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Abstract

Let f be a density function satisfying

- 1/1
{f(f(m)(g))p} £ o B ox sy, omeliZiees Pl

and let fn(xj be an estimate of f(x) based on n independent

observations from the density f. If fn is the polynomial algorithm

for density estimation then it is known that
~ A -2 -2
E(f(x)-fn(x))z - (- (In-2/p)/ (2m+1-2/p),

for m=1, 25 «e: and psd, PP 1E %n is an appropriate Parzen
kernel type estimate, the above result is known to hold for m =1, 2, ...
and p=«. By applying a theorem of Farrell, it is shown that these are
the best obtainable rates for m=1, 2, ..., and p>1. These optimal
convergence rates are then shown to hold for the polynomial and kernel
estimates for all p>1l. The optimal rates are also shown to hold for the
Kronmal-Tartar orthogonal series estimate for m =1, 2, ..., and 1<pgZ,
and for the ordinary histogram estimate with variable "bins' for m =1,

p>1. Upper bounds for the constants covered by the '"0" are exhibited.



1. Introduction

In a recent paper [6] estimates of a density at a
point were studied, where the exact form of the estimate is
chosen on the basis of assumed smoothness properties of the
true, but unknown density. The choice of estimate depends
m,; p, and M, where 1t is assumed that f(m)eéip, M=l 25040

and

w© l/p
I(f(m)(s))pdal £ M L

(m)
e

™| = sup £(8) < M, p==

g

1f %n(x) is the estimate of f(x) based on n independent

observations from the density f, it was shown, for the
1
estimates in [6] , that

L) E(£(x)-£, )% = 0™

where

1
Only p=2 and p== are considered in [6].



¢ = ¢(m,p) = (Zm-2/p)/(2m+1-2/p).

Subsequently, the author was led to conjecture that
this is the best convergence rate possible for fewém)

(Wém) is the Sobolev space of functions whose first m-1 de-
rivatives are absolutely continuousand whose mth derivative
is in ;fp.) Indeed, it is known that the Parzen kernel
estimates [4] achieve this rate for m=1,2,..., and p=e,
Serendipitously, a paper by Farrell [1] appeared shortly
thereafter with a theorem concerning the best available
rates, which allows the question to be answered.

The purpose of this paper is twofold. First, it is
shown as a consequence of Farrell's theorem that, if
feWém), then the best obtainable rate, good for all f with
||f(m)|]p <M, is, in fact n %.

Secondly, several types of density estimates achieving
the optimal rate are compared on the basis of mean square
error. The result (1.1) in [6] for the polynomial algorithm
for density estimation is extended to all p>1. Next, it
is shown that the Parzen kernel estimates achieve the rate
n"®  for m=1,2,..., p>1. Then, it is shown that the
Kronmal-Tartar orthogonal series method [3] achieves this
rate for m=1,2,..., and 1<p<2. (The result is probably
not true for arbitrary orthogonal series, however.) Finally,
it is shown that, for m=1, p>1, the ordinary histogram
method achieves the best obtainable rate if the size of the

"bins'" is allowed to vary appropriately with n.



In each method we will have

E(£(x)-f (x))% = Dn"® plus negligible terms,

where
D = 9(||f(m)| |1§ ABZm—Z/p)l/(2m+1—2/p)
where
- - (Zm+1-2/p)
6 = 06(m,p) = )
! (2m-2/p) (4m-4/p)
A = A(m,p,A,7)
B = B(m,p,2,A)

where A and A satisfy

A < £(x)

sup f(g) < A
g
and A and B depend on the method. Thus a comparison between
methods on the basis of mean square error consists of
looking at ABZm—Z/p.

For a recent survey of density estimation methods, and

Monte Carlo comparisons of methods, see [7] and [8].



2. Farrell's theorem for feWém)

The function f is said to be in Farrell's class Ckn

if
1 f(v) continuous,; v=0,1,+:+;k
2. there exists a polynomial s of degree k such
that, for all x, |f(x)-s(x)| < 2(kx)"! x* n'(x),
where, for our purposes we take n(x) = Kx' for some

positive constants K and 7. (See [1] p., 172).

