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D-OPTIMAL DESIGNS FOR DYNAMIC MODELS

Part II. Applications

In a preceding report (Viort [4]) some results on the theory
of C-constrained D-optimal designs were presented. The present report
is intended to be an illustration of the methods proposed: the
consideration of different examples raises some interesting questions -
and remarks concerning both the theoretical situation considered in [4]
and the possible applications. The numerical methods developed in
relation with the notion of D-optimality allow for a greater flexibility
in judging the overall quality of a design, suggesting the need for a
more general theory.

Throughout this report the notations are those of [4].

I. On the Example of Box and Jenkins

Looking into a new problem it is priceless to have at hand
the solution in a simple (but not trivial) situation: this imporiant
help was provided here by the example presented in Box and Jenkins
([1] pp. 416-420).

They considered the model

(1- 6Bly, = wxyq+a, (1)

where 3y is a white noise process with variance og, and found the

different D-optimal inputs:
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SB)xt white noise

GB)xt white noise

- white noise

(in all three cases the variance of the white noise process is easy to

determine).

I.1. Analytical results,

The small number of unknown parameters makes it possible to

give a complete illustration of the method.

With the notation of [4], the model (1) is to be considered
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For |8| < 1 all the functions to be considered below are
holomorphic in the neighborhood of the unit circle |z| = 1. The

integral on this curve will be represented by Lw.

A. Constraint C].
In this case the optimal solution of Box and Jenkins is

fX(G) = f,(6) and since
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proving that, at least in this case, the proposed method works.  Note
that the condition i) of Theorem VII of [4] is verified in this case,
since [G(e)l4 fe(e) « (1 + 62 - 26 cosf) a polynomial of degree 1

in cosé.

B. Constraint C2.

The optimal solution is now:
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i.e., after some computations:
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which is the condition for Cz—conétrained D-optimality.

C. Constraint C3
The details of the computations will not be derived for the
simple reason that the optimal input (white noise) of Box and Jenkins

turns out not to be optimal (for the method developed in [4]). In



order to understand the reason for this discrepancy, it is necessary to
consider the assumption underlying the general method, as will be done

now.

1.2. Some remarks on the method of [4].

Consider first the model of Box and Jenkins:

{a;} being white noise. It is proved in Minnich [3] that the

information matrix per observation of (w,§) is for n large
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For the same white noise input, the method of [4] gives
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and the reason for this is the fact that & appears both in the
dynamic part and the error part of (33), while only the information
from the dynamic part is taken into account in the method of [4].

Does this mean that the estimators considered in [4] are not efficient?
Not at all since it is assumed there that the error structure (i.e.,
here the parameter _6) is known: the special input {Xt = 0} 15
suggested as a good input to determine it accurately. The rigourous
application of the method suggested in [4] would require that when the
dynamic part has some parameters in common with the error part, these
parameters should not be considered for the design problem. This
implies that the example of Box and Jenkins is, from this point of

view, a one parameter problem: it is therefore necessary to explain



the results of I.1. (A and B). This can be done by considering the

determinant of (31)

det (1 ) = —(;—‘2—)-2 ci c§ - (o?)? Ez[xthﬂ (34)
a :
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and for C1 this is equivalent to
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(38)

A : 2 2
subject to - ol o
ubj oy <€ cy

1 2

so that the optimal solutions are basically the same in the two methods,

but for slight changes in numerical values as will be shown later.
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It is also clear that, as soon as m > 2, there is no
decomposition 1ike (36) and the solutions will differ.

This point being clarified, it is necessary to consider
another question: how good is the improper use of the method for all

the dynamic parameters? Once again, the answer is provided by (31):

2
o]
when —% (the signal-to-noise ratio) is large, one can expect that
ag
. _
there will be little difference between (31) and (32), and therefore

that the method can be applied without significant error to all the
2
o

parameters. In the opposite case, when *%- is small, it is clear

a
a

that one loses a lot of information on &, and also that one has
very little information on w: all these results are in agreement

with one's common sense.

[.3. Numerical results.

The iterative procedures of [4] are pérticular]y well
adapted to numerical computations: a program implementing these
methods has been developed for the construction of nearly D-optimal
constrained designs. It was run for all three examples: 1in each
case the first choice for the input was white noise. The results are
summarized in Table 1, together with the results of Box and Jenkins.
[The value A'% of Box and Jenkins is approximately proportional to
the inverse of the "Information" value considered here: this is due to
the facts that they omitted the factor cg, and that the constraints
are slightly different (I.2.).]



1

Results of B. & J. || Information Optimal Design
for
Constraint Variances A'% white noise Variances Information
2 2 1 2
Gyt oo =1 o, = 2.49 .70 23.4]1 0y = 2.42 31.20
Cod o = 249 & = 2.9 42 69.02 0% = 2.86 92.04
2' y : - x - 3 - x . .
oi = 2.29 ai = 2.23
s 0% of = 7.25 .37 119.33 119.37
ik 162 =13.18 2 _ 3.4
Uy = 5 O'y - i

Table 1.
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The remarks of 1.2 justify the small discrepancies of the |
variances. The last line shows clearly that white noise is almost
optimal for the C;-constrained problem (in the set-up of [4]).

