-\nu)\theta}f(\theta)d\theta\right\}^{-1} \simeq U_{n}^{*}\left[\text{Diagonal}\left\{\frac{1}{d_{\nu\nu}}=\frac{1}{f(\frac{2\pi\nu}{n})}\right\}\right]U_{n} \qquad (45)$$

II. 3. Linearization of the model (1).

Consider now the ratio $\frac{\omega(B)}{\delta(B)}$. Because of assumption A1, this ratio can be uniformly approximated on [0,2II] to any desired degree of accuracy by a polynomial in B

$$\frac{\omega(B)}{\delta(B)} \simeq \Pi_0 + \Pi_1 B + \dots + \Pi_r B^r$$
(46)

and the corresponding model is:

 $y_t = \Pi_0 x_t + \dots + \Pi_r x_{t-r} + e_t \qquad t = \dots, -1, 0, 1, \dots$ (47)

The dispersion matrix of the maximum likelihood estimators of

$$\Pi_{(r)} = (\Pi_0, \dots, \Pi_r)'$$
(48)

is, because of assumptions A4, A5:

$$\sum_{\Pi(\mathbf{r})} = [X'[\sum_{\mathbf{e}}]^{-1}X]^{-1}$$
(49)

for n observations one has:

$$X_{n}^{r} = \{x_{j-k}; j = 1, ..., n; k = 1, ..., r\}$$
 (50)

and

$$\sum_{e}^{n} = \left\{ \frac{\sigma_{e}^{2}}{2\pi} \int_{0}^{2\pi} e^{-i(\mu-\nu)\theta} f_{e}(\theta)d\theta ; \mu,\nu = 1, ..., n \right\}$$
(51)

Using (45),
$$\sum_{\Pi(r)}^{-1}$$
 can be approximated:

$$\sum_{\Pi(\mathbf{r})}^{-1} \approx X_{\mathbf{n}}^{\mathbf{r}'} U_{\mathbf{n}}^{*} \quad \text{Diagonal} \left\{ \frac{1}{\sigma_{e}^{2} f_{e}(\frac{2\Pi \nu}{n})} \right\} \quad U_{\mathbf{n}} X_{\mathbf{n}}^{\mathbf{r}}$$
(52)

and since

$$U_{n} X_{n}^{r} = \left\{ \frac{1}{\sqrt{n}} \sum_{\nu=1}^{n} e^{2i\pi \frac{\mu\nu}{n}} x_{\nu-k}; \mu = 1, ..., n; k = 1, ..., r \right\}$$
(53)

one has:

$$\begin{bmatrix} \sum_{\Pi(\mathbf{r})}^{-1} \end{bmatrix}_{jk} \approx \left\{ \frac{1}{n} \sum_{\mu=1}^{n} \begin{bmatrix} n & -2i\pi \frac{\mu\nu}{n} \\ \sum_{\nu=1}^{n} e^{-\lambda\nu-j} \end{bmatrix} \begin{bmatrix} n & 2i\pi \frac{\mu\nu'}{n} \\ \sum_{\nu'=1}^{n} e^{-\lambda\nu'-k} \end{bmatrix} \middle| \begin{pmatrix} \sigma_{e}^{2}f_{e}(\frac{2\pi\mu}{n}) \\ \sigma_{e}^{2}f_{e}(\frac{2\pi\mu}{n}) \end{bmatrix} \right\}$$
(54)

The attention will now be focused on the quantity:

$$S_{\mu} = \frac{1}{n} \sum_{\nu=1}^{n} e^{-2i\pi \frac{\mu\nu}{n}} x_{\nu-j} \sum_{\nu'=1}^{n} e^{2i\pi \frac{\mu\nu'}{n}} x_{\nu'-k}$$
(55)

$$= \frac{1}{n} \sum_{\nu=1}^{n} \sum_{\nu'=1}^{n} e^{2i\pi(\nu'-\nu)\frac{\mu}{n}} x_{\nu-j}x_{\nu'-k}$$
(56)

the double sum in (56) represents the sum of all the elements of a square: one can perform first the partial sums of the elements on a same parallel to the main diagonal, and then the sum over all such parallels:

