DEPARTMENT OF STATISTICS

University of Wisconsin Madison, Wisconsin 53706

TECHNICAL REPORT No. 315
November 1972

OPTIMAL CONVERGENCE PROPERTIES OF THE
POLYNOMIAL ALGORITHM FOR DENSITY ESTIMATION

by

Grace Wahba

Typist: Bernice R. Weitzel

This work was supported in part by the Wisconsin Alumni Research Foundation and by the AirForce Office of Scientific Research under Grant AFOSR-72-2363.

ABSTRACT

Convergence properties of the polynomial algorithm for density estimation are determined for densities f satisfying $f^{(m)} \in \mathcal{L}_p$. It is shown that

$$E|f(x) - \hat{f}_{n,m}(x)|^2 = O(n^{-(2m-2/p)/(2m+1-2/p)})$$

$$m = 1, 2, ...$$

$$p = 1, 2, ...$$

where $\hat{f}_{n,m}(x)$ is the estimate of f(x) based on n independent observations from the density f. This result was previously known for p=2 and $p=\infty$. By applying a theorem of Farrell, it is shown that this rate is the best obtainable for the class of f's satisfying

$$\left[\int_{-\infty}^{\infty} [f^{(m)}(u)]^{p} du\right]^{1/p} \leq M.$$

Let t_1, t_2, \ldots, t_n be the order statistics from a random sample of size n from a population with unknown density f(x). We are interested in estimating the density f(x). Let $F_n(x)$ be n/(n+1) times the sample cumulative distribution function, and let $k_n << n$ be an appropriately chosen sequence depending on n. An estimate for f(x) may be obtained by interpolating F_n at t_{ik_n} , $i=1,2,\ldots, \left\lceil \frac{n}{k_n} \right\rceil$ by a smooth function, call it \widehat{F}_n , and letting the density estimate \widehat{f}_n be given by

$$\hat{f}_n(x) = \frac{d}{dx} \hat{f}_n(x)$$
.

We call this class of methods "order statistic methods". The only examples of this method that we know of in the literature are [3] and Van Ryzin's histogram method [2], of which [3] is a generalization. The method described in [3] uses local polynomial interpolation and is as follows:

Suppose f possess m-1 continuous derivatives and $f^{(m)} \in \mathcal{X}_p(-\infty,\infty), \text{ for some integer } p \geq 1. \text{ (f is then said to be in the Sobolev space } W_p^{(m)}). \text{ Let } \ell \text{ be the greatest integer in } (n-1)/k_n. \text{ Let } \ell \text{ be the greatest integer in } \ell -1 \text{ (n-1)/k}_n.$

$$\hat{f}_{n,m}(x) = 0$$
 , $x < t_{2k_n}$

$$= \frac{d}{dx} \hat{f}_{n,m}(x) , t_{2k_n} \le x < t_{(\ell-m+1)k_n}$$
 (1)
$$= 0 , t_{(\ell-m+1)k_n} \le x$$

where $\hat{F}_{n,m}(x)$ is defined as follows:

For m = 1,

$$\hat{F}_{n,1}(x) = F_n(t_{ik_n}) + x \frac{F_n(t_{(i+1)k_n}) - F_n(t_{ik_n})}{t_{(i+1)k_n} - t_{ik_n}}, t_{ik_n} \stackrel{\leq}{=} x < t_{(i+1)k_n}; i=2,3,...,\ell-1.$$

For m = 2, let $\hat{F}_{n,m,i}(x)$, $i = 1, 2, ..., \ell-m-1$, be the mth degree polynomial which interpolates to $F_n(x)$ at the m+l points $x = t_{ik_n}$, $t_{(i+1)k_n}$, ..., $t_{(i+m)k_n}$. For $x \in [t_{(i+1)k_n}, t_{(i+2)k_n}]$, define $\hat{F}_{n,m}(x)$ to coincide with $\hat{F}_{n,m,i}(x)$, $i = 1, 2, ..., \ell-m-1$.

In [3], convergence properties of this algorithm are studied for p=2 and $p=\infty$. More precisely, the following theorem concerning the mean square convergence of $\hat{f}_{n,m}(x)$ to f(x) is proved in [3].

