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2. EXPLICIT EXPRESSIONS FOR THE HISTOSPLINE ESTIMATE, AND OUTLINE OF

PROOF OF THE MAIN THEOREM.

Our development of an explicit formula for an interpolating
spline will be slightly unorthodox, for the purpose of easing the proofs
of the main theorem. The reader may consult [2], [6], [7], [15] and
the bibliography [14] for additional background on splines.

We endow wéz) with the inner product

-1
< F,6 > = F(0)G(0) + F'(0)G'(0) + é F*(x)G"(x)dx . (2.1)

Néz) is then a reproducing kernel Hilbert space (RKHS) with the

reproducing kernel

min(s,t)
Q(s,t) = 1+st + ] (s=u)(t-u)du
0
2 3
= ts” _s”
T+st + ( > 3 ) s S5%<t
2 3
= st _t
= T4st + ( 5 . ) . S3 %, (2.2)
Denote this Hilbert space ;%qu with norm ||-|lq. The true c.d.f. F is

. : = proyll)
always assumed to be in ’}#Q, that is, f=F ely "
Let Qt be the function defined on [0,1] by

Qt(s) = Q(S’t)l s!ts[ol]]! (2‘3)



and let Q% be the function defined on [0,1] by

Qy(s) = G Qs,u)| s, 0,10 .
u=t
2
=s + 55 » s <t
t2
=stst-=, s>t (2.4)

By the properties of RKHS (see, e.g. [10]), Qis Qi W#Q for each t, and

< 6,0y > = 6(t) , Ge'Hys, tel0,1] (2.5)

< G,Qé >=G'(t) .

Denote the norm in }+Q by ||-f|Q. Consider the solution to the problem:
Find Ga?#n to min iIGIIQ subject to

£

G'(0) = < G,Qb > = 3

G(0) = < G,QO > = a,

G(si) = < G’Qsi> =y, 1=21,2,...,2 (2.6)
G(1) = < G,Q] > = by

G'(1) = < G,Qi > = b]

Denoting s = (s], Sps cees Sz)’ y = (yT’ Yo wees yg), a= (aT, ao),



b = (by» by)s Tet S(x) = S(x; §; a, y, b) be the solution to this
problem. Then, by observing that 55,82(5) defined by

£G) = span{Q), O » 1 =0, 1, .0y 241, 0} (2.7)
1 B

it may be established that

S(x; s;5 a, y, b) = (Qp(x), Qy(x), QS](X), ""Qsz(")’ Qp(x), Qq(x))Qy,4(a5 ¥5 b)!

(2.8)

where Q,., {is the (2+4) x (2+4) Grammian matrix of the basis for /gg(g)-
Qpyq s of full rank (see for example [19]) and the entries may be found
from (2.5). By observing the nature of the inner product in'?$q, it is

‘easily seen that S(x; S; a, y, b) s also the solution to: Find GEQHQ to
1 2
min S(G"(x))“ dx
0

subject to (2.6). The solution to this problem is well known [15] to be

the unique cubic spline satisfying (2.6). It may easily be checked from

(2.3), (2.4) and (2.8) that S has the characteristic properties of a cubic
spline, viz, S is a polynomial of degree less than or equal to three in

each interval [s;, s5,41, 1 =0, 1, ..., 2, and S, S' and S" are continuous.

The density estimate ?n(x) that we study is thus given by



£ (x)
En(x) = S(x; §h; a, F_, b) (2.9)

with

s, = (h, 2h, ..., 2h),  (2#1)h =1
a = (a;, 0)

Fo = (F (h), F (2h), ..., F (sh))
E;-: ~

(1, b]).

Equation (2.8) is not the computationally best method for computing En’
because Q2+4 is il]-éonditioned for large &, however, computing routines
Ifor S(x) and S'(x) are commonly available, see, for example [1]. The
estimates ;] and 61 depend on m, (= 1, 2, or 3) and are defined as

follows: Let L9 v(x) be the polynomial of degree m satisfying
zo’v(x) =1, x = vh,