$$S_{\mu} = \frac{1}{n} \left\{ \sum_{d=-(n-1)}^{-1} e^{2i\pi d_{n}^{\underline{\mu}}} \sum_{\nu=1}^{n-|d|} x_{\nu-j} x_{\nu+d-k} + \sum_{\nu=1}^{n} x_{\nu-j} x_{\nu-k} + \sum_{d=1}^{n-1} e^{2i\pi d_{n}^{\underline{\mu}}} \sum_{\nu'=1}^{n-|d|} x_{\nu'-d-j} x_{\nu'-k} \right\}$$
(57)

and, since $\{x_t^t\}$ is a stationary process

$$S_{\mu} = \frac{1}{n} \sum_{d=-(n-1)}^{n-1} e^{2i\pi d_{n}^{\mu}} \sum_{\nu=1}^{n-|d|} x_{\nu-j} x_{\nu+d-k}$$
(58)

$$= \frac{1}{n} e^{-2i\pi(j-k)\frac{\mu}{n}} \sum_{d=-(n-1)+j-k}^{n-1+j-k} e^{2i\pi d\frac{\mu}{n}} \sum_{\nu=1}^{n-|d-(j-k)|} x_{\nu} x_{\nu+d}$$
(59)

and, as $n \rightarrow \infty$, since |j-k| < r

$$S_{\mu} = \frac{1}{n} e^{-2i\pi(j-k)\frac{\mu}{n}} \sum_{d=-(n-1)}^{n-1} e^{2i\pi d\frac{\mu}{n}} \sum_{\nu=1}^{n-|d|} x_{\nu} x_{\nu+d}$$
(60)

It is well known (Jenkins & Watts [8]) that, as $n \rightarrow \infty$

14

$$E[S_{\mu}] = e^{-2i\pi(j-k)\frac{\mu}{n}} \sigma_{x}^{2} f_{x}(2\pi\frac{\mu}{n})$$
(61)

but that

$$\operatorname{Jar}(S_{11}) \leftrightarrow 0$$
 (62)

(which is the main problem in the estimation of the spectral density).

At this point, it is important to remember that, according to (54), one is not interested in the individual values of S_{μ} , as it is the case in the estimation of the spectral density, but in the average

$$\sum_{\mu=1}^{n} \frac{S_{\mu}}{\sigma_{e}^{2} f_{e}(\frac{2\pi\mu}{n})}$$
(63)

This situation is extremely favorable since averaging is exactly what is suggested in spectral analysis in order to obtain convergent estimators [the counterpart of the reduction of the variance being a bias of the expectation and some correlation between the estimators].

In order to see how this works here, lets assume first that f_x and f_e are continuous functions of θ on [0,2 π].

Given $\varepsilon > 0$, let $\delta > 0$ be such that

$$|\theta_{1}-\theta_{2}| < \delta \Rightarrow \begin{cases} |f_{x}(\theta_{1}) - f_{x}(\theta_{2})| < \varepsilon \\ |f_{e}(\theta_{1}) - f_{e}(\theta_{2})| < \varepsilon \end{cases}$$
(64)

let N be an integer such that

$$N > \frac{1}{\delta}$$
(65)

and for h integer given, take

$$n = (2h+1)N$$
 (66)

then

$$\sum_{\mu=1}^{n} \frac{S_{\mu}}{\sigma_{e}^{2} f_{e}(\frac{2\pi\mu}{n})} = \sum_{\nu=1}^{N} \sum_{\mu=\nu(2h+1)-2h}^{\nu(2h+1)} \frac{S_{\mu}}{\sigma_{e}^{2} f_{e}(2\pi\frac{\mu}{n})}$$
(67)