Theorem 1. $\frac{11}{1}$

Let $f(u) \leq \Lambda$, all u, let $f(u) \geq \lambda$ for u in a neighborhood of x, let |u(1-F(u))| and |uF(u)| be bounded respectively for $u \geq x$ and $u \leq x$. Let $f \in \mathbb{W}_p^{(m)}$. Let $\hat{f}_{n,m}(x)$ be given by (1) with k_n given by

$$k_n = \left[\frac{1}{(2m-\frac{2}{p})} \quad \frac{B}{A}\right]^{1/(2m+1-2/p)} (n+1)^{(2m-2/p)/(2m+1-2/p)}$$

where

This theorem is the content of Theorems 1 and 2 of [3].

$$A = 2a(m) ||f^{(m)}||_{p}^{2} (\frac{m}{\lambda})^{2m-2/p} (1 + 0(\frac{1}{k_{n}}))$$

$$B = m^{2m+3\frac{1}{4}} \frac{\Lambda^{2m}}{\sqrt{2(m-1)}} 3^{\frac{1}{2}} (1 + 0(\frac{1}{k_{n}}) + 0(\frac{k_{n}}{n}))$$

with

$$a(m) = 1, m = 1$$

$$= (\frac{5}{2})^{2}, m = 2$$

$$= \left[\frac{2(m+3)}{(m-1)!}\right]^{2}, m = 3, 4, ...$$

and

$$||f^{(m)}||_{p} = \left[\int_{-\infty}^{\infty} [f^{(m)}(u)]^{p} du\right]^{1/p}, p = 1, 2, ...$$

= $\sup_{\xi} |f^{(m)}(\xi)|, p = \infty$.

Then, for p = 2 and $p = \infty$,

$$E|f(x) - \hat{f}_{n,m}(x)|^2 \le D n^{-(2m-2/p)/(2m+1-2/p)} (1 + o(1))$$
 (2)

where

$$D = \frac{(2m+1-2/p)}{(2m-2/p)(2m-2/p)} (AB^{2m-2/p})^{1/(2m+1-2/p)}.$$

The purpose of this communication is to demonstrate the truth of Theorem 1 for $p=1, 3, 4, \ldots$, and to apply a theorem of Farrell to show that the rate of convergence of (2) is the best obtainable for the estimation of a density at a point for $f \in W_p^{(m)}$.

The proof of Theorem 1 in [3] relies on the analysis of the so-called bias and variance parts of the error. Letting $F(x) = \int\limits_{-\infty}^{X} f(u) du$, the variance part is due to the error comitted in approximating $F(t_{ik_n})$ by $\hat{F}_n(t_{ik_n}) = \frac{ik_n}{n+1}$. The bias part is then due to the error comitted in approximating f(x) using only values of $F(t_{ik_n})$. The bias part of the error for the density estimate of (1) is studied in [3] as follows:

For any given numbers $x_0 < x_1 < ... < x_m$, let $\ell_v(x) =$

 $\ell_{\nu}(x; x_0, x_1, \dots x_m)$ be the mth degree polynomial with $\ell_{\nu}(x_{\mu}) = \delta_{\mu,\nu}$ $\ell_{\nu}(x_0, x_1, \dots, x_m)$. Then the mth degree polynomial $\tilde{F}(x)$ interpolating to F(x) at k_0, k_1, \dots, k_m is given by

$$\tilde{F}(x) = \sum_{v=0}^{m} \ell_v(x) \int_{-\infty}^{v} f(\xi) d\xi$$

For $x \in [x_0, x_m]$, let $\tilde{f}(x) = \frac{d}{dx} \tilde{F}(x)$,

$$\tilde{f}(x) = \sum_{v=0}^{m} \frac{d}{dx} \ell_v(x) \int_{-\infty}^{x_v} f(\xi) d\xi = \sum_{v=1}^{m} \frac{d}{dx} \ell_v(x) \int_{x_0}^{x_v} f(\xi) d\xi.$$

The following theorem is given in [3].

Theorem 2. Let
$$f \in W_p^{(m)}$$
 for $p = 2$. Then
$$|f(x) - \tilde{f}(x)|^2 \le a(m) \left(\sum_{x_0}^{x_m} [f^{(m)}(u)]^p \right)^{2/p} (x_m - x_0)^{2m-2/p}, x \in [x_0, x_m], m = 1, 2$$

 $x \in [x_1, x_{m-1}], m \ge 3.$

(3)

Theorem 2 is immediately extended to $p=1, 3, 4, \ldots$ by replacing the Cauchy-Schwartz inequality in (3.9) of [3] by a Hölder inequality with 2 replaced by p. Theorem 1 then follows for $p=1, 3, 4, \ldots$ from Theorem 2 by following the steps in [3] exactly, simply replacing 2 by p in (3) whenever it occurrs.