=jhy §3$v, §=0,1, .coym, (2.10)

n
o
>

1

and let 21 v(x) be the polynomial of degree m satisfying



10

R],v(x) =1, x = 1-vh
=0, x=1-jh, §$v,3=0,T, ..., m (2.11)
Let
A~ A| A d m
a-I = Fn(O) = fn(O) = red E zo’v(x) ) Fn(vh) (2.12)
v=0 x=0
bo=Fm=tm=9 F o ] FOon.  (2.13)
b, = F'(1) = f (1) = 5— 2 X F (1-vh). 2.13
1 n n X y=0 1sV xe] M

~

2 is the derivative at 0 of the mth degree polynomial interpolating the

sample c.d.f. at 0, h, ..., mh, and similarly for Q], It follows from

(2.8) that S(x; s; a, y, b) is linear in the entries of 3, y, and b,

that is

S(x; s; a, ¥y, b) + S(x; §; €40 € € )

"

S(x: &4 ate,, yte, b+eb)

where Ea’ e and Eb are 2-, 2- and 2-vectors, respectively.

g;-s‘(x; §, 3, ¥, b) also has this linearity property.

Let F be the true c.d.f., and let F be the cubic spline of
interpolation to F, with knots jh, j=1,2, ..., %, and matching F
and F' at the boundaries, that is

F(x) = S(x5 s;5 F.u Fou )



where

(F*(0), 0)

-
1]

F, = (F(h), F(2n), ...,

Fp = (1, Fr(1)).

Then we may write

F(x) = £() = & (F(x) - F(x))

(F(x) - F(x)) + &=

F(2h))

(F(X) - F (x))

(F(x) - F(x)) + --H (s

Ho (x) = S(x; Sp3 Egs £ Eb)

=4
dx
e
dx
where
and
Ea = (56’ 0) s €6 =
€ = (811 Eza H Ez): ej =
eb (09 €£+}) s €£+] =

FI(O) = 2]:
F(3h) - F (3}, 4 =1, 2, ...

F'(1) - 31 .

11

(2.14)

(2.15)

(2.16)

s &y (2717)
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The first term on the right of (2.16) which we shall call the bias term,
is non-random and depends only on how well F can be approximated by an
interpolating cubic spline. The second, or variance term is a (linear)

and e

function of the random variables 56, i i=1,2, «.., L.

]
€o+
Then, as usual,

# 2 ~ 2 2
() - £,00) 52 (G (FO) - FO) )+ 2 € () o (219)

Bounds on the absolute bias, ]%E-(F(x) - F(x))[ appear in the
approximation theory literature in various forms, for equally spaced, as
well as arbitrarily spaced knots. If F(m+1)eafz[o,1], then it is known
([18], Theorems 5.1, 5.2 and 5.3) that, for m=1, 2, 3,

sup Iz (F) = FO)] s Kytmd [IF™ V1, 47120 2.29)

where ||-!|p is the Efp norm, and Kz(m) is a constant depending on m.
Generalizations of (2.19) to arbitrary m are given when E is replaced
by an interpolating spline of higher degree. For F(m+1)eéfm[0,1], m= 3,
[9] gives

sup I%E-(F(X) - F(x)l K, (m) IIF(m+])||m h", (2.20)

A

and [9] is easily extendable to m =1, 2. (For earlier results, see [13]).
Some information about generalizations of (2.20) up to, but not beyond m =5

are known [4]. e would like to have the result
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e = su).x(plg—;(- (F(x) = FO)| < ko tm [JFPI ) 17e, g s,
(2.21)
or, equivalently, fswém) =>
. 2
d A )12 2m-2/
=0 (a? (F(x) - F(x))) 3 [1#(m I (2.22)

where A = A(m,p). HWe are not aware of such results for p + 2 or o, 7
We provide a proof of (2.22) good for m= 2, 3, 1 <p <2. In the proof,
the dependency on the knots 4[5)1.}:“:-l is retained so that the results may be
used in a_sequel paper where the knots are determined by the order statistics.