It is also very interesting to compare the solutions of Box
and Jenkins with those of the numerical computations: for constraints
--C] and 02 it turns out that one has at hand, for each case, two
optimal solutions (one stochastic and one mixed). These are shown in
Figures la, 1b, 2a, 2b: 1in Figures 1b, 2b the shaded area represents
the contribution of white noise and the heavy lines the deterministic
components (discrete masses in the spectral density).

Recalling the results of [4], a discrete mass p at @

corresponds to a deterministic input
2
+ o p cost (39)

where the sign is decided by flipping a fair coin. Considering now

Figure 1b, the corresponding "optimal" solution is, since 6 =0,
* ci p + white noise (40)

This is in opposition with the requirements of the experiment, which
was to be performed with a "mean value" (i.e., time average) zero.
(This is a classical example of non-ergodié process, i.e., a process
where the expectation is not equal to the time average.)

One can think of two ways to overcome this difficulty of discrete

masses at O:
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- Exclude small and large values of 6 in the algorithm, i.e.,

use only
0<0<H<2m-0<2n © small (41)

There is a good chance that this will lead to another almost
D-optimal design with discrete masses at ©, 2m - ©, and so
€] has‘to be chosen according to the experiment.

- Comparing Figures 1a and 1b one can think to the following rule:
when there is a discrete mass at 0, rep1ace it by an autoregressive

process
(i-dB)xt = white noise d>0 (42)

where d and the variance of white noise are suitably chosen.
There is still a problem with such a method: it was shown in
[4] that it may happen that no stochastic or mixed solution can
be optimal--and it is then necessary to consider deterministic

solutions with restrictions on the range of 6.

I.4. Transfer of energy.

Considering the transfer of energy from x to y in the
model (1) Box and Jenkins give the following interpretation of their
results:

2

- When Oy is constrained, the optimal solution achieves a maximum

transfer of energy from x to y (fx(e) « IG(B)IZ);
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- When cﬁ is constrained, the optimal solution achieves a minimum
transfer from x to y;

- HWhen oi x 05 is constrained, white noise should be (and in
fact is) a good compromise.

The reason for this behavior is not completely elucidated
now, but Seems to be related to general considerations on designs of
experiments for non-linear models as follows:

- Consider first the case of one parameter o, i.e., the model

Yy ® f(6,a) + e 6e[0,27] (42)

0
where f(6,a) is a non-linear smooth function of a and ey
are independent r.v. with variance V(0).

If it is known that a 1is close to Ggs One would obviously

take measurements at 60 such that

2 2
{ %g (85-0) } {_%g-(e,a) }
aA=0L o=q,
0] = max 0 (43)

V(eo) 0 V(BO)

i.e., at a point 8o where, for a given da, the variation of
the curve is maximum as compared to the variance of the error
(see Figure 3).

- When there is more than one parameter, the same type of reasoning
could be carried on, with different possible measures of the
variation of the curve for a given variation of the parameters.

This is a first difficulty, a second onerbeing the fact that it



16

optimal design

Figure 3. Optimal design for the case of one parameter.
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is necessary to consider designs on more than one point: one
point gives information only for some linear compilation of the
parameters.

Now the approach to the design problem considered in [4] consists

in expressing the model

- w(B)
YT Emr e e (44)
as
B Gw,é(e) tey (45)
where
: w(e—ie
G, s(8) = —ﬂ-l_w (46)
. s(e”" ")
€, are independent r.v. with variance proportional to

fe(e) the spectral density of the process {et}
The solution of the design problem is a function fx(e) (the
spectral density of {xt}),.which represents the "proportion" of
the total number of measurements to be taken at the point © in
the model (45).
One measure of the variation of the curve z, for a given

variation of the parameters is the trace of the matrix
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3G 1 86 i
“éa"o' (8) -é-‘;’-f; (8)
me) = | ; (a7)
oG G
= (8) || == (8)
Ay ey T

which generalizes the above %g-(e,a), being the square length

of the gradient of Gw 6(6)'

After some simple computatfons, Tr(M(e)) turns out to be

Tr(M(8)) = —1—5 (p + 1 + q|6(8)|%) (48)
|6(8)|
and, in the example of Box and Jenkins, fe(e) L I—(]Tl?- so that, at
a0

least in this case

J-(—)—E;,.Mf:z)) «p+1+q|6(8)|° (49)

and this is clearly to be considered in relation to

2m
g ol 2 2
dy = Oy I |6(e)|" f (e) d8 + o (50)
0

in order to understand that the optimal design problem should be
related to the consideration of transfer of energy. Note that two
different measures of dispersion are used here in order to make the
point clear: one is the determinant (D-optimality) and one is the
trace (length of the gradient). One could expect that using A-optimality

(trace of the dispersion matrix) the results would be more coherent.
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II. On the Shortcomings of "Optimal"

Dealing with multiparameter problems there are many different
notions of "optimality", each one particularizing one aspect of the
dispersion matrix. The present work was done with D-optimality, which
corresponds to the determinant of this matrix: the theoretical results
presented-in [4] do not allow for a discussion of the overall quality
of the so-called optimal designs but, as soon as one considers the
app]ications,.it is almost imperativé to adopt a more flexible
attifude and be ready to reject a D-optimal solution.