We first show that fewgmj with ||€(m)||P <M implies that

fECm_1 . with n(x) = Kobkﬁ, where T = 2-1/p, KO = {2t[(m-1)q + l]l/q}-l
1 1 ’Lma{ [m-Ded +)% g interpreted as 1. m-1 v

=+ - =1, This follows upon taking s(x) = ) f(v)(oj -t since, with
4 - P ) : v=0) vl

% * é = 1, using a Holder inequality on Taylor's formula with remainder,

m-1 v
£y - 1 £V (o) X
v=0 W

1A

X m-1
x| ¥ 1/q
- Tﬁ‘%—[{, CIxl - 1)qu

1/p
: E)fcllf(’“) (u)|pd1J
0

m-1
p.4 -1
= B lm-l r e Kt |x]|

with

b



] 1 e i
K= % 2 [(m-1)q + 1]1/q‘} . | f|f(m3(ujlpdu ]
; ! -0
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}
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Let tl’tZ""’tn be the order statistics from a random
sample of size n from a population with unknown density f£.
We will now apply the following

Theorem 2.1 (Farrell, [1], Thm. 1.1). Suppose {an,ngl}

is a sequence of non-negative real numbers such that

(2,15 Tim inf  Ank . Pall9(tytasniat )i sfey) g a) = L
n-re feCpoq e

with nfx) = Kx(z_l/p), (and where v, is an estimate of

f(0) based on tl’tz""’tn)' Then

(2.2) lim inf nC2m-2/p)/(2m+1-2/p),2 _ o
" g n

n-e
5 |Yn(t1,t2,...,tn) - %10yl and det

¢ = (2m-2/p)/(2m+1-2/p). By Tchebycheff's inequality,

EYﬁ
P(Ynfan)zl“;-z'—.
n

Thus, if EYi = bno(n_¢) for any sequence b tending to 0,

then, upon taking a, = O(n—¢/2), we have that (2.1) is

satisfied but (2.2) is not. Thus, no sequence of estimates of f£(0) can

be found, that has a better convergence rate than that of (1.1) for all

few(ng, with l!f(m)|] < M,
p P -



3. Convergence Properties of the Polynomial Algorithm for

Density Estimation

Let Pn(x) be n/(n+1l) times the sample cumulative
distribution function, based on tl,tz,...,tn, and let
kn << n be an appropriately chosen sequence depending on
s An estimate for f(x) may be obtained by interpolating
Fn at tik X i=1,2,...,[%~], by a smooth function, call
n

~

it Fn’ and letting the density estimate fn be given by

o

f(x) = 5 ﬁn(x).

We call this class of methods ‘'variable knot interpolating methods'.

The "knots'' are the points of interpolation. The only examples of this
method that we know of in the literature are the polynomial algorithm

[6] and Van Ryzin's histogram method [5], of which [6] is a generalizationm.
The method described in [6] uses local polynomial interpolation and

is as follows:

Suppose fEWém). Let 2 be the greatest integer in

(n-l)/kn. Let

fn(x) A0y x'x tZk
= é—-ﬁ (x) t ¢« X < &
X 'n ? 2k = (E—m+1)kn
0, <X



where Fn(x) is defined as follows:

For m=1,

Fn(t(i+1)kn) - Fn(tikn)

F (x) = F_(t., ) + x -
n n lkn t(i+1)kn

X

t a WA N Xk B

A

ik

& £ :
5 (1+1)kn

For m22, let ﬁn i(x), i=1,2,...,2-m-1, be the mth
>
degree polynomial which interpolates to Fn(x) at the m+1

poInts X 5 Tsq st g e o 1S Sl e
1Ln (1+1)kn (1+m)Ln

xe[t(i+1)kn’t(i+2)kn)’ define Fn(x) to coincide with

Fn’i(X), i=l,2,...’£-m-1.