Combining these results will give us a bound on the bias for

The establishment of bounds on the bias term is tedious for cubic splines,
and we are unable to do it for higher degree splines. It will be shown that,

for x not in a neighborhood of 0 or 1

£ H (x))? <

1
dx n ?‘_ﬁ" (2.23)

nIc

where B s a constant to be given. Then we will have
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E(F(x) - £,0007 < & [[FM ]2 02m2P g L (2.24)

The right hand side of (2.24) is minimized (see [12]) by taking h = kn/n
with "
1/(2m+1 - 2/p)

o 1 B - p{2m-2/p)/(2m¥1 - 2/p)
k, (Z-275) ||f(m)||2 ; n . (2.25)
P

Then, we will have the main result, which is:

E[f(x) - f (x)]? ¢ p n™(2m2/P)/ (241 - 2/p) (2.26)
vihere
- _ (2mr1 - 2/p) (m) (2 pp2m=-2/p\1/(2m+1 - 2/p)
D (2m-2/p)(2m'2/p) (11f [Ip AB ) | . {2.27)

Details of these assertions are in the next section.
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3. PROOF OF THE MAIN THEOREM

3.1 Bounds on the Bias Term

The case m = 3, p = » 1is covered by

Propostion 1. Let F(iv)eéﬁm[o,lj. Then
/d ~ 2 3.2 (iv);, .6
(& (P00 - FO ) < @ HE L. e

Proof: This is Theorem 2 of [9], the proof there may be extended

from ECTY) continuous to flivley .

The case m=1or 2 and p =« 1is covered by
Proposition 2. Let F(i11)eagm[0,1]. Then

s 2 2 o
(%‘i‘ (F(x) - F(x)) g4 ) HF("“)HED h4 ' (3.2)

S0

Suppose only that F(ii)agew[0,1]. Then
-~ 2 s -
(& (rx) - Foo )~ < Q7 NFD 2 w2

Proof': This may be proved from the argument in [9] by following the
. , . c(111) 7
proof of Theorem 2 in [9], and noting that, if F g0, then r; of
[9]1, equation (8) is bounded by 3h|sup F(iii)(ﬁ)l, and if F(i1)eéﬁm, then
£ . .
rs of [9], equation (8) is bounded by 6|sup F(11)(£)[.

The next series of Lemmas result in a Theorem which provides

bounds on the bias for m=1,p=2,andm=2, 3, 1 <p <2




Lemma .

. 2 ~ -
(%;(F(x) ; F(x))) < oy - Q,Lllé [IF - F”s

where Q; is the projection of Q; in (}iq onto ,gg£(§).
Proof:
d e . Ve o] = g g g 2
S (Fx) = F0)| = [« qpfeF > = [< 0-L.F-F >
Lemma 2.
v o2 U1
”Qx' QXHQ Séh
'Proof: See Appendix.
Lemma 3.
Let F(iv’egi;[o,1], 1 <p<2. Then
Wi 1 iv) 2 . 5-2
[1F-FI 13 < 1FYI))2 n3200
Proof: See Appendix.
Lemma 4.

Let F(iii)egﬁp[o,1], 1 <p <2 Then

16

(3.4)

(3.5)

(3.6)

{3a2)
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[F-FI13 < (173) [FOTH2 22 (3.9)
Proof: See Appendix.
Theorem 1.

Let f(m)eip for m=1,p=2,and m=2,3,1<p<2 Then

~ s
(4 (F00 - O ) < a (1M 2 2l (3.9)
where
5l wed, pee
A=g, m=2,1
9° m= 2, <p<e

Proof: The result follows upon combining Lemmas 1, 2, 3 and 4.

3.2. Bounds on the Variance Term

We seek a bound on

B[ H, ()7

-

St




18

(3.10)

F(h) - F(dh), § =

where
Hn(x) = S(x; Sp* E» € eb)_
and
Sp = (hs 2Ry ooy 2h) 5
Ea = (569 50): s EO = 0, e, = F'(O) - a-lg
€ = (E": 529 se ey ER,)’ Ej = F(jh) = Fn(jh) =
g, = (e£+], sé+1) » Egq1 = 0, ei+1 = F'(1) - by -

Lemma 5 bounds the derivative of a cubic spline in terms of h

‘data &

a2’ € €p-
Lemma 5.
For Jh <% < {3¥1}hs 3 = 04 Ys s
ax H(x)| < 8 I—Z c i ¥ ) €
i 23+l 0

and the

1, 2,

vowy Ly
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where

w.i = e'i'*'l = E.i = (F((J"'])h) = F(jh)] - [Fn((j+1)h) = Fﬂ(jh)]

= .]. & z L :
i 2[1«J|+1 2[1+]—J|+1 2

@ P 1y sona Bs 1%

_ T 24
G = g ¥

(a%]
cor—

Proof: See Appendix.