For an m-parameter problem, there are m basic quantities:
the eigenvalues of the information matrix. Hhen the computer program
for the construction of D-optimal designs was written, it has been
very easy to display, at each iteration, the eigenvalues of the
information matrix, as well as different functions of these eigenvalues:

- Sum of the eigenvalues (trace of the matrix),
- Ratio of the largest and the smallest (measure of conditioning
of the matrix),
- Sum of the inverses (trace of the dispersion matrix)
so that, when the program is runl, this allows a greater flexibility
in the decisions: ‘
- Adopt the D-optimal design if it is a satisfactory solution,
- Adopt any intermediate design which could be considered as the
best in the sequence fO,f],...,f* (see [5]),
- Try to chénge tﬁe choice for the first input fo, so as to get

a better sequence of designs,

For details on the program, see Appendix I.
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- Reconsider the identification of the model (see Box and Jenkins

[11).

IIT. Examples and General Considerations

At this point one might 1ike to see how the D-optimal designs
are constructed, and to have some illustrations of the different

remarks.

I[I1I.1. A general example.

The model considered was

(1-.5B)y, = Xy g+ A% o+ .2% 3+ 3, (51)

with
Var(at) = 1.0

the choice for the first input was white noise, and the constraint was
< 10.0 (52)

The complete results are given in Fiqure 4 (Different values
of Ai (6)), Figure 5 (Half of the symmetric solution), Figure 6
(Succe:sive values of the determinant) and Table 2 (Summary of the
results). |

Only 10 iterations were considered: it seems to be a general

rule that, after five iterations, one has an almost D-optimal design
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Information Matrix Variances

Largest Smallest White ¢ 2

Iteration | Determinant | Eigenvalue | Eigenvalue | Trace | Noise Ix Oy
0 - 2041, 13.40 .74 22.5 | .318 | 1.85 | 5.40
1 2571 9.54 .54 18.9 .285 | 2.26 | 4.42

2 2799. 8.70 .51 18.1 JA87 | 2,40 | 4,07
3 3057. g.19 .61 18.4 Y35 | 2.33 | 4.28
4 3081. 8.91 .58 18.2 128 | 2:38 | 4,20
3 5 3168, 8.78 .58 1.1 A0} 2.46 . 4.08
6 3203.. 8.51 .ob 7.0 208 &5l | 3.9
7 322l . | 8.45 .54 17 3 096 | 2.86 | 330
8 3277, 8.35 : .53 17.2 094 | 2.58 .| 3.8/

9 3230. 8.34 .53 17.1 091 1 2.59: | 3.85
10 3231, 8.31 D 1. 090 | 2.60 | 3.83

Table 2
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and, for different practical reasons to be discussed later, there is
no need for an exactly optimal design.

Even when 6 1is continuous it is convenient for the
computations to consider it as a discrete variable: 113 equispaced
values on [0,m] were used here, providing what is believed to be an
excellent approximation to the continuous case.

The solution on [0,n] 1is composed of two parts:

2

- White noise with variance .09 Oy

- Deterministic cosine waves as in Table 3:

multiple of)

Frequency ( 1/224 38 57 58 61 12

Amp1i tude (m“‘tig‘e ofy | .093 | .118 | .025 | .063 | .219
g
X

Table 3

It is clear that this design will not be used, but instead the
following:
- White noise with variance .09 ci,

- Deterministic cosine waves as in Table 4:

Frequency (m“}};gle ofy I 571 112

Amp1i tude (m”]t‘gle ofy | 30| .22

a
X

Table 4
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i.e., the input
= t 57 2 :
Xg = (.22 (-1)" + .30 COS(TT?'t) + .09 at)crx (53)
where {ut} is white noise with variance 1.

The advantage, measured in terms of information, of (53) as

compared to

Xy = 1.85 oy (54)
is approximately:
323 - _
08T - 1.5 (55)

II1.2. Some applied considerations.

There has not been yet a comprehensive study of the D-optimal
designs for dynamic models: the considerations to be presented now
are just the results of a limited number of examples, and are there-
fore to be considered with caution.

As previously noted, it seems that the first iterations
improve considerably the design: the number of iterations necessary
to get a good approximation is of course a function of the number of

parameters.

Very often the discrete masses in the solution have a
tendency to cluster around different values: it may be realistic to
concentrate them at these points, in order to get simple designs as

was done in the preceding example (Fedorov [2]).
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In all the examples considered, the information matrix

turned out to be very poorly conditioned (Ama very large as compared

X

to ), indicating a long thin ellipsoid of concentration. This

Amin
is an unfavorable situation (see Section II) which requires further

attention (see Viort [5], Chapter V).
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Appendix I. A Computer Program for Construction and Discussion of

D-Optimal Desians.

