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ABSTRACT

The variable knot interpolating spline method for density esti-
mation is introduced. It is assumed that the true cumulative distribution
function is in the Sobolev Hilbert space Wéz) and has compact support. The
sample c. d. f. is interpolated at a subset of the order statistics,by the smooth-
est function in W(ZZ), where the smoothness criteria is small -*'?/:2 - norm of the
second derivative. The density estimate is the derivative of this interpolating
function. The interpolating function is a cubic spline, and the density esti~
mate is a quadratic spline. Tt is shown how to choose the optimal subset of
the order statistics. A bound for the expected mean square error at a point is
obtained for this estimate and is found to share the convergence rate of several

w ell know n density estimates. This estimate should compare favorably with

other density estimates if the true ¢.d f. is a smooth function in WZ(?‘) ;



1. Introduction and Summary

This note is the second of two reports on density estimates
formed by differentiation of a smooth function interpolating the sample cumula-
tive distribution function at specified points. The interpolating function is a
spline function, which is the smoothest function interpolating the sample c. d. f. when
the criteria for smoothness isthe |, norm of some derivative. In these notes
we use as the criteria the second derivative, and the resulting interpolating
function is then a cubic spline. Both these reports consider the case where the
density is known to have compact support, say [0, 1]. In [12], the sample
c.d. f. is interpolated at equally spaced points (called "knots"), where the
distance between knots is a parameter to be chosen. This is the "histospline
estimate" introduced by Boneva-Kendall-Stefanov [3]. In the present report

the interpolation takes place at every kn th order statistic, where n is the

sample size, and kn << n is a parameter to be chosen,

Let W(pm) be the Sobolev space of functions

{13 £ abs. cont., v = 0,1, ..., m~1, g, .'.-;)[0, 17}
and let W(;n)(l\/l) be given by
wim™ vy = {f: fe Wgom), ™) < M)

p D

where

[

™0 =118 egIPagP L p > 1

£ —sgp]f(m)(g)l .

Let &(m, p) = (2m-(2/p))/(2m+l - (2/p)) It is shown in [11], based on a more

general result of Farrell [4], that if



(x), n=12,... is any sequence of estimates of the true density f at

the point x, based on a random sample of size n from f and if

2

SUp E( (x) - #x))% = b_n" Py phe] - = (1. 1)

fe WM (M)
b

for fixed, but arbitrary ¢ > 0, then there exists some DO > 0 such that bn > DO
for infinitely many n

It was proven in [12], for m =1, 2,3 and certain values of p, that the rate
n $(m, P) is achieved for the histospline density estimate, when the spacing

between knots is chosen optimally. That is, there exists a constant D such that

sup E(?n(x) - f{x))z <D n-(Zm— 2/p)/(2m+l - 2/p), (1.2)

e W;m)(l\/l)

where ?n(x) is the histospline density estimate, and D depends only on m, p, M.
It is also known (see [11]) that (1. 2) holds for the Parzen kernel-type

estimates [6] and certain Kronmal-Tartar orthogonal series estimates [5]. For

m =1, it holds for histogram methods where the "bins" are of the same size

(chosen optimally). For the variable knot methods (Van Ryzin's histogram

method [8, 9], see also [10], and the polynomial aigorithm [10]) a restricted

version of (1. 2) has been found such that the bound on the right holds uniformly

over sets Wp(m)(M),.'”'l g}g(x,K,e ), where

ﬁJ(X,",E) = {fif(u) > N for |x - u| <e}.

It is the purpose of this note to introduce the variable knot interpolating

spline density estimate and to prove a restricted version of (1. 2) for this estimate.

It is assumed at least that fe W(l) which entails that the c¢.d.f. Fe W(Z2

)
2 . The

results are demonstrated for m=l, p=2; m =2 1< p< 2; and for m=3, 1 <p < 3. To



obtain (1.2) for m > 3 with a spline method it is doubtless both necessary
and sufficient that quintic or higher degree splines be used. This is equivalent
to changing the smoothness criteria to third or higher order derivatives.

What is the best density estimate? We do not know. (See Wegman
[13] for a comparative Monte Carlo study). D's satisfying (1. 2) for the methods
mentioned are given in [11] and [12] and this report. These D's are not
necessarily the smallest possible. It remains to find the smallest possible D
for each method. We hope these reports are a
first step. Why choose an interpolating cubic spline method? The function
interpolating to the c.d. f. (of which the density estimate is the derivative) has
the smallest ;fz norm of its second derivative among all interpolating functions in
(2) (2)

’W2 . Whenever the true c¢.d. f. is in W2

the interpolating cubic spline methods should compare favorably with other

and smooth by this criteria, then

(non-parametric) methods. Should one use the equi-spaced or variable knot
method? We do not have a theoretical answer to this question. Intuitively,

one feels that the variable knot method may be using more information. Preliminary
Monte Carlo runs indicate that the variable knot method reproduces multi-modal

densities very well.