Bounds on E[%;-Hn(x)]2 may now be found by bounding the random

variables on the right of (3.11).

Now

<
n
™
1
m
1l

[F((3+1)h) - F(3)]- [F ((G+1)h) - F(3n)]

_ # of observations between jh and (j+1)h
J n

(3+1)h
S f(E)dE < hA
J jh

-
n

where

A = sup f(g) .
£

Thus n(pj - wj) is binomial B(n,pj) and so

e e s
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Ah

2 _
E(y;)" = Pj(T-pj) <= . (3.12)

=

n

To complete the bound on the variance term, we need to know

E(eg) = E(F'(0) - a;)°

1

and E(e!

£+1)2 E(F'(1) - 61)2. The answer is

1
given by

Lemma 6. Let a; and b] be given by (2.12) and (2.13) for m =1,
2, 3. Then

E(F'(0) - a,)?

<ol (M2 22 L g A (303)

E(F' (1) - by)?
where

o= 8m2m'2/p/ [(m-l)!]z
(3.14)
B = 2m3(m+1)2A .

Proof: See Appendix.

Note that, if x

O, or x=1,

E((0) - £,(0)7 = E(F'(0) - a))?

n

E(F(1) - £,10)2 = E(F'(1) - b))?

A ARA DAVAASL s B

g v e
Cn. | LY e .}:!-M\ b i & AR n Dl o g 1 g



21

and the mean square error is given by the right hand side of (3.13).

For x # 0, 1, we combine Lemmas 5, 6 and (3.12) to obtain

E(G B ()

A

% lv,w, |
2 r's 1 ] (m) (2  2m-2/p 1
° {2 b &0 E Tzt 2 ) I WP e o)

1A

2 152 A 1 1 (m),2 . 2m-2/p 1 ~7
8 {%(35) =+ 2 (Z(X/h) + z(l-x)/h ) (al [ £ []p h + B HH)>

(3.15)

. " 1 1
Note that if x is bounded away from 0 and 1, then [z(x/h) + 2(1-x)/h:] >0

rapidly as h + 0,

3.3. Final Result

Summarizing the results from (3.1), (3.2), (3.3), (3.9) and
(3.15) gives

E(F(x) - F,(x)) < A|1f(m)||§ n2m-2/P 4 g 1y

where

(3.16)




e

and

A' = (9/2) m

n
b=
n
8

(9/4)> m=2, p=w ’

(3/162 m=3, p=w

1/3 m=1, p=2
1/9 m=2,1<p<2
4/3 m=3,1<p<2
1,2
. - 2 L] L] -
B ) (8 38)

‘and o and B are given by (3.14), We have thus proved the following.

Theorem 2.

Suppose f has its support on [0,1] and f(m)eg€p, for one of

the following cases:
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Let Fn be the sample c.d.f. based on n independent observations from
F, and let En(x) be the cubic spline of interpolation to Fn at the
points jh, j=0,1, ..., 2+1; (2+1)h = 1, which satisfies the boundary
conditions EA(O) = 51, ?&(1) = G], where ;] and g] are given by
(2.12) and (2.13). Let ;n(x) = %E'En(x)’ and suppose h 1is chosen as
h = kn/n,

1/(2m+1 - 2/p)

[ -(2m-2/p)/(2m41 - 2/p)
= ez Hf(m)HzA] "
p

where A and B are given by (3.16) and (3.17). Then
ELF(x) - f,(x)1% < D n~(2M-2/p)/(2m41 - 2/p) (3.18)
with

__(2m1 - 2/p) (
’ (2m-2/p)(2’"'2”_’5(lIf

m)llﬁ ABZm-2/p)T/(2m+'| - 2/p) . (3.19)
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APPENDIX

This appendix contains the proofs of Lemmas 2-6. The proofs are
carried out where the knots {si}iil do not necessarily satisfy

Sij41 = S5 = h, but only 0 = Sp <57 < ere <85, <s = 1. The purpose of

i L 2+1
this generality is to allow the lemmas to be referenced for a later
report which deals with the situation where the knots are determined by

the order statistics. Let Ij be the interval [sj, sj+]], for j=0,1,
eey L.