Now for $\mu \in [v(2h+1)-2h, v(2h+1)]$

(64) =>
$$f_e(2\pi \frac{\mu}{n}) \simeq f_e(2\pi \frac{\nu(2h+1)-h}{n})$$
 (68)

and with

$$\tilde{S}_{\mu} = e^{2i\pi(j-k)\frac{\mu}{n}} S_{\mu}$$
(69)

$$\mathsf{E}[\tilde{\mathsf{S}}_{\mu}] \simeq \sigma_{\mathsf{X}}^{2} \mathsf{f}_{\mathsf{X}}(2\pi \frac{\upsilon(2h+1)-h}{n})$$
(70)

$$Var[\tilde{S}_{\mu}] \simeq V_{v}$$
 (71)

The different ${\rm S}_{\mu}^{}$ being independent,

$$R_{v} = \sum_{\mu=v(2h+1)-2h}^{v(2h+1)} \frac{\tilde{S}_{\mu}}{\sigma_{e}^{2}f_{e}(2\pi\bar{\mu})}$$
(72)

is now a random variable with expectation

$$E[R_{v}] \simeq (2h+1) \quad \frac{\sigma_{x}^{2} f_{x}(\frac{2\pi}{n}[v(2h+1)-h])}{\sigma_{e}^{2} f_{e}(\frac{2\pi}{n}[v(2h+1)-h])}$$
(73)

and variance

$$Var(R_{y}) = (2h+1)V_{y}$$
 (74)

so that

$$\frac{1}{2h+1} \sum_{\mu=\nu(2h+1)-2h}^{\nu(2h+1)} \frac{\tilde{S}_{\mu}}{\sigma_{e}^{2}f_{e}(2\pi\frac{\mu}{n})}$$
(75)

is a r.v. with expectation

$$\frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \frac{f_{x}(\frac{2\pi}{n}[\nu(2h+1)-h])}{f_{e}(\frac{2\pi}{n}[\nu(2h+1)-h])}$$
(76)

and variance

$$\frac{V_{v}}{2h+1}$$
 (77)

and, for different ν 's, the R_{ν} 's are uncorrelated.

By choosing h large enough, and accordingly n large enough, it is possible to show (Jenkins & Watts [8]) that:

$$\sum_{\mu=1}^{n} \widetilde{S}_{\mu} / \underset{\sigma_{e}^{2}f_{e}(2\pi_{n}^{\mu})}{\overset{P}{\overset{}}} \xrightarrow{(2h+1)} \sum_{\nu=1}^{N} \frac{\sigma_{x}^{2}f_{x}(\frac{2\pi}{n}(\nu(2h+1)-h))}{\sigma_{e}^{2}f_{e}(\frac{2\pi}{n}(\nu(2h+1)-h))}$$
(78)

or since all the functions are assumed to be continuous,

$$\begin{bmatrix} \sum_{\pi(r)}^{-1} \end{bmatrix}_{jk} \xrightarrow{P} (2h+1) \sum_{\nu=1}^{N} \frac{\sigma_x^2 f_x(\frac{2\pi\nu}{N})}{\sigma_e^2 f_e(\frac{2\pi\nu}{N})}$$
(79)

or, using the argument of II. 1. A, since now r is finite and f_x/f_e is \Re -integrable.

$$\left[\sum_{\pi(\mathbf{r})}^{-1}\right]_{jk} \xrightarrow{P} \frac{N(2h+1)}{2\pi} \frac{\sigma_{\mathbf{x}}^2}{\sigma_{\mathbf{e}}^2} \int_{0}^{2\pi} e^{-2i\pi(\mathbf{j}-\mathbf{k})\theta} \frac{f_{\mathbf{x}}(\theta)}{f_{\mathbf{e}}(\theta)} d\theta$$
(80)

or, if one is interested in the dispersion matrix "for one observation"

$$\sum_{\pi(\mathbf{r})}^{-1} = \left\{ \frac{1}{2\pi} \frac{\sigma_{\mathbf{x}}^2}{\sigma_{\mathbf{e}}^2} \int_{0}^{2\pi} e^{-2i\pi(\mathbf{j}-\mathbf{k})\theta} \frac{f_{\mathbf{x}}(\theta)}{f_{\mathbf{e}}(\theta)} d\theta ; \mathbf{j}, \mathbf{k} = 1, \dots, \mathbf{r} \right\}$$
(81)

Note that, since r is now finite, it is not possible to use here the results of II. 1, II. 2 to derive the exact form of the dispersion matrix. Now it is important to remember that this result is derived with the implicit assumption that the approximation in (52) is good = this point will be verified now.