In Section 2 we give a complete definition of the variable knot

interpolating spline density estimate, and in Section 3, we prove (1. 2).

2. Definition of the Variable Knot Interpolating Spline Density Estimate.

Let

"s-:(sl,sz,...,sﬂ), where 0<s; <s, <...<s,<lL
Y =V ¥ v ey ¥

a =(al,ao)

b = (b, by)



Let S(x) = S(x;§;a, V,b) be the (unique) solution to the problem: Find

Se Wz(z) to minimize

[ (@"(w? du
0
subject to
G'(0) = a;
G(0) =a_
G(S ) = Ylg 1:15 2” ’ ,ﬂ
G(1) =b_
G'(1) =b

It is well known [7], that the solution S is a cubic spline with knots
S1»Spy« 0y Sy that is, S is piecewise a polynomial of degree <3 in

each interval [sj, Sj-!—]_]’ j=0,1,..., 4 where s =0 =1, with the

» Spyl

pieces joined at the knots so that S, 8' and S§'' are continuous. An explicit

P

formula for S(x) may be found in various places, see [2], [12]. Efficient
computational routines which deliver S(x) and S'(x) given §, @, ¥ and b
are commonly available, see [1].

Let Pn be n/(n+l) times the sample c.d.f. based on a sample
of size n from f. Without loss of generality, we hence forth suppose n
satisfies

bl

(n+l) = (S+D)k_

where kn (an integer) is to be chosen, and £ is an integer. We assume

that f is supported on [0,1]. Let t,,t

1 oyt be the order statistics and

2

let t, T, o and B be defined by

n?



Tty ), oy peeenty ) (2. 1a)
n n n
L= (Pt ), F(t, ), oty ) (2. 1b)
n n n
a = (?n(o), 0) (2. 1c)
B=(l, £(1)), (2.1d)

A A
where fn(O) and fn(l) are estimates of £(0) and f£(1) to be described
shortly. (If f(0) and f(1) are known, then the true values are substituted).

Define the interpolating c.d. f. ’F‘n(x) by

\
Thus Pn(x) is the cubic spline of interpclation to Fn(x) at the points

A

’~
tikn’ i=0,12,... 4] where t, =0, ty, = 1, and satisfying Fr‘l( 0) = fn(O),
A
/P\h(” =?n(l)' The variable knot cubic spline density estimate fn(x) is given by
P =L 9
i) & T otX)- (2.2)

P A
To define fn(O) and fn(l) we must choose m=l, 2 or 3, where it is

assumed that fe Wp(m)(l\/ﬁ). Let EO V(x) be the polynomial of degree m

?

satisfying

b
o~
e
~—
11
—

X:tjk i JTE¥T=0,L .., m
n

and let ﬂl V(x) be the polynomial of degree m satisfying

4 Jx) =1, x=l—1:vkn

=09X=1—t]k’jq&v’jzo’l""’m'
n



Let ) m . . "
\ S \ __4a Al n
£(0) =5 V:Zh b, 9 | Tty ) =ax %O 4 %) T (2.3)
m 5 +1-vk
2y =S Yy d oy T
B0 =g 24| Pt ) = g %0 o, %) T (2. 4)

A
fn(o) is the derivative at 0 of the m th degree polynomial interpolating

A

Pn(x) at 0, t, ..oyt and similarly for fn(l).
n n

3. Bounds for E(f(x) - fn(x) )2 ;

In the remainder of this note, which consists of the proof of

. 2) for £ given by (2.2), we will assume that f(0) and (1) are known
(1.2) & " ;

and /f\n(o) and /f\n(l) in (2. le) and (2. 1d) are replaced by f(0) and f(1). How-
ever our result (1. 2) is true without this assumption, as can be seen from
the results of [10] and the argument in [12], since E(f(0) - ?n(()))2 converges
to 0 at the same rate as E(f{x) - €n(X) )2 for x # 0. We omit the
details of this argument in the interest of brevity.

To obtain the mean square error at a point, we note, as usual that

it is convenient to look at the so-called bias and variance terms separately.