More explicitly, for any given numbers X<X;<...<X,
let ﬁv(x) = Rv(x;xo,xl,...,xm) be the mth degree polynomial
with Rv(xu) =1, v=p=0,1,...,m, zv(xu) = 0, u#v. Let
2i’v(x) = Rv(x;tikn’t(i+1)kn""’t(i+m)kn)' Then

k
n

m
L%,v®) ey o 10 10, xelty ot omeny )

Q—AIQ-
e

k) i) :

0 otherwise

"

where 1i(x) 1is defined for xa[tan’t(ﬂ-m+l)kn) as that

value 1 which satisfies

15 X

: <x < t,.
(1+1)kn = (1+2)kn



for m>2, and by that value i which satisfies

when m=1,

Thus,

£(x) - En(x) = {f(x) -

v od vk
+ {Vzl i R.i’v(x) (F(t(iw)kn) - F(tikn) = E‘?)}

XE[tZRn’t(z-m+1)kn) ;

= f(x) xt[tan’t(R'm‘*l)kn)

It is shown in [6] that

a0 7 moog t(iﬂ))kn 2
G-2) BE@-He0? < w{ee0 - 1§ 0 1 e
8 ik
n
| moa vkn 2
¥ ZE{vZI Ix JLi,v("‘)(F(t(iaru)kn)'F("ikn)'n+1)}

+ negligible terms

where 1 = i(x) is a random integer, and, if xi[tZk ’t(R-m+l)k 33
n n

then &. (x) is defined as 0. The first term on the right

»
is the bias term, the second, the variance.



-10-

X
Letting F(x) = ff(u)du, the variance part is due to
= 1k

the error in approximating F(tikn) by F(tlk ) = n+1 )
Under some additional tail conditions to be stated later,

it is shown in [6], that the variance term has the bound

It~
o

(3.3a) ZE{v = % v(x)(F(t(1+v)k )-F(t; n)_gi%)}z

3

< f; %— (1+0( 1y a 0(—23

where

(3.3b) B, = am23% AT 2
. 1 Z(m-1)

( We remark that B1 is probably not the best constant .)

The bias part is due to the error committed in
approximating f(x) from values of F(tik 1s i=1,2,...,[%—].
- n n
The mth degree polynomial F(x) interpolating to F(x) at
XgsXqseee,X, is given by

-~

A"
F(x) = ] 2 (x) [f(E)dE

[ =]

v=0

E(x) is given by

O-lﬂ-
~

and its derivative %(x) =
d Ty o
I 8, () [ f(E)dE = I %, (X) I f(g)de.
v=0 ad 1 O

%(x) =

IIME
o

Il ~15

2
The factor 2 was erroneously omitted in [6], Eqn. (2.26Db).
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To analyze f(x) - %(x), the following lemma was given in

([6], Theorem 3), for p=2.

Lemma 3.1. Let fEWém) for p=2. Then

. = 2/
(f(x) - f(x))z < a(m)(fmlf(m)(u)lp) p(xm_xO)Zm-Z/p,
X
0
xe[xo,xm], m=1,2
xe[xl,xm_l], m>3

where

2 (m+3)] 2 s

a(1) = 1, a@ = (5/2)%, am = |23 n

Lemma 3.1 is immediately extended to p>1 by replacing
the Cauchy-Schwartz inequality in (3.9) of [6] by a Hdlder
inequality with 2 replaced by p.

The entire argument of [6] now goes through exactly
for p>1, simply by replacing 2 by p in Theorem 3 of [6].

The result (from [6]) is then

. t(i+v)kn ,
(3.4a) ZE(f(x) = 1 &4 0@ f(g)dg)

v=1 tikn

2m-2/p
K
< 11E™)12 a (22 (1vo k)

where
(3.4b) A, = 2a(m) - m(%)Zm-Z/p.

p>1
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Thus, ignoring negligible terms in (3.2),

k )Zm-Z/p

(3.5) E(f(x) - EH(X))Z < ||f(m)||; AI(ET% + B %_

n

1

The right hand side of (3.5) is minimized (see lemma 4a

of [4]) by taking

' i) 5 !1/(2m+1_2/p) (Zm-2/p)/(2m+1-2/p)

” . m-2/p m+1-2/p

(3.6) kn (2m-2/p) Ilf(m)[|2A1 (n+1) :
p

in which case
E(f(x) - %n(x))z < Dy n" ¢

where

P 1/(2m+1-2/p)
D, = e(||f(m)[|§ A, BT 2/?)

For completeness we state the extended version of Theorems

1 and 2 of [6], as now obtains for p>1l.

Theorem 3.1.