Considering (49) and (52), one has the square of the distance between the true inverse of the dispersion matrix and the approximate one

$$d_{n}^{2}(X'\sum_{e}^{-1}X, X'U_{n}^{*} \text{ Diagonal}\{\frac{1}{\sigma_{e}^{2}f_{e}(\frac{2\pi\mu}{n})}\} U_{n}X) = d_{n}(-)$$

$$= \frac{1}{r}\sum_{j,k=1}^{r}\sum_{\mu,\nu=1}^{n}|x_{\mu-j}(\sum_{e}^{-1}-U_{n}^{*}D\{\frac{1}{\sigma_{e}^{2}f_{e}(\frac{2\pi\mu}{n})}\} U_{n})_{\mu\nu}x_{\nu-k}|^{2}$$
(82)

$$\leq \frac{1}{r} \sum_{\mu,\nu=1}^{n} \left\{ \left| \left(\sum_{e}^{-1} - U_{n}^{*} D_{\cdot} \left\{ \frac{1}{\sigma_{e}^{2} f_{e}^{2\pi\mu}} \right\} U_{n} \right)_{\mu\nu} \right| \sum_{j,k=1}^{r} |x_{\mu-j} x_{\nu-k}| \right\}^{2}$$
(83)
$$\leq \frac{1}{r} \sum_{\mu,\nu=1}^{n} \left\{ \left| \left(\sum_{e}^{-1} - U_{n}^{*} D_{\cdot} \left\{ \frac{1}{\sigma_{e}^{2} f_{e}^{2\pi\mu}} \right\} U_{n} \right)_{\mu\nu} \right|^{2} \left(\sum_{j,k=1}^{r} |x_{\mu-j} x_{\nu-k}| \right)^{2} \right\}$$
(84)

Now $\sum_{j,k=1}^{r} |x_{\mu-j}x_{\nu-k}|$ is bounded in probability, so that

$$d_n^2(-) = O(n) \text{ as } n \to \infty$$
 (85)

$$d_n(-) = O(\sqrt{n})$$
 (86)

and, for the dispersion matrix for one observation

$$d = \frac{d_n(-)}{n} = O(\frac{1}{\sqrt{n}}).$$
 (87)

i.e. $d \xrightarrow{P} 0$, which is the desired result since only the convergence in probability was considered in (78), (79), (80).

The assumptions on f_x and f_e can be now weakened since it is obvious that the same demonstration, with easy modifications, holds when f_x and f_e are continuous but for a finite number of points, since it holds for each subinterval where f_x and f_e are continuous and there is a finite number of such intervals.

II. 4. The dispersion matrix for the original parameters.

The final step is to return to the original parameters.

$$m = p+q+1$$
 (88)

be the number of parameters and

Let

$$\underline{P} = (P_1, \dots, P_{p+1}, P_{p+2}, \dots, P_m)' = (\omega_0, \dots, \omega_p, \delta_1, \dots, \delta_q)'$$
(89)

represent the vector of "unknown" parameters.

In the preceding it was tacitly assumed that $r \ge m$.

The II-parameters are non-linear functions of the P-parameters but, using now the assumption that the exact values of the P-parameters are known, one has the approximation in the neighborhood of this known value

$$\begin{cases} d\Pi_{0} = \frac{\partial \Pi_{0}}{\partial p_{1}} dp_{0} + \dots + \frac{\partial \Pi_{0}}{\partial p_{m}} dp_{m} + \varepsilon_{0} \\ \dots \\ d\Pi_{r} = \frac{\partial \Pi_{r}}{\partial p_{1}} dp_{0} + \dots + \frac{\partial \Pi_{r}}{\partial p_{m}} dp_{m} + \varepsilon_{r} \end{cases}$$
(90)