We have
fx) - £ () = 35 (P - Fix) ) + AT 0 - F (0, (3.1)
where
F(x) = S(x; t,2, T, B) (3.2)
with



]

Thus T is the cubic spline of interpolation to F(x) at t, k ,i=0,1,..., &1,

which also matches the first derivative of F at the boundarles. Then

—~

~ A
L (r)-Flx)? + 2 BE= (Fl) - F (0002 (3.3)

E(f(x)—f (x) )% < 2E ( ==

The bulk of the work in obtaining bounds on both the bias term,
~ ~ A
E(i-(l—“(x) - F(x)})2 and the variance term E(—Q"— (F(x) = F_(x)) )2 has
dx ’ ’ dx n

already been done in [10] and in [12]. We state the results as lemmas here.
Lemmas 1 and 2 give bounds on the bias and variance terms in terms of the
order statistics.
Lemma 1.

Let i = i(x) be the random integer (with values i =0,1,... £) which
satisfies xe{tikn, t(m)kn). Let A]. = (t(j+l)kn_ tjkn), =0,1,.. .4t =0, t, =L

i) Suppose fe Wél). Then

- 1
(5 (P - Fla0))® < S 4 [relPae. (3.4)
0

ii) Suppose fe WI{BZ) for p>1. Then

bl

? Rk 2/
~ 2 1 - J
(5P -F)) < g A, ) ad?/P ®|£1(¢)| Pag |
| Jk ;
i n >
= (.3:5)
141) Suppose f ¢ wlg?’), for p>1. Then
. 2/p
2 1
(- (Fe0-Flx)) ) < 24, 2 A" 2/p f Pn ey 1P gt |

f Jk
B (3.6)



Proof: Lemma 1 is a direct consequence of Lemmas 1, 2, 3 and 4 of [12],
see the proofs in the Appendix to [12].

We have a similar result for the variance term:

Lemma 2.
ILet i be as in Lemma 1. Then
’ | |
d ~ sy 1 4
S F(x) - F ()< 8 A 2 C;— (3.7
j=o AJ.
where
kn
U= Pl ) - Py ) o e
n n
LA ! s 0,1 L i+ (3. 9)
i = o Ti-jl+l -4 ¢+ 15 %55 ) :
2 2
1,1 1 o
=7 + > + g i=]

2
Proof: Noting that

Fix) -?H(X) = S(xra_, t ¢, B)
where
a_ = (0,0)
P, =(0,0)
ik

— _ - n
¢ =lepeg..,ey), Ej_F(tjkn) ntl

Lemma 2 becomes Lemma 5 of [12].
It remains to take expectations of the terms (3. 4), (3.5), (3.6), (3.7),

Lemmas 3, 4, and 5 below will provide all the tools we need.



....10_

Lemma 3.
Let t,t,, ..., 1, be the order statistics from a density f, which
has support on [0, 1]. Let e = 0; t(ﬂ+l)kn = 1.

i) Let f(u) £ A, all u. Then, for any fixed q(1<g< kn),

\aq \
E(t - ~q . A9 [ntl 1 :
((]._l_l)k ty ) <A (k (1+o% Y, 3=01 ..., 4 (3.10)
n n n | n |
ii) Let i=i(x), (i=0,1,...,4 be the random integer which satisfies

=X Yk
n

and suppose that f(u) > N for ue[x-e, x+c ], some ¢ > 0. Then, for fixed

a(l < q <k _/2),

ko 9 \
_ q 1, n, | 1
Btk "4k ) = Tq ‘an ){1+O“Eﬂ) (3.11)
n n A \ n |

5\

If flu) > X on [0,1], then (3.11) holds for any i.

Proof: This Lemma is a special case of lemma 1 of [10].

Lemma 4. ! \
L 4 L kl’l ! - kl‘l “l
E¥dg 3¢ {1+ 0| ; (3.12)
Proof: This is Lemma 2 of [10].
Lemma 5.
Let t_,t,...,t ,, beasinlemma 3 with f strictly positive on [0,-1].
Let pe p[O 1] and let
Gk o
X, = J L (&)l P at .
tjk



-11-

Then, forany r >0, ¢ >0, and k =k

b

[ opth Uk, )"
| \

ext <l [ ™ fagPag )+ L 0lP,
-1 _ik _ ; 2(n+l)e D
F (n+l ¢) '

Proof: Let g(u,v) be the joint density of tjk and t(j+1)k’ and let

; v ir
h(u, v) =| j!p(§)|pd§§ for 0 <u<v< 1 Then
| u |

{

= ff g(u, v) h(u, v) du dv

iw
AR,
where
- Lopoldk -1 _(i+1)k
Al—{u,v. F (n+1 e)<u<v<F ~( y] +e) }
A, ={[o,1] X [o,1]} O
On Al’
E —1_%11)_+
} n
hu,v< [ |p<a)lpda$
| =1 4k i
{P (—IJ{-H 2 J

and on A |h(u v)l H pH Now

3

(3.13)



_12-..