Let f(u) <A, all u, 1let f(u) > A for u in a
neighborhood of x, 1let |u(l - F(u))| and |uF(u)| be
bounded respectively for wu>Xx and u<x. Let fEWém) for
m=l,2,e.0y Pp2l. Let %n(x) be given by (3.1) with kn

given by (3.6). Then



T B

E(f(x)-%n(x))z <D n~(2m-2/p)/(2m+1-2/p) + lower order terms

where
y 1/(2m+1-2/p)
D, = e(||f(m)||g By BEM 2/p)
and
2m-2/ 2m-2/ n+3%  AZD R m-2lp
Aq Blm' P e [?a(m)-m-(%) m= é][%m " Z(m 3:‘

4. Convergence Properties of the Parzen Kernel-Type Density

Estimates

The argument of this section was graciously suggested
to the author by Professor Farrell. Suppose fswém). Let

K(y) be a real valued function on (-=,») satisfying

i) sup |K(y)| < =
..co(y(oo

=]

i) [IK@y)| < =

- 00

iii) 1lim |yK(y)|
y-)-oo

iv)  [K(y)dy = 1

= 00



Tl

v)  [y'(y) = 0 i=1,2,...

. r ~3
vi)  [lyI™ Pl ay < o

Parzen's density estimate fn(x) is then given
~ 1 1l X-t.
(4.1) 009 = ag L K(—pL)

where h>0 1is to be chosen so that h=+0, nh»e,

Let

~

£, = BE (x) = %-_Z KEEDE(E)de
From [4], Theorem 2A, the variance term is
(4.2a) E(En(x) - fn(x))2 = B2 %F + lower order
where

(4.2b) B, = £ [ K 0y)dy(L + o)

ym-1

p21.

by

terms

The bias term may be established for m=1,2,...,p>1,

by noting that

E (£, G0 - £0x) JxEEHEOFE - £

1]

[ K(-g)f(x+gh)dg - £(x).
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Now

it =i j . x+EZh 4 : m-1
(4.3) £0ergn) = £00+ [ LM £0) o o Ty GeEhw) 7o (m) gy,
j=1 j! -4 (m-1)!
Using (iv)-(vi) i(n (4.3) gives
= X+Eh _ m-1
B(£,00 - £00) = [ k() [ LBl g(myqy,
-co X
Since
1/q
x+&h m-1 x+Eh
(x+&h-u) (m) 1 (m-1)
/ "5iETTTT—*"' £Y7% (W) du| < GeI)TT i (x+Eh-u) 4
oo 1/-p
' [Ilf(’“)(u)lpdu]
- 1 Ighlm-1+l/q ||f(m)||
M [m-1)q+117/0 P
q = 1
1
Iy
we have

(4.42)  [B(g,00 - f(x)y]z < 12 a, n20-2/r

where

2
= 1 1 T m-1/p
4.4b) A, = K(g)]|£]| de
( ) 2 (m-1)! [(m_l)q+1]2/q l:‘{" !I jI
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Thus
(4.5) E(f(x) . %n(x))z < [[f(“‘)||§ A, n2mZ/P oy g, L

nn

Define kn = nh, and choose

) 1 2
(4.6) k, l:(Zm-Z/‘p) ™| [ Za
p

B 1/(2m+1-2/p)
-] .n(Zm-Z/p)/(2m+l-2/p)’

;

which minimizes the right hand side of (4.5).

We have the following
Theorem 4.1.

Let fsWém) for m=1,2,..., p>1l. Let %n(x) be given
by (4.1) where X satisfies (i)-(vi) and h = kn/n with
kn given by (4.6). Then
E(f(x) - %n(X))z <D, n~ (Zm-2/p)/ (2m+1-2/P) , joyer order terms
with

- (m) 2 2m-2/py1/(2m+1-2/p)
D, = 0| £ ][ Ay By HPYRERTETAIP

and



= 1

A

BéZm-Z/p) ) 1

2 Z
[Em-l)1[((m-ll/(l-l/p))+1]l'l/ﬁ}

. _ 2 . (2n-2/p)
| i@ el HPag|” - [f(x) ] K oa] .

From the point of view of minimizing mean square
error here, to optimize the choice of kernel, one should

choose K subject to (i)-(vi) to minimize

o _ © m-1/p
[ 1xE) g™ ”Pde:[f chs)da:] .