Since the dispersion matrix of $\Pi_{(r)}$ is $\sum_{\Pi_{(r)}}$, the dispersion matrix of \underline{P} is immediately

$$\Sigma_{\mathbf{p}} = \left[\begin{cases} \frac{\partial \Pi}{\partial \mathbf{p}} \end{cases} \sum_{\Pi(\mathbf{r})}^{-1} \left\{ \frac{\partial \Pi}{\partial \mathbf{p}} \right\}' \right]^{-1}$$
(91)

with the notation

$$\left\{\frac{\partial \Pi}{\partial p}\right\} = \left\{\frac{\partial \Pi_{j}}{\partial p_{k}}; j = 1, ..., r; k = 1, ..., m\right\}$$
(92)

Define now

$$G(\theta) = \frac{\omega(e^{-i\theta})}{\delta(e^{-i\theta})}$$
(93)

which, because of Al, is continuous and bounded on $[0,2\pi]$. In addition it is easy to check that all the partial derivatives $\frac{\partial G}{\partial p_j}(\theta)$ are continuous and bounded on $[0,2\pi]$ so that using Loéve [9], the derivative with respect to p_j of the expansion of G is the same as the expansion of the derivative of G with respect to p_j :

$$G(\theta) = \Pi_0 + \Pi_1 e^{-i\theta} + \dots$$
 (94)

$$\frac{\partial}{\partial p_{j}} G(\theta) = \frac{\partial \Pi_{0}}{\partial p_{j}} + \frac{\partial \Pi_{1}}{\partial p_{j}} e^{-i\theta} + \dots$$
(95)

and, since only a finite number m of parameters are involved, it is easy to choose r large enough so that, to any degree of accuracy, the m+l approximations are satisfied:

$$\begin{cases} G(\theta) \cong \Pi_{0} + \Pi_{1} e^{-i\theta} + \dots + \Pi_{r} e^{-ri\theta} \\ \frac{\partial}{\partial p_{j}} G(\theta) \cong \frac{\partial \Pi_{0}}{\partial p_{j}} + \frac{\partial \Pi_{1}}{\partial P_{j}} e^{-i\theta} + \dots + \frac{\partial \Pi_{r}}{\partial p_{j}} e^{-ir\theta} j = 1, \dots, m \end{cases}$$
(96)

21

Consider now the matrix product

$$M = \left\{ \frac{\partial \Pi}{\partial \underline{P}} \right\} \left\{ e^{-i(j-k)\theta} ; j,k = 1, ..., r \right\} \left\{ \frac{\partial \Pi}{\partial \underline{P}} \right\}$$
(97)

since

$$\left\{ \frac{\partial \Pi}{\partial \underline{P}} \right\} \left\{ e^{-i(j-k)\theta} \right\} = \left\{ \frac{\partial \overline{G}}{\partial p_{\mu}} e^{-i(\nu-1)\theta} ; \mu = 1, \dots, m ; \nu = 1, \dots, r \right\}$$
(98)

one has

$$M = \left\{ \frac{\partial \bar{G}}{\partial p_{\mu}} \frac{\partial G}{\partial p_{\nu}} \right\}$$
(99)

and finally:

$$\sum_{p}^{-1} = \left\{ \frac{1}{2\pi} \frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \int_{0}^{2\pi} \frac{\partial G(\theta)}{\partial p_{\mu}} \frac{\partial \bar{G}(\theta)}{\partial p_{\nu}} \frac{f_{x}(\theta)}{f_{e}(\theta)} d\theta ; \mu, \nu = 1, ..., m \right\} (100)$$

III. A Transformation.

When ω_0 , which can be considered as a scale factor, is known m = p+q and it is possible to find an expression of the matrix \sum_{P}^{-1} which is sometimes more convenient than (100).