Lemma 2.
Let Q; be the projection of Q; onto X(5), and let

XEIji‘ Then

')’ j = O’ ], ssuy 2-

10y - Gyl < (173544 - s,

Proof: For erj, define R; in ?%'Q by

1
K, * G5 (Q -Q. ).
X Sj+1 ™ Sj Sj+] S

J

Since R;e KQQ(E) and a; is the projection of Q; onto /82(§)
||Q; = Q;|[Q < ||Q; - RQIIQ . (A1.1)

To compute the square of the right side of (A1.1), note from (2.4) that

-
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Q(0) = 0
d i _
i 4 (s) sl 1
Ei-2——(]‘(5) =1 s <X
ds2 .x
=0 s >X
After some calculations,
RX(O) =0
d : _
a’S—Rx(S)IS=O =]
d .
FRX(S)= 1 ,OSSSSJ
S
(S447 - 8
B IR IR I T
175
= 0 * Si _~_< s < 1
4 qis) - S Re(s)
Q!(s) - R'(s) = 0, for sgl
a? X TG H;
and
S o 2
X j+l
[l - R,LHS = ] 5 | J (U-sj)zdu + (g - u)?du
(55,9 = S3) S, X
j+ J J

o
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Lemma 3.
Let Fs’kiq satisfy F(1V) = pe$f2[0,1]. Let F be the
projection of F onto A&;(E). Then,

=l . & 5-2/p | 3F1 #p
HF'FHQ < I (Sj.ﬂ = SJ) ) /P f |ﬂ(€)|p dg . (AZ.”
j=0 8
J
If Sj+1-sj=h,j=0,], ...,l’ and 1fpS2’
118 5-2p (iv),,2
F= .
[IF=FlIg < p°7°0 T
Proof: First we show that F(iv) = p implies that

.
Flt) = 5 Q(t,s)p(s)ds+ cqQq(t) +cpQq (£) + c30p(t) + cQ4(t) . (A2.2)

1
for some {ci}. But Qo(t,s) = [ (s-u)+ (t-u)+ du 1is the Green's function
0

for the operator 04, with boundary conditions

6y =0, v

=0, 1
s™May-=0, v=2,3
Thus, F always has a representation
1 3 ’
F(t) = / Qy(t,s)p(s)ds + ] dith . (A2.3)
0 i=0 _

AT Ty
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But

1 1
6 Qq(t,s)p(s)ds = / Qlt,s)p(s)ds - (14st) .
0
since Qy(t), Qp(t), Q;(t) and 0;(t) span the same space as {1, t, t2, ¢
{Ci} can always be found so that (A2.2) equals (A2.3).

Next, if v is any element in ?%Q of the form

241
v = izo c'iQSi + aQO + bQ-I
Then, since ve,gn(E),
NFFllg s [F-vllg - (R2.4)

The proof now proceeds by finding an element ve,ég(E) so that the right
hand side of (A2.4) is bounded by the right hand side of (A2.1). For
xan, define RXEASQ(S) by

(sj+1 - X) (x - s.)

R, = . Q. + L LT

Define ve,32(§) by

1
IRy (X)dx + 9 + 50 * 5y * 4%

v=
S, S.
% ﬂ! ‘}H (5'+1 - x) ny ,}+'I (x - s.) sl
= ‘ T_'J'_ff‘__y p(x)dx + Q T———-:—J—T p(x)dx
%0 | %5 sy ST sy ST
+

C1Qp + €20 * €30 * C4Qp -

3}"

Lok s
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Now

1
F-v = 6 (Q, - R )p(x)dx

and, by the properties of the reproducing kernel, it can be shown that

~R sQ

X x xi'Rxl > dxdx' .

11
[IF-v]15 = £ 7 o(x)e(x') < Q
00

Since

Q (0) - R (0) = 0

d
- (Q_(s) - R (s)) =0
ds *“x X &=
2 . (x_So)(S- -S)
d - P _ AEARAES!
sel.
J
=0, xalj, seIk, k $j

it follows that
< QR QiR > = 0

if erj, x'eIk with j ¥ k. Thus

|IF-v] |2 § b lo(x) | Ili [ 2
F-v < I p(x Q.~R_||dx
Q"j=0 Sj_ X X Q .