5. Convergence Properties of the Kronmal-Tartar Orthogonal

Series Density Estimate

Suppose that fewém) and £(£) = 0 for E£[0,1].
Let ¢, (x) = coswkx, k=0,1,2,... Then the Kronmal-Tartar
K

orthogonal series density estimate [3] is given by

(5.1) £ .(x) =

Il o~

where r 1is to be chosen, and

A

(5:.2) ay =

e~13

=R

_ 1wk(tj), k=0,1,2,...
J

~

ay is an unbiassed estimator of 2y where
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1
a, = 2 é £(E) vy (E)dE, k=0,1,2,...

Since {wk};=0 are complete on Jiz[-l,l] with respect to
even functions on [-1,1] and we can define f(-&) = f(&),
f has the Fourier expansion

40
f(X) = -2—+

ne-18

ay coswkx

k=1

Thus

co

i T ~
1(x) * fn(x) = kzl(ak'ak)wk(x) * }(:E-&-lakwk(x}

~

(ap = ay = 2).

The variance term is studied by observing that

~ ~ 1
E(ap-a;)(ag-a,) = 4 é Vi (E)w, (E)£(E)AE - aa,,  k,2=1,2,...,
thus
i AT ))2 Ll 5 b (0, )[4 [ v, (529, (E)s ]
ag-a x iy X X ds- aga
e B 2V T St y Ykvedty k?g

1 1 T 2 T 2
nt (kglwk(x)wk(a)) £(E)dE - (kzlakwk(x{) ;

Now

it T 1
I Y, (xX)v, (E) = ] cosmkx coswkg = w_(x+E) + w (x-Ei]
kel ¥ k = 2T ¥
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where

. TTT
1 S
w_(t) = cos(—(r+1)wt)
T 2 s oMT
51n(§—

Therefore, for large r, the variance term "behaves like"

% £L§l . For concreteness, we note that since
(] et
b (XD («z)) dE <
0 \k=1 X K 2z
T = 2 .
(5.3a) E(kzl(ak-ak)wk(x)) < Bg =
where
(5.3b) B. = 2A

and A satisfies

max f(§) < A.
£

To establish a bound on the bias term, we use the following

Lemma 5.1 (Young and Hausdorff).

Suppose g(x)sSEz[-l,lj with Fourier series ) gkelnkx,
1 : -
1 imkx 1 " .
gy = 3 _{ g(x)e dx. If 1<p<2, and 5 + g - 1, then
i 1/q 1 1/p
1 p
| |q) < (— [ lg)] dX) ;
(_w & 73



= D=

This result is stated in Hardy, Littlewood,
[2], equation (8.5.7), for the proof see [2], p.
limitation on p is essential, indeed, if p>2,

inequality holds (see (8.5.6)).

and Polya
221, The

the reverse

Now,
(5.4) | ¥ a, costkx| < J |a |k -« =
k=r+1 X k=r+1 K K"
q 1/p
m 4
<(Zlakqu) (E ‘“fﬁn")
T+l r+1 k
Also,
T 1 ra 1 1.pm-1

(5.5) s o f e GE = —~ (3) .
Next, observe that

oo n

f(m)(x) =" ¥ oa( 1)2 M cosmkx, m even
k=1
i m+1
=™ Va (-1) 2 k™ sintkx, m odd

k=1
Let g(x) = f(m)(x). Then the non zero Fourier coefficients
of g have absolute values nmlaklkm, k=1,2,..., and by
the Lemma of Young and Hausdorff, we have

1/q 1/
P

(5.6) v"‘[ a, k |:| |f("‘)(£)1p) 1<p<2.



34 .

Putting together (5.4), (5.5) and (5.6) gives

co

2 (m),,2 1.2m-2/p
5.7a a, costkx|® < [||f A, (=)
5.7 | T 12 1E™p2 Ay
where
_ 1 1
(5.7b) AS =

WZm (pm-l) Z/P ’

Thus
(5.8) E(f(x) - %n(x))z < ||f(m)|1; AS(%)Zm'Z/P + By T

where

A = 1L 1
3 .2m (pm—l)z/p
B; = 2A.

. _n - .
Define kn by kn = and choose T n/kn with

1 By Y 1y ey )
PR m-4/p m+l-2/p
(5.0} Ln [;Zm-Z/p) Ilf(m)l!zA;} n

P

Then the right hand side of (5.9) is minimized. We have the

following
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Theorem 5.1.

Let feWém)[o,l], for m=l,2;.s:s5 45p%i. Let %n(x)
be given by (5.1) where r = n/kn with kn given by (5.9).