The program listed below was written for the UNIVAC 1108 of

the University of Wisconsin MACC, but could be easily used on another

computer. The external subroutines are:

Numerical integration (NIROMB);
Matrix operations: Scalar multiplication (MTSCP)
Matrix addition (MTADD)
Matrix Multiplication (MTMPY)
Matrix inversion (HTINV)
Trace (MITRCE)
Eigenvalues (MTVLM)
Determinant (MTDET);
Plotting capabiiities (GRAPH, GRAPHM).
The program allows for:
Iterative construction of the almost D-optimal solution in a
given situation, with or without plotting:
Comparison of different situations (models or first choices for
fx), with or without plotting:
Comparison of optimal solutions in different situations, without
plotting. |
The information to be provided is:
On the first card (Format 612, I3), the parameters

NIT

maximum number of iterations (< 20)

NDIV

for printed output, to be explained below
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for plotted output: set NCURV =1 if one wants all

NCURY =
the curves plotted, set NCURV if one wants only one
out of NCURV curves plotted (NCURV = NIT - 1 aqives
only the first and the last curve).
IGRAPH = 0 if no plotting is requested, 1 otherwise
ICOMP = 0 if no comparisons,
1 if comparison of first choices for different fx
or models (NIT =1 1in this case)
2 if comparison of optimal solutions (IGRAPH = 0 in
this case)
NCOMP = number of comparisons (1 < NCOMP < 20).
NPTS = number of points in which the segment [0,7] will

be subdivided for the search of the maximum and the
plotting (NPTS < 131, suggested value 113).
On the second card {Format 2F6.2, I2), the error Qariance S2A,
the value of the constraint CONT, and the type of the constraint
ICONT = 1, 2, or 3.
The model, the error and the first choice for fx are three
modules on the same format:
* Degree of the polynomials, Format 212 (IP, IQ)(IPE, IQE)
or (IPX, IQX). IP + IQ should be less than 8.
* (Coefficients of the numerator, Format 9F6.3 (CP, CPE, or
CPX) corresponding to CP(1) + CP(2)*B + CP(3)*B + ...
* (Coefficients of the denominator, Format 9F6.3 (CQ, CQE, or
CQX) corresponding to CQ(1) + CQ(2)*B + CQ(B)*B2 + ...

[Note the signs in this last case.]
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In the program the position of the MODULE MODEL, MODULE
ERROR, MODULE INPUT can be modified to allow different comparisons:

all the information prior to
C END OF CONSTANTS

"will be the same throughout the program, while the information just

after
C DATA FOR COMPARISONS

will be changed according to the data cards.
The output consists in:
- Printed output:
* Summary of the model,
* Information matrix for the first input,
* For each iteration:
**  Variances ci, Us
**  Information on Af(e):
Maximum,
Values (one out of NDIV).
** Proportion of the first input kept in the solution
** Information on the iterated information matrix:
Determinant
Eigenvalues
Trace
Trace of the dispersion matrix
Conditioning

* At the end: detail of the discrete part of the solution.
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- Plotted output.
" Af(e) (one out of NCURV)
* The solution
* Successive values of the determinant.
If no plotted output is requested, it is cheaper to compile

the program without the Plotting Modu]e.
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tMSG, PLOT TAPE ON 2711 INCH PAPER
"ASGsTL 27T sPLOT

tFOR4ST MATN
DIMENSION AB7 (131)s0RD1(131)4+0RD2(131)+0RD3(131,20)s0ORD(131)
DIMENSION ORDX1(131)sORDX2(131)sXX(2)sYY(2)sDE(20)sEVLI{9)
DIMENSION RM(949) sRMP (949 ) sRMIT(949) sRA(939) »RAP(9,9) yRIN(9,9)
DIMENSION CP(9)4CQ(9)sCPX(9)4CQX{9)sCPE(9),CQE(9)
COMMON/E2 /IPY s IQX s CPX sCQXsRKX/E3/IPE,IQE,CPE,CQE 4RKE
COMMON/E4/S2AsCONT s ICONT s SGXP/ES/K/E6/R/ET/IPLIQL,CPLCQ
COMMON/EB/IP141Q1
CALL MTADEF(RM+999s'S1)
CALL MTANFF(RA4949 4,151
CALL MTADEF(RMP49,49,151)
CALL MTADEF(RAP39,9,'5")
CALY MTADFF(DIN!Q,Q,'S')
"CALL MTADFF({RMIT$9:9,1t51")
pl=2s lute
READ 1sNITsNDIVsNCURY s I GRAPH s ICOMP sNCOMP 4NPTS
PRINT &
IF (ICOMP LEQe 2)IGRAPH=0
RNPTS=NPTS=1]
PAS=PI/RNPTS
CALL MTANFF(FYLs9s1ls'51)
IF {(ICOMP (EQe OINT=NIT
IF (ICOMP .EQs 1)NT=NCOMP
IF (ICOMP «EQe 2)NT=NIT
RFAD 3+ S2A4CNNT s ITCONT
PRINT 3+sS2AsCONTsICONT
PRINT 113