Furthermore

so that

For

=R

Thus,

If (sj

s, . _
s 3t (x -s.), 2
”Qx - RXHQ = i [ﬁx-s)+ - (EE:;—:QEET (Sj+] - S)+] ds
J

< Gju -5

2

g S5+
i 3
FvI1G < 3 (g = 5° [T lote)lat ]
' J

+ %T. = 1, a Holder inequality gives

1/p" 1
s e(t)]dt [r dt] ¢ {:J' lo(t)|Pdt] d:

1/
o \1-/p p
g = s P 1 Tote) Par ]

1A

(s

2 2/p
2 5-2/p p
F-v < S.,. = S. S t)|"dt

o35 = sj) =h and 1< p <2, then a Holder inequality gives

1 2/p
|F-v]12 < n3-2/° | ¢ [o(t)|Pdt .
Q - [0 ]

29
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Lemma 4.
let FeW, satisfy p(111) nef,[0,1]. Let F be the
projection of F onto ASL(E). Then

S, «2/p
- L o j+1 |
HE-FI2 <1 T (550 =53 2P| T Inte)[Pa |
3550 J J
j F
, j J
If (sj+1 - sj) =h,and 1 <p <2, then
112 . 1.3-2/p (iii), 2
|1F-FlIg < 3 n>2/0 (rT 2.,
Proof: As in the proof of Lemma 3, by the Green's function properties

of Q;(s), there exist C1s Cos C35 Cy such that

F(t)

3 N
6 Q (t)n(x)ds + cqQ4(t) + c,05(t) + c3Qy (t) + ¢, 0 (t) .

Let

} "
v = g Ry, nlx)dx +cQp  +cQy  +c30p  +cQp

where R; is defined as in the proof of Lemma 2,

Rx = -(5__.,:'—5} (Qsjﬂ ” QSJ) for xslj 5

Then

n(x)n(x') < Q;-R;, Q;.-R;. > dxdx® .

O~ —

- d 1
2 .
IF-FIIG < 11F-vllg = 1
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Also, it can be shown that
< QX-RX, Qx.—Rx. =0 if erj, X eIk, itks

so that

s.+] 2

J
RO

L
1F-v[ 1§ < ]
L%

By Lemma 2,

Ryl 1% < (1/3) (54 = 55)  for xel,

from which the result follows as in Lemma 3. -

Lemma 5.
Let S(x) = S(x, s; Ea’ E, Eb) be the cubic spline of interpolation

defined by (2.8) with

wi

= (51, Sps +ees 52)

M1
I

a= (5 %) , g=0

ma

= (81, Eps +ees Ez)

&y " (Eg+1’ Ey',+])' €41 =0 -
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lLet
A.i=(s_i+<l-s_i), ]=0,], e ey 2,,
¢i=(€i+]"€i)’ 1=0’]: -:ﬂ'
Then, for xelj,
% A sl A, A
d q 8 j ' 8 j '
S(xl)] < 8 z C. —- + —— |e [ + e 1 ]e | (A4.1)
lﬁf = Ai Ay 23+1 AO 0 22+2 I, 2+1
© where
C; = L + —r ! : i 20, 1y coes &, %73
i 2|1'-j|+1 5TH+3 - jl*l i hE s Mo
1,1 1 & ot .
“2“';2-“' ge 1%
Proof:
Define
1
R! = — (0 -0Q.) for xel, -
X A;j Sj-ﬂ Sj J

Sl Lba R TR A
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Then

d - ' &= [ t _ pt
a;-s(x) = < S’Qx >Q < S’Rx >Q e 5. Qx Rx >,

i ) =€, 3=0,1, ..., 1+1
Since S(sJ) €55 ] 1
<SR‘>=1-(s -e)=ﬁ (A4.2)
k) 'd A j+1 j Aj : *
To study
<S’Q;£"Rx>

we note that

04{0) = Ry(0) = 0 | L j
& (s) - R =0
ds *“x X s=0
|
) - Rye)] = 0 s¢1 |
ioZ [O(s) = R(s)] = * ]
=%;(S-5J) v ByE5 53X

e —
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Since the spline S is a cubic between the knots 0, Sys =ces Spo 1
2
g—§ S(x) s linear between the knots, and by the properties of cubic
dx

splines, continuous. Define Ky by

2 s(s)]
- S(s 5 K o
Thus
QE—-S(S) S SN E s) + (s )1 fo I
dsz Aj KJ J+-I K]_l_-l SJ | SE J'-,
and

b
A j
AL
+ i i (sj+] - s){mj(sj+] -s) + Kj+1(S-Sj)]dS,
J
giving
<5, 0 - RY ol < 85 max(lgls legq)s xely o (M4.3)