Consider the matrix M defined in (99). Returning to the parameters ω and δ , it is possible to partition M:

$$M = \begin{bmatrix} M_{11} & M_{12} \\ \dots & M_{21} & M_{22} \end{bmatrix}$$

(101)

where, with the notations:

$$\begin{cases} \delta = \delta(e^{-i\theta}) ; |\delta|^{2} = \delta \overline{\delta} \\ \omega = \omega(e^{-i\theta}) ; |\omega|^{2} = \omega \overline{\omega} \end{cases}$$

$$\begin{bmatrix} M_{11} = \left\{ \frac{1}{|\delta|^{2}} e^{-i(j-k)\theta} ; j,k = 1, \dots, p \right\} \\ M_{12} = \left\{ \frac{\omega}{\delta |\delta|^{2}} e^{-i(j-k)\theta} ; j = 1, \dots, p \right\} ; k = 1, \dots, q \right\}$$

$$M_{22} = \left\{ \frac{|\omega|^{2}}{|\delta|^{4}} e^{-i(j-k)} ; j,k = 1, \dots, q \right\}$$

$$M_{22} = \left\{ \frac{|\omega|^{2}}{|\delta|^{4}} e^{-i(j-k)} ; j,k = 1, \dots, q \right\}$$

$$(102)$$

so that

$$M = \frac{1}{|\delta|^4} \begin{vmatrix} |\delta|^2 e^{-i(j-k)\theta} & \omega \overline{\delta} e^{-i(j-k)\theta} \\ -\frac{1}{\omega \delta} e^{-i(j-k)\theta} & |\omega|^2 e^{-i(j-k)\theta} \end{vmatrix}$$
(104)
$$= \frac{1}{|\delta|^4} \widetilde{M}$$

It is easy to check that each element of \tilde{M} is a quadratic form in the parameters (ω, δ), and that each of the four matrices \tilde{M}_{11} , \tilde{M}_{12} , \tilde{M}_{21} , \tilde{M}_{22} has the same elements or parallels to the "main diagonal". It turns out that:

$$\tilde{M} = \mathcal{P} \mathcal{U} \mathcal{P}' \tag{105}$$

with

(106)

and

$$\mathcal{M} = \{ e^{-i(\mu - \nu)\theta} ; \mu, \nu = 1, ... m \}$$
 (107)

The proof is by direct matrix multiplication:

A. Take
$$m_{jk} \in \widetilde{M}_{11}$$

 $m_{jk} = \sum_{\mu,\nu=1}^{m} \mathcal{P}_{j\mu} e^{-i(\mu-\nu)\theta} \mathcal{P}_{k\nu}$ (108)
 $= \sum_{\nu=1}^{m} [e^{-i(j-\nu)\theta} - \delta_1 e^{-i(j+1-\nu)\theta} - \dots - \delta_q e^{-i(j+q-\nu)\theta}] \mathcal{P}_{k\nu}$ (109)
 $= [e^{-i(j-k)\theta} - \delta_1 e^{-i(j+1-k)\theta} - \dots - \delta_q e^{-i(j+q-k)\theta}] - \dots$
 $- \delta_q [e^{-i(j-k-q)\theta} - \delta_1 e^{-i(j+1-k-q)\theta} - \dots - \delta_q e^{-i(j+q-k-q)\theta}]$ (110)

$$= e^{-i(j-k)\theta} \{ (1 - \delta_1 e^{-i\theta} - \dots - \delta_q e^{-iq\theta}] - \delta_1 e^{i\theta} [1 - \delta_1 e^{-i\theta} - \dots - \delta_q e^{-iq\theta}] \}$$
$$- \dots - \delta_q e^{iq\theta} [1 - \delta_1 e^{-i\theta} - \dots - \delta_q e^{-iq\theta}] \}$$
(111)
$$= |\delta|^2 e^{-i(j-k)\theta}$$
(112)