C MODULE MODEL
DG 150 T=149
CP(IJZOO

150 CO(l)=.0

READ 1sIP,IQ
IP1=1P+1
IQ1=1Q+1
M=T1P+IQ+1]
Mi=M-1
RSM=M
CALL MTMDEF (RMsMsMy 'GENT)
CALL MTMDEF(RAsMsMs'GENT)
CALL MTMNEFF(RMPsMyMyetGENT)
CALL MTMDEF (RAPyMyMy "GEN')
CALL MTMDEF(RINsMsMs ' GEN')
CALL MTMDEF(RMITsMsMs 'GENT')
READ 25 (CP(I114I=141IP1)
READ 2,(CQ({I)s1I=1.1Q1)
PRINT 115
PRINT 1sIPsIQ
PRINT 2s(CP(T)sI=1+IP1)
PRINT 25(CQ(T)sI=1,1Q1)

C END MODULE MODEL



~
e

&

33

MODULE ERKOR

151

FND

NO 151 T1=1,9

CPFE(1)=un

CAOF{T)=a.N

RFEAD 141PF,10OF

IPF1=IPE+1

IQF1=1QF+1 ,
READ 25 (CPFIT)yI=14IPEL)
REAN 2. (CQE(T)I=1,1QE1)
PREINT Y

PRINT 14TPF410QF

PRINT 2+(CPE(I)ylI=1,IPE1)
PRINT 24 (CQE(I)sI=1,TQF1)
FXTFPRNAL FFE

RKE=1e0

CALL NIROMB(FEseCosPlse0nl 29 04 sROMB s SIMP 32 s IERROR s DUM)
RKE=1«UG/ROMB

MODIILE ERROR

C MODIILE INPOT

N O

FAD
FND

19

BOL 15 TetaY

CPX(I)=an

COAX(I1=e0

READ lslPXsIQX

1Px1=IPx+1

IOX1=10X%X+1

RFAN 24 (rPX(T)al=14IPX1)
READ 2, (COX(T)s1=1,1QX1)
PRINT 118

PRINT 1sTPXa7QX

PRINT 2s(CPX(T)sI=1sIPX1)
PRINT 2+(CAX(I1)sI=1+1QX1)
REX=T 0

EXTFRNAL FX

CALL NIROMB(FX3e19PIlsea001 9994 sROMBsSIMP 24 IERRORsDUM)
RKX=1«0/POMB

MODUILLE INPUT

NF CONSTANTS

NC=D

NC=NC+1 ]

IF(NC «GTe NCOMPIGO TO 50

DATA FOR COMPARAISONS

FXTZRNAL SIUMMAT

CALL SUMMAT (RM)

CALL MTINV(RMsRINsl.E=6+5101)
CALL MTVLM{RMsFVL)

EXTFERNAL GX

CALL NIROMB(GXseUsPIye001 9994 sROMBsSIMP 2 IERRORSDUM)
SGX=ROMB

SGXP=5GX

CALL CONST(S2X9S52Y)

CALL MTDET(RMyDETMAXsDUM)

DE TMAX=DF TMA X3 ( S2X%¥%RSM)
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DO 12 I=1sNPTS

RI=T1-1
T=RI*#PASg
ABZ(T)=T
ORDXLAT y=F¥X (T}
12 ORDXZ (1 Y=40
RPA=1.O
NI=0
20 RMAX=,.0
NI=NT+1
IF(ICOMP «FQs OIN=NI
IF(ICOMP «EQs 1)N=NC
IF(ICOMP «EQe 2)N=NI
IMAX=0
TMAX=e0
NO 21 I=1«NPTS
T=AR7 (1)
FXTERNAL MAT
CALL MAT(RA.T)
CALL MTMPY (RTN4RALRAP)
CALL MTTRCE(RAP4TR)
EXTERNAL G
IF(IFONT nEQ. T)SM=RSM
IF{ICUNT «EQe 2)SM=RSM*¥G(T)/SGX
IF(ICONT o«EQe 3)SM=RSM#* (S2X#S2X*¥G(T)+CONT )/ (S2X*52X*¥SGX+CONT)
ORDI(I)=TR
ORD2(1)=58M
ORD3(IsN)Y=0ORD1(I)=0ORD2(1)
IF(ORD3{TsN) «LEs RMAX)IGO TO-25
RMAX=0RD3({TsM)
TMAX=T
IMAX=I
25 CONTINUE
21 CONTINUE
N1=N-1
PRINT 1044N1
PRINT 119
IF(ICOMP «EQe O)PRINT 105sRMAXsTMAX s IMAX
PRINT 119
PRINT 1064552Xs52Y
PRINT 119
PRINT 4 s (ORD3(IsN)sI=13sNPTSsNDIV)
PRINT 119
PRINT 1104RPA
PRINT 110
PRINT 1074DETMAX
PRINT 119
PRINT 109
PRINT 111s(EVL{T)sI=1sM)
TR=aD
DO 30 I=1M
30 TR=TR+EVLI(T1)
PRINT 112sTR
TR=«0
31 TR=TR+1«0/EVLI(I)
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33
34

a5

36

PRINT 11547TR
TR=FVL(13)Y/FEVL (M)
PRINT 114sTR
DE(N)=DETMAX

IF{ICOMP .FQa 1)GO TO 19
IF{RMAX JLTe «01)GO TO 40
IFINI «GTe NITIGO TO 40
CALL MAT(RAsTMAX)