To proceed, we need to know the relationship between the «,

and the data s, Ea, €, Eb. By using a formula found in Kershaw, [9],

equation (5), we may express this relationship for cubic splines. It is

for xel.,
J

Chit e Lo i i




- -1
(KO, K"’ "'!Kg’ KR'_'_])‘—GA (EO! E'l’ s JECEE ) ER‘! 52_‘_'])

where A s the (242) x (2+2) matrix given by

2 1
0'.1 2 ] -a-l O
oy 2 1-a2
A =
0 o 2 1—u2
- ] 2
_
where
As
i-1
Oy = ————— =1, 2, s 2
. AR ¥
and

EO = (‘PO = AOEE})/A(Z)

E: _l!_)i_.‘i)j_:_]_ A. + A =1 2 2
Sl ol vy (1’ 1-1)= s 25 2ang

) : 2
Egar = (g - Bgep )8 -

For i = ]) 2’ ceey L, E;

; 1s the second divided difference of S(x)

(81215 S45 Sq49)-
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We are now going to aopeal to another result of Kershaw's, which gives

rs

bounds on the entries of A'1. let a7, r,s=0,1, ..., 2+1, be the

r, sth entry of At According to [8],

rs 4 1 _
la™>| < 3 ET;:gT;T', V. 8 S W, 1y euns BF] &

2+1 »
Therefore, since «, =6 § adl £,
J . 1
i=0
IKJI < 6 : § ‘ ‘iZO 2'1-j]+] lgil (Ad.4)

and, combining (A4.2), (A4.3), and (A4.4) gives

) i . L4
|< S, Qx =R >| < Aj 6 :

and

< s, >| < IIJ’ +8 ; 1 ] ALY o
T j51 2[1-31+T ) 74, Biar [ B 440
8 23i+1 '2‘% 'fg' + legl
"o 2’?'1 -3 gi_ ,ii' *lepnl
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vhere

1 1

1. N 2[1'jT+1 + 2[’i+‘l—jl+-1 3 .i B O! ]! 2: LU I ] 24, .i :% j

[
N —
i i i

1
F o
2

We remark that the lack of a generalization of this lemma for
higher degree splines is the stumbling block in generalizing the main theorem

to higher m.

Lemma 5.

Suppose f(m)sgf; on [0,1]. Let Fn be the sample c.d.f.

for n independent observations from f. Let

f(0) =27 2, (x) F_(vh)
n dx 25 “05v x=0
F =S T o | F ()
f ()= L X F_{1-vh
n dx il 1,v w=1 M
where RO 5 and 2] , are the Lagrange polynomials defined in (2.10)

and (2.11). (For m=1, FH(O) = % Fn(h).) Then

E(F(0) - £ (0))2
8m2m—2/p

[(m-1)1]°

A

e Hf(‘")!lg W 2P 4 andm1)? AL (s
E(F(1) - £.(1)

Proof:

m

q _
+ a;-vgolo’v(x)[F(vh) - Fn(vh)]

|f(0) - £,(0)

<

oy -4 ¥ |
1) - g 100 P

(A5.2)
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By combining Lemma 3.1 of -[21], and Theorem 3 of [20], and noting that

m
I (0-jh) = 0 1in equation (3.28) of [20], it can be shown that
j=0

m

f(0) - %E'UZORO,v(X) m-1

o 0 s (i) [ 10 )™ e,
(A5.3)

p>1,m=1,2, ...

It can be verified, for m=1, 2, 3, that

d
& oo™ | <. (A5.4)
x=0
Now
F (vh) = # observations in [0,vh] ’
n n
T ps) "t
and hence nF_(vh) 1is binomial B(n, p.), where p. =
n( ) ( jzl J J o (3-T)h
and hence
v v .
ELF(oh) - F(om)1% = (] o)) (1 - ] py)n < 200 (A5.5)
§=1 3= "

Putting together (A5.2) (A5.3) (A5.4) and (A5.5) gives

~ 2m-2/p )
E(f(0) - f,(0))% < & |,f(m)|1§ h2m-2/p

© ((m-1)1)"

+ 2m3 (m+1)2 H% .

The proof is carried out similarly for x = 1.
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