To show that the rate of (2) is the best obtainable, we will apply a theorem of Farrell. f is said to be in Farrell's class $C_{\rm kn}$ if

- 1. $f^{(v)}$ continuous, v = 0, 1, ... k
- 2. there exists a polynomial s of degree k such that, for all x, $|f(x) s(x)| \le 2(k!)^{-1} x^k \eta'(x)$,

where, for our purposes we take $\eta(x) = Kx^T$ for some positive constants K and τ . (See [1] p. 172).

We show that $f \in W_p^{(m)}$ implies $f \in C_{m-1,\eta}$ with $\eta(x) = K x^T$, $\tau = 2-1/p$, K a constant given below. This follows upon taking $s(x) = \sum_{\nu=0}^{m-1} f^{(\nu)}(0) \frac{x^{\nu}}{\nu!}$, since, with $\frac{1}{p} + \frac{1}{q} = 1$, using a Hölder inequality on Taylors formula with remainder,

^{2]} Theorem 3 of [3].

$$|f(x) - \sum_{v=0}^{m-1} f^{(v)}(0) \frac{x^{v}}{v!}| \leq |\int_{0}^{x} \frac{(x-u)^{m-1}}{(m-1)!} f^{(m)}(u) du|$$

$$\leq \frac{1}{(m-1)!} \left[\int_{0}^{|x|} (x-u)^{(m-1)q} du \right]^{1/q} \left| \int_{0}^{x} |f^{(m)}(u)|^{p} du \right|^{1/p}$$

$$\leq 2 \frac{x^{m-1}}{(m-1)!} \cdot K_{T} x^{\tau-1}$$

with

$$\tau = 2-1/p$$

$$K = \frac{1}{2\tau}((m-1)q+1)^{-1/q} \cdot \left[\int_{-\infty}^{\infty} |f^{(m)}(u)|^p du \right]^{1/p}.$$

We will now apply the following

Theorem 3. (Farrell, [1], Thm. 1.1). Suppose $\{a_n, n \ge 1\}$ is a sequence of non-negative real numbers such that

lim inf
$$\inf_{n\to\infty} \inf_{f \in C_{m-1,\eta}} P_f(|\gamma_n(t_1, t_2, ..., t_n)| - f(0)| \le a_n) = 1$$
. (4)

with $\eta(x) = Kx^{(2-1/p)}$, (and where γ_n is an estimate of f(0) based on t_1, t_2, \ldots, t_n). Then

lim inf
$$n^{(2m-2/p)/(2m+1-2/p)}a_n^2 = \infty$$
. (5)

Let $Y_n = |\gamma_n(t_1, t_2, ..., t_n) - f(0)|$ and let $\phi = (2m-2/p)/(2m+1-2/p)$. By Tchebycheff's inequality,

$$P(Y_n \le a_n) \ge 1 - \frac{EY_n^2}{a_n^2}.$$

Thus, if $\mathrm{EY}_n^2 = \mathrm{b_n} \mathrm{O}(\mathrm{n}^{-\varphi})$ for any sequence $\mathrm{b_n}$ tending to 0, then, upon taking $\mathrm{a_n} = \mathrm{O}(\mathrm{n}^{-\varphi/2})$, we have that (4) is satisfied but (5) is not. Thus, no sequence of estimates of f(0) with a better convergence rate than that of (2) can be found, for $\mathrm{f} \epsilon \mathrm{W}_\mathrm{D}^{(m)}$.

We have also recently succeeded in showing, for the case $m=1,\ p=2,\ \text{that if we replace}\ \hat{F}_{n,1}(x) \ \text{of (1) by an appropriate}$ cubic polynomial spline of interpolation to $F_n(x) \ \text{at}\ t_{ik_n},\ i=1,\ 2,\ \dots$ $\left[\frac{n}{k_n}\right],\ \text{then}$

$$E|f(x) - \hat{f}_{n,1}(x)|^2 = O(n^{-\phi})$$
.

Cubic polynomial spline interpolation should prove to be a highly practical method. These results will appear separately.

References

- [1] Farrell, R. H. (1972). On the best obtainable asymptotic rates of convergence in estimation of a density function at a point.

 Ann. Math. Statist. 43, 1.
- [2] Van Ryzin, J. (1970). On a histogram method of density estimation. University of Wisconsin, Department of Statistics Technical Report #226.
- [3] Wahba, Grace. (1971). A polynomial algorithm for density estimation.

 Ann. Math. Statist., 42, 6.