=.0
A=A+,05

IF(A «GE. 10)GO TO 102
Al=1.0-A -
CALL MTSCP(RMsAls!'S! sRMP)
CALL MTSCP(RAsAs 'S RAP)
CALL MTADD(RMPsRAP sRMIT)
SGXP=SGX*A1+A¥G ( TMAX)
CALL MTDET(RMITsDETsDUM)
CALL CONST(S52Xs52Y)
DET=NET#*(S2X*%®RSM)

IF(DET e«LEs. DETMAX)IGO TO 33
DETMAX=DET
GO .10 .32
DETMAX=DFT
A=A-.001

ILF (A «LEe «O0G0O TO 103
,'5\1:”100"!&
CALL MTSCP{RMsAls!' St yRMP)
CALL MTSCP(RASAs'STRAP)
CALL MTADD(RMPsRAP sRMIT)
SGXP=SGX*A1+A#G( TMAX)
CALL MTDET(RMITsDETDUM)
CALL CONST(S2XsS52Y)
DET=DET#* (S2X*¥RSM)

IF(DET «LEes DETMAX)GO TO 35
DETMAX=DFT
O TO 34
A=A+,N01
Alsl o 0=A
RPA=RPA#*A1
CALL MTSCP(RMsAls'"StsRMP)
CALL MTSCP({RAsAs!'STsRAP)
CALL MTADD(RMP¢RAP sRM)
CALL MTINV(RMRII s 1eF—-64%101)
CALL MTVLM(RM,EVL)
SGX=A1#SGX+A*G (TMAX)
SGXP=5GX '
CALL CONST{S2%+52Y)
CALL MTDFT(RM4DFTMAXsDUM)
NDETMAX=DFTMAX* (S 2X¥#RSM)
NN AA I=14NPTS
ORDx1(I1)1=A1¥0ORDX1(1I)
ORDX2(I)=A1%0RDX2(1)
ORDX2 (IMAX)Y=0ORDX2( IMAX) +A
GO TO 20

35



. 36
101 PRINT ©

GO TO 19

102 PRINT 8
RO TN 19

103 PRINT 7
GO TO 19

40 CONTINUE
PRINT 108
PRINT &4 (ORDX2(I)sI1=1,NPTS)
PRINT 54 (DE(I)sI=14NT)
GO -TO 19

50 CONTINUE

C POSITION MODULE PLOTTING
C MODULE PLOTTING

IF {(IGRAPH «FQs 0) GO TO 51
RMAYX =
RMIN=e0
DO 41 I=14NPTS
DO 42 N=1sNT
IF(ORD3(IsN) «GTe RMAX)RMAX=0RD3(IsN)
IF(ORD3(IsN) oLTe RMIN)RMIN=ORD3(IsN)

42 CONTINUE :

41 CONTINUE

XX(1)=—e25
XX (2 V=PI

YY({1)=RMIN
YY(2)=RMAX

CALL INITPL(27s1048)

CALL GRAPH(XX s 6HLINEAR sYY s 6HLINEAR 92 s 4HNONE 9 SHBLANK 3 ' 35" 5 1331y +1

1'CRITERIONSS ' 38659114

DO 46 I=1sNPTS
46 ORD(1)=e0

CALL GRAPHM{ABZs5HSCAL 1s0RDs5HSCALLINPTS s 4HNONE $5HSOLID)

DO 48 N=19sNT¢NIT

DO 43 I=14NPTS
43 ORD(I)=0RD3(IsN)

CALL GRAPHM(ABZ sS5HSCAL1sCORDs 5HSCAL1:NPTS;4HNONE SHSOLID)
48 CONTINUE

IF (ICOMP .EQe 1)GO TO 49

IF (NCURYV «GFe NIT) GO TO 52

J=NCURV+1

DO 44 N=JsNITsNCURV

PO 45 I=1sNPTS
45 ORD(I1)=0RD3(1sN)

CALL GRAPHM(ABZ s 5HSCAL1sORDs5HSCALL sNPTSs4HNONE 1)
44 CONTINUE
52 CONTINUE

¥YY(1)=e0

YY(2)=1.0 '

CALL GRAPHI(XX s 6HLINEAR oYY s 6HLINEAR 2 3 4HNONE s SHBLANK s 351

173850, ' SOLUTIONSS ' s SHTHALF s 6HNORMAL )

CALL GRAPHMI(ABZ s 5HSCAL]1 sORDX2 s5HSCAL1sNPTS 4HNONE95HSOLID)