$$\begin{split} m_{jk} &= \sum_{\nu=1}^{m} \left[e^{-i(j-\nu)\theta} - \delta_{1} e^{-i(j+1-\nu)\theta} - \dots - \delta_{q} e^{-i(j+q-\nu)\theta} \right] \widehat{\mathcal{C}}_{k\nu} \quad (113) \\ &= \omega_{0} \left[e^{-i(j-k)\theta} - \delta_{1} e^{-i(j+1-k)\theta} - \dots - \delta_{q} e^{-i(j+q-k)\theta} \right] + \dots \\ &+ \omega_{p} \left[e^{-i(j-p-k)\theta} - \delta_{1} e^{-i(j+1-p-k)\theta} - \dots - \delta_{q} e^{-i(j+1-p-k)\theta} \right] \quad (114) \\ &= e^{-i(j-k)\theta} \left\{ \left[\omega_{0} \left[1 - \delta_{1} e^{-i\theta} - \dots - \delta_{q} e^{-iq\theta} \right] + \dots \right] \\ &+ \omega_{p} e^{ip\theta} \left[1 - \delta_{1} e^{-i\theta} - \dots - \delta_{q} e^{-q\theta} \right] \right\} \quad (115) \end{split}$$

$$= \bar{\omega}\delta e^{-i(j-k)\theta}$$
(116)

For the elements of \tilde{M}_{22} , the computations go as for \tilde{M}_{11} replacing the δ 's by the ω '; and $\tilde{M}_{21} = \overline{\tilde{M}}_{12}$.

As a final result, one has:

The dispersion matrix per observation for the parameters $P = (\omega, \delta)$ of the model (1) is \sum_{p} with:

25

$$\Sigma_{\underline{P}}^{-1} = \left\{ \frac{1}{2\pi} \frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} \int_{0}^{2\pi} e^{-i(j-k)} \frac{f_{x}(\theta)}{|\delta(\theta)|^{4} f_{e}(\theta)} d\theta \right\}$$
(117)

IV. Generalization to the case where $f_{\chi}(\theta)$ is a generalized function.

In order to make the result (117) applicable to a wider class of situations it is necessary to weaken the conditions on $f_{\chi}(\theta)$. This is also a good occasion to show how a rigorous treatment of the special densities should proceed.

The spectral density is introduced as a consequence of the spectral representation of a stationary stochastic process continuous in quadratic mean: the central role is played by the spectral distribution function $F(\theta)$. (see Cramer & Leadbetter [3]).

 $F(\theta)$ can be decomposed in three parts:

$$F = F_1 + F_2 + F_3$$
(118)

where

 F_1 is a.c. with derivative f_1 called spectral density,

 F_2 is a jump function with a finite number of jumps,

F₃ is continuous but has no derivative.

In most of the usual processes, $F = F_1 + F_2$, and it is possible to consider the generalized derivative of F as the sum of the derivative of its a.c. part and a finite linear complication of Dirac functions. The corresponding Rieman-Stieltjes integral is then the sum of the Rieman-Stieltjes integral corresponding to the derivative of the a.c. part and the linear combination of the value of the function at the jumps of F.

Now the jumps of F correspond to deterministic components in the process, so that for these components the variance in (62) is equal to zero: they can be treated separately and exactly, and II. 3 shows then that the inverse of the covariance matrix is the sum of two matrices, one (81) corresponding to the derivative of the a.c. part of the spectral distribution function, one corresponding to the deterministic part of the process, which is the linear combination of the values of the matrices

$$\left\{ \frac{1}{2\pi} \frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} e^{-i(j-k)\theta} \frac{f_{x}(\theta)}{f_{e}(\theta)} \right\}$$

at the jumps of F, so that the extended definition of the integral makes (117) a general result for

- $f_x(\theta)$ generalized function with a finite number of discontinuities,
- $f_e(\theta)$ function with a finite number of discontinuities, bounded away from 0,

conditions which include a very large class of actual situations.

References.