Then

E(f(x) - En(x))z < D, n-(2m-2/p)/(2m+1-2/p)
with

g = o118 |2 o, p2n-2/p) Y TEER)
and

2m-2/p _ 1

B 2m-2/p
-] HZm(pm_l)Z/p

(24) ;

As
We remark here that there is some doubt as to the truth

of this result for 2<p<«, Also, one cannot use an arbitrary

orthonormal series and expect to obtain the same result, as

sup|cosmkx| < 1 was needed in the proof in (5.4).
X,k

6. Convergence Properties of the Ordinary Histogram

Suppose that fEWém) for m=1, p>1, and
f(g) = 0 for £#[0,1]. Let h be chosen so that 1/h = 4,
an integer. Let Ij be the interval [jh,(j+1)h),

j=0s1,"-,2"'1. Let
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A Y.
= __J_ ] = -
(6.1) fn(x) = erj, 20,1, 5505871 5
where
Yj = number of tl,tz,...,tn in Ij'
(j*1)h
Since Y. is binomial B(n,p.) where p,. = f f(g)dg,
J J ] jh
Ef (x) = & p.
n h Y3

A p;(1-p;)

(6.2) Var £ (x) = _J_hzi_ < %H
n
Now,
a 1 (j+1h 1 (j+1)h
B(£0) - fn(x)) OO LR | (f(x) . f(g))dg
J ]
(m) -

For fewp , m=1 and erj, Ete,

X (j+1)h

£6) - £®] = | [ f™@aul < 7 £ (u) | du
g ]

) 1/ 5
< na[ 7 e Pad] T - m R D

- 00

Thus

. 2 )
HESE £,00] < e 2R e
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and

1

(6.3) E(f(x) i %n(x))z < |]f(1)]|P K, WD 5 gy

where

k
: - = i
Define kn by kn nh, and choose h = with

n(2m-2/p)/(2m+1-2/p)

2

1/ (2m+1-2/p)
(6.4) k_ = 1 >4
’ n (2m-2/p) [lme)lizA
p

m=1.

Then the right hand side of (6.3) is minimized and we have

the following

Theorem 6.1.
Let fsWém)[O,l] for m=1, p. Let £ (x) be

given by (6.1) where h kn/n with k_ chosen as in (6.4).

Then

D, o~ (2m-2/p)/ (2m+1-2/p)

A

E(f(x) . En(x))z

with



T

1/(2m+1-2/p)
= 2m-2/
Dy = 6(A4B4 P)

with

2m-2/p _ 2-2/p _ 2~2/p
AyBy = A,B, A a

7. Summary and Concluding Remarks

We summarize the results in Table 1.

We conclude with a brief remark concerning the criteria
we have been using, namely minimum mean square error at a
point. Pirstly, there is no asymptotic distribution theory
here, and it probably doesn't exist. In order for asymptotic

normality to obtain, it is apparent that the bias (squared)

term must be asymptotically negligible compared to the variance.

the parameter (respectively kn’ ., T  and ‘I here) iIs
chosen so that this happens, then the optimum rate will not
obtain: Thus; it scems preferable to choose the parameter
for the optimum rate, and use Tchebycheff's Theorem to
construct confidence intervals. It remains an open problem

to provide a lower bound D0 on the constant

5,8 1/ (2m+1-2/p)
D = B(ABzm 2/p)
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To examine the relationship between mean square error at a
point and integrated mean square error, suppose 0<i<f(x)<A
on a known bounded interval (say [0,1]) and

f(x)ezudl, o §[0y1sidThen

DOl lf(m) | |12)/(2m+1-2/p)n-(Zm-z/p)/(2m+l-z/p) @ negligible terms

z B(£(6) - £, () ) ae

LA

A

p, 1€ |2/ (2n+1-2/p), - (2n-2/p)/ (2m+1-2/p)

+ negligible terms

for method v, v=1,2,3,4. Thus, optimum constants may be
different for integrated mean square error vs. mean square
error at a point but the rates will not.

We have recently obtained two more entries in the table
above, for fixed knot and for variable knot cubic spline density
estimates, for m=1,2,3. This work will appear separately.

We wish to acknowledge a number of helpful discussions

with Professor R. H. Farrell.
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