CALL GRAPHM(ABZs5HSCAL1sORDX1s5SHSCALLsNPTSs4HNONEs SHSOLID)
49 CONTINUE '
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ABZ(11=.0

DO 47 N=2sNT
47 ABZ(N)=ARZ(N-1)+1.
CALL GRAPH(ARZ ¢6HLINEAR yDE s6HLINEARS NTs1195HBLANKs'$3'9'55'40
1'DETERMINANTS$ ' s SHBHALF » 6HNORMAL )
CALE ENBPLT
51 CONTINUE
C END MODULE PLOTTING

FORMAT(612,13)

FORMAT(9F643)

FORMAT(2F6e2s12)

FORMAT (17F73)

FORMAT(F15.1)

FORMAT(1H1)

FORMAT(11H ERROR A=0,.)

FORMAT(21H DESIGN ON ONE POINT)
FORMAT(21H ERROR IN INVERSION. )
FORMAT(///s14H ITERATION NOe,sI3)
FORMAT(10H MAXTMUM =3F12e394H AT sF8e3s14)
106 FORMAT(16H VARIANCES S2X=sF8e396H 52Y=sF8e3)
107 FORMAT(21H VALUE OF DETERMINANTsF14.2)

108 FORMAT(9H SOLUTION)

109 FORMAT(19H INFORMATION MATRIX)

11U FORMAT(30H PROPORTION OF ORIGINAL INPUT=4F10e3)
111 FORMAT(13H FIGFNVALUES=99F1043)

112 FORMAT(7H TRACE=4F1043)

112 FORMAT(21H SIJMMARY OF THE MODEL)

114 FORMAT(14H CONDITIONING=9F10e3)

115 FORMAT(13H TRACE DeMAT=5F1043)

116 FORMAT({14H MODULE MODEL )

117 FORMAT (14H MODULE ERROR )

119 FORMAT(1H )

118 FORMAT (1l4H MODULE INPUT )

FND :
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'FORsSI SUBIL
FUNCTION FXI(X)
DIMENSION CPX(9)+CQAX(9)
COMMON/E2/IPX s IQXs CPX sCQX s RKX

Fll=cPx(1)
Fl2=a0)

PO 1 I=14IPX
RI=1

F11=F11+CPX({I41)*COS(RI*X)
1 F12=F12+CPX{1+1)*#SIN(RI*X)

F21=CAx (1}

F22=40

DO 2 I=141QX

RI=1

F21=F214CQX{T1+1)#COS(RI*X)
2 F22=F22+CQX{I+1)#SIN(RI*X)

FX=RKX#(F11%F11+F12#F12)/(F21#F21+4F22#F22)

RETURN

END

'FOR,SI SULIR2
FUNCTION FE(X)
DIMENSION CPE(9)sCQE(9)
COMMON/E3 /IPF, IQE+CPE+sCQE s RKE
Fll=rPE1)
F1l2=e0
g 1 I51lslPE
RI=1I
F11=F11+CPE(I+1)#COS(RI*X)
1 F12=F1l2+CPE(T+1)#SIN(RI*X)

F21=CQE(1)
F272=e0

Do 2 I=141QE
RI=1

F21=F21+CQE(I+1}#COS(RI*X)

2 F22=F22+CQE(I1+1)%SIN(RI#X)
FE=RKE*(F11*F11+F12%F12)/(F21*F21+F22%F22)
RETURN
END

tFORSST SUB3
FUNCTION G(X)
FXTFRNAL COM
CALL COM(01s02+05QsD1sD2sDSQsX)
G=0SQ/DS0O
RETURN
END



TFOR ST SUR4

SUBROUTINE CONST(S2XsS2Y)
COMMON/E4/S2AsCONT s ICONT s SGXP
IF(ICONT «EQs 1)GO TO 1
IF(ICONT «EQe« 2)GO TO 2
IF(ICONT «EQe 3)GO TO 3

1 S2X=CONT
S2Y=S2X*¥SGXP+S2A
GO TO 4

2 S2X=(CONT~-S2A) /5GXP
S2Y=CONT
GO TO &

3 S2X=(—S2A+SQRT (S2A*¥S2A+4e0%¥SGXP¥CONT) )/ (20*SGXP)
52Y=CONT /52X

4 CONTINUE
RETURN
END

'FOR+ST SURBS
FUNCTION GX(X)
EXTERNAL G
EXTERNAL FX
GX=G(X)*FX(X)
RETURN
FND

'FORsSI SUBG6
SURROUTINF COM(O? 902905@9D1;D29DSQ9T)
DIMENSION CP(9)+CQ(9)
COMMON/ET /TP 41Q4sCP,CQ
01=CcP(1)
02=.0
PO 1 I=1,IP
RI=I
01=01+CP(1+1)*COS(RI*T)
1 02=02+CP{I+1)*SIN(RI*T)
NSN=01%¥N01+02%07
D1=Cn(1)
N2=e0
PFULG. «EQe 0)GE TO: 3
DO 72 I=1,1I0Q
RI=1I
D1=D1+CQ(I+1)#COS(RI*T)
2 D2=D2+CQ(I+1)%SIN(RI*T)
3 CONTINUE
DSQ=D1#D1+D2%D2
RETURN
FND