- [1] G. E. P. Box & G. M. Jenkins: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970).
- [2] G. E. P. Box & H. L. Lucas. Design of Experiments in Non-linear Situations. Biometrika, 46, (1959).
- [3] H. Cramer & M. R. Leadbetter. Stationary and Related Stochastic Processes. J. Wiley and Sons, New York (1967).
- [4] G. Fishman: Spectral Methods in Econometrics. Rand Corporation Santa Monica (1970).
- [5] U. Grenander & G. Szegö: Toeplitz Forms and their Applications. University of California Press, Berkeley and Los Angeles (1958).
- [6] Z. Griliches. Distributed Lag: A Survey. Econometrica, Vol. 35 (1967).
- [7] E. J. Hannan. Time Series Analysis. Methuen. London (1966).
- [8] G. M. Jenkins & D. Watts. Spectral Analysis and its Applications. Holden-Day, San Francisco (1969).
- [9] M. Loéve. Probability Theory. Van Nostrand. Princeton (1955).
- [10] E. Malinvaud. Methods Statistiques de l'Econometrie. Dunod. Paris, (1969).
- [11] E. Parzen. Time Series Papers. Holden-Day, San Francisco (1969).
- [12] L. Schwartz. Cours d' Analyse. Ecole Polytechnique, Paris (1963-64).
- [13] L. Schwartz. Les Distributions. Hermann, Paris (1959).
- [14] H. Theil. Principles of Econometrics. J. Wiley and Son, New York (1971)
- [15] B. L. Viort. On the Construction of D-optimal Designs for Dynamic models. Technical Report No.314. Department of Statistics, University of Wisconsin, Madison (1972).
- [16] G. Wahba. Estimation of the Coefficients in a Multidimensional Distributed Lag Model. Econometrica, Vol. 37, 3. (July 1969).

Security Classification						
DOCUM	ENT CONTROL DATA - I	R & D entered when the overall report is classified)				
OCUM (Security cleasification of title, body of abstract ORIGINATING ACTIVITY (Corporate author)	and indexing annotation must be	28. REPORT SECURITY CLASSIFICATION				
University of Wisconsin		Unclassified				
Department of Statistics		25. GROUP				
Madison, Wisconsin 53706		314351120218				
ON THE DISPERSION MATRIX OF THE PARAMETERS OF A DYNAMIC MODEL	MAXIMUM LIKELIHOOD	ESTIMATORS OF THE				
DESCRIPTIVE NOTES (Type of report and inclusive d	ates)					
Scientific Interim						
AUTHOR(S) (First name, middle initial, last name)						
Bernard Viort	e					
	78. TOTAL NO.	OF PAGES 75. NO. OF REFS				
October 1972	28	16				
	9a. ORIGINATO	DR'S REPORT NUMBER(S)				
. CONTRACT OR GRANT NO.						
AFOSR-72-2363 ^b . Project NO.	Technic	Technical Report No. 313				
	95. OTHER RE	PORT NO(S) (Any other numbers that may be assign				
с.	this report)					
d.						
 DISTRIBUTION STATEMENT This document has been approved 						
is unlimited.	Air Fo 1400 N	12. SPONSORING MILITARY ACTIVITY Air Force Office of Scientific Researc 1400 Wilson Boulevard Arlington, Virginia				
13. ABSTRACT	waren and a second s					
The approximation of a To derive the dispersion matrix o error process is known and whe parameters.	f the parameters of	circulant matrix is used to a dynamic model when the imation of the value of the				
DD FORM 1470	An a start of the					
DD FORM 1473	_					
		Security Classification				

Security Classification						LINK B		LINKC	
KEY WORDS			LINK A ROLE WT		ROLE			ROLE	
	Patran Const			-	1. tomas	1000	ant i sea		
					2111523	12 36	The sector		
dispersion	matrix				1.537	sagas	11 . 110		
				1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
dynamic mo						38840	0.2.5		
maximum li	kelihood					1.1	Codina i con 252 a c	1 1 1 1 1 1	
							oiside	100	
						JM	101.544	1712	
			N						
						1	1		
							VII TOS	1.00	
						1.1			
li Statistic Statistica						10. L	1 - 12-1		
							100 M		
1.1.1	huch estimate	n ann annan Francis I. Fran							
		and the second states of the second		eVel teele	a e Cilepe	1	daes te Statst	1115	
							22122111	11 같다.	
itmosani aili	Afflee of Selent on Soulyymr: . Arrinia								
	u di litten trefu Northern States								
	rname collet v ka ten af the vilue c	terixence es sid	CID IO	ning i ging Nga ingga	n na inch rostroj	st spa	un pyr		
				11104			en dene		
				Į.					
				- Children					
			6	1					
						¥	1	1	
					-				
					-				

Security Classification