Security Classification	T CONTROL DATA - R	8 D					
(Security classification of title, body of abstract and	I indexing annotation must be	entered when the	overall report is classified) ECURITY CLASSIFICATION				
Department of Statistics University of Wisconsin Madison, Wisconsin 53706	SS		ified				
A POLYNOMIAL ALGORITHM FOR DENSITY	ESTIMATION						
4. DESCRIPTIVE NOTES (Type of report and inclusive dates, Scientific Interim							
5. AUTHOR(S) (First name, middle initial, last name) Grace Wahba			176. NO. OF REFS				
6. REPORT DATE	7a. TOTAL NO. C	FPAGES					
November 1972	8	'S REPORT NIII	MBER(S)				
BB. CONTRACT OR GRANT NO. AFOSR-72-2363 b. project no.	Technica	Report No. 315					
c.	9b. OTHER REP this report)	9b. OTHER REPORT NO(S) (Any other numbers that may be assignately this report)					
This document has been approved fo unlimited.							
11. SUPPLEMENTARY NOTES	Air Ford	Air Force Office of Scientific Research 1400 Wilson Boulevard Arlington, Virginia					
13. ABSTRACT	The second secon						
Convergence properties of are determined for densities \hat{f} $E f(x) - \hat{f}_{n,i}$	the polynomial alg satisfying $f^{(m)} \epsilon$ $f^{(m)} \epsilon$	Lo. It i	s shown that				
	m = 1,	2,					
	p = 1,	p = 1, 2,					
where $\hat{f}_{n,m}(x)$ is the estimate	of f(x) based on	n indep	endent observations				
from the density f. This resul By applying a theorem of Farrell for the class of f's satisfyin	t was previously k , it is shown that	nown for	$p = 2$ and $p = \infty$.				
$\begin{bmatrix} \int_{-\infty}^{\infty} [f^{(m)}] (m) dx dx = 0$	$[u]^p du$ $\leq M$.						

	Security Classification					LINK B		LINKC	
	KEY WORDS	KEY WORDS		LINK A		ROLE WT		ROLE WT	
	loitization				offet.	f 5ta	the Service	1150S.	
					21261	eiW 7	Vals.	suin.	
					TEE.	ranop	1	zibal	
		dite it	3 1713	20 90	MIL	ec it		Life s	
					0.00	histi	l offic	and ha	
						12011			
								1	
				1			erdal.	80E%	
							TH NO.		
						-	1 15	19¥0	
						63			
	Persont 315 315	fautamen				- CIL			
	Office of Scientific on Boulevard , Virginia	1400 Wils							
					,				
noidean	rithm for density est	7 1					.		
	.p. It is shown that	tisfying f ^(m) er	f 5a	sitles	for lier	lenin	an aseb	915	
			1						
	(1213	$ ^2 = 0(n^{-(2m-2)})$	x)min†	f(x)	3				
		$S \cdot I = m$							
								1	
	* * * *	p = 1, 2							
vations			Nate of	estin	is the	(x)_	∫ en	et M	
	n independent observ	f(x) based on							
.00 == 6	n independent observown for $p=2$ and $p=2$	f(x) based on as previously kno	w dluag	This r	. 1	diensit	b drujin	ior i	
.00 = 6	n independent observ	f(x) based on as previously kno	result w	This rof Far	/ .f.	diansi dia b	benjin nivloga	10" Î 1 101	
.00 == 6	n independent observown for p = 2 and pthis rate is the best	f(x) based on as previously knot that	esult w rell, i fyind	This rof Far	/ .f.	diansi dia b	b drujin	10" Î 1 101	
.00 == 6	n independent observown for p = 2 and pthis rate is the best	f(x) based on as previously knot that	esult w rell, i fyind	This rof Far	/ .f.	diansi dia b	benjin nivloga	10" Î 1 101	
	n independent observown for p = 2 and pthis rate is the best	f(x) based on as previously knot that	esult w rell, i fyind	This rof Far	/ .f.	diansi dia b	benjin nivloga	10" Î 1 101	
	n independent observown for p = 2 and pthis rate is the best	f(x) based on as previously knot that	esult w rell, i fyind	This rof Far	/ .f.	diansi dia b	benjin nivloga	10" Î 1 101	
.00 = 6	n independent observown for p = 2 and pthis rate is the best	f(x) based on as previously kno	esult w rell, i fyind	This rof Far	/ .f.	diansi dia b	benjin nivloga	10" Î 1 101	
.00 = 6	n independent observown for p = 2 and pthis rate is the best	f(x) based on as previously knot that	esult w rell, i fyind	This rof Far	/ .f.	diansi dia b	benjin nivloga	10" Î 1 101	