40
1FORsSI SUBY

FUNCTIOM F1(X)

COMMON/EG& /R

EXTERNAL COM

CALL COM(01s02+05QsD1+D025D5QsX)
F1 =COS(R¥X)/DSQ

RETURN

END

TFOR+SI SURS
FUNCTION F2(X)
COMMON/F& /R
FXTERNAL CcoM
CALL COM(01302+05QsD1sD2+DSQsX)
F2 =COS(R*¥X)*05Q/(DSQ*DSAQ)
RETHRN
FND

'FOR+SI SURY
FUNCTION F3(X)
COMMON/E& /R
FXTFRNAL COM
CALL COM(01+02+05Q9sD14sD2+sDSQsX)
F3 =—((01%¥D1+02%¥D2)*COS{R*X)+{01#D2-02#D1)*¥SIN(R*X)}/(DSQ*DSQ}
RETIIRN
FND

'"FORsSI SURILC
FUNCTION FXEL1(X)
FXTFRNAL F1
FXTERNAL FX
FXTERNAL FF
EFXEL=FI X 2R IXVIFE LX)
RETURN
FND

tFORSI S1B11
FUNCTION FXE2(X)
EXTERNAL FE
FXTERNAL FX
EXTERNAL F2
FXE2=F2(X)*FX(X)/FE(X)
RETURN :
FND



'FORsSI SuUBLZ

FUNCTION FXE3(X)
FXTFRNAL FE

FXTFRNAL FX

FXTFRNAL F3
FXE3=F3(X)#FX (X) /FE(X)
RETIRN

FND

tFORSSI SUIB13

v r

SURROUTINE MAT(RAST)
NIMENSION RA{949)
COMMON/E&/R/F8/11 1s1Q1
I0=1qQl-1

M=1P1+1IQ

FXTERNAL FF

pEEA TElyTPL

R=1-1

FXTERNAL F1
FE1=F1(T)/FE(T)
Ji=IP1+1-1

no 2 J=14J1
RA(JsI+J-1)=FE1
RA(I+J-14J)=FE1
CONTINUF

IF(IN «Fhe. O0YGO TO 8
DE B3 T=L a1l

DO. 4 J=1410

R=J+1-1

FXTFRNAL F3
FF3=F3(T)/FE(T)
RA(I4IP1l+J)=FE?3
RA(IPl+J,1)=FE3
CONTINUE

DO 6 121,10

R=I1-1

FXTERNAL F2

Jl=lqQ+1-1
FE2=F2(T)/FE(T)

a6 .=l 401
RA(IPL+J4IP1+J+1-1)=FE2
RA(IPLl+J+1=1,IP1+J)=FE2
CONTINUE

CONT INUE

RETURN

FND

41



'FORsSI SUBL4 42

J

10
14

tXQT

SUBROUTINE SUMMAT (RM)

DIMENSION RM(949)

COMMON/E&/R/FB/IP1yINQ1

1Q=101-1

M=TIP1+I1Q

PI=3,141¢

PR -1 =1 1P

R=1I-1

EXTERNAL FXE1

CALL NIROMB{FXF1se0s1le 340019994 3sROMLsSIMP+24IERRORsDUM)
CALL NIROMBI(FXE191esPIlsa0019994sROM24SIMP 42+ IERRORSDUM)
ROMB=ROM1+ROM2

J1=IP1+1~1

DO 2 J=1,4J1

RM{JsI+J=1)=ROMR

RM({I+J=1,J)=R0OMB

CONT INUE

IF{1Q «EQe UIGO TO 8

PB-3 =1 5I1P1

DO & d=1 410

R=J+1-1

FXTFRNAL FXE=2

CALL NIROMB(FXE39e031e3400159543ROML4SIMPs2,1ERRORDUM)
CALL NIROMB(FXE3s1lesPI 340010994 3ROM2,4SIMP 2 4,IERRORDUM)
ROMB=ROM1+ROM2

RM(T,IP1+J)=ROMB

RM({IP1+J41)=ROMB

CONTINUE

DO 5 I=1,10

R=1I-1

EXTERNAL FXE?

CALL NIROMBI(FXT231esPI5s400199949sROM1sSIMPy2sIERRORSDUM)
CALL NIROMB(FXE293¢031e3¢0015984sROM24SIMP+23IERRORSDUM)
ROMB=ROM1+ROM?

Jl=Tg+l=1I

DO 6 J=1,4J1

RM(IP1+J,4IP1+J+1-1)=ROMB

RM{IP1+J+1=1,1P1+J)=ROMB

CONTINUF '

CONTINUE

PRINT 11

po -7 IzlgM

PRINT 1O04(RM(TIeJ)sd=1sM)

FORMAT(9F10e5)

FORMAT (19H INFORMATION MATRIX)

RETURN

FEND

DATA CARDSe.

FFIN
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