¢ By} < Pty AP

Prity tyank n-{-l

il |y ptl (UK gy

+Pr{t ]

Gk

If ij is the jk th order statistic out of n from a uniform distribution on
[0,1], then
-1 ik
Pr{t 4[}‘ (n+l Y, B4 2]}
_ Jk
= Priz;d [B5-«, tell.
e p.(1-p.) ‘k

Since Ez] _J__-f—l , Var zg = —-J-——J-—{n+2) where p, =_l_n+1 ,

then by Chebychev's theorem, the right hand side of (3.14) is bounded by

Pyll=p,) + p, 4y(1-p, ) 1
(n¥2ye 2 T minye?
Since
Ex; < { J o)l Pag )y ey + [ollD" P(ay)
BRIEL )

the Lemma follows.
To obtain a bound on the bias term we note that, if fe Wél)
and f> )\ in a neighborhood of x, then Lemma l, i ) and Lemma 3, ii)

give directly

(3. 14)



-13-

E(—d—(F( _? 2 < _l_f’ri. 1 O_l-_ 15
oo To) < 5 () 0o (3.15)

To consider the case fe Wp(z) or fe WS) note that, if

b
1/r+1/s =1 r, s>1 then by a Holder inequality and then the Cauchy-

Schwartz inequality,
Er"‘ t+)k e (j4+1)k
, 1+ B ' i+ |
Eaa’ [ Md™gPag | <BYTaa’y B/ 1R ™) Pag |
It | e |
I n

]
]

M 2s/p

|
i
|
i

.

l ek 2/®
n fmhg)| Pag |
|
n '
(3. 16) -

for any 6> 1.

By Lemma 3, ii), assuming now that f(u) > X on [0, 1],

. . (6+1) <
'E A2T pa2Or e o (Zn ) 1+ 0] (3.17)
L1 1 =  ,(8+) \ntl ) a k T ‘

Next, define \(J, by

PN (+3/2)k /)
vi= J £™e)®, =01, .,
Prl-1/2)k /)



—14-

By Lemma 5, with e taken as kn/z(n+1), and s> 1,

—

Nk ' 5
/8| [P dm g Pag | < |y, 2R B 20 |
| |
B | no P
i J : |
< ¥R V12
k i
n

Combining (3.16), (3.17), and (3.18), gives, for m = 2,3, and s > 1

I Lt ] 2/p
o em=i=2/p | ¢ WKy omy ’
Ea ) A p§ f £ E)Pag |
1=0 [tjkn '
_ J
2m-2/p
1 kn " E‘ 2/p e ...l:lil Tkl 1/;} (1+O (_.-L.._
= ,2m-2/p |n+l Y; k (2 N 4
i=0 n yj\
(3.19)

] £ 2/p 2
Forl <p<2, ) ij/p % L yj\ = 22/p||f(m)\| . Thus, by combining

j=0 j=0 | g

(3.19) with Lemma 1, ii) or iii) gives, for m=2,3, 1<p<2, andany s > 1,

sy B
E{d‘j{ (B0 ~F(0)| <
4 ( K 12m—2/p LH/% \
m n_ | 52/p|| {m) (2/oH(1/5) n+l
m2/p | || £ H i1+2 —Te+2) (57D | 11+0(-—)
| n } :

(3. 20)
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where d, =1/9 and d, =1/3. We will later take k = O(n2m=2/p)/(2m+1-2/p))
If k fis chosen this way and s <2m-1-2/p, then (n+l)/kn( s+2)/(s+l)., 0.

Since 2m-1-2/p > 1 for m=3, or m=2 and p >1, in these cases this term is

asymptotically negligible.

A bound for the variance term follows easily below: From (3. 7),

[ 2 I A |
d .\ § o k
Eqc (F(x) - F (x))} < 64 ) ) C,C, E A ~—J——A2 3
|, |
Let a, =EA2 ik Now
ik i AZAZ
i Tk
2 -4 2 _ 1/4.8 1/4a-16.1/2 4 _ A* 172 K ( k
a,, =EAS A ye < EV/5AS BV AP EY Ay < =23 1 — 1+ 0—2
jj i ] j i j j }\2 (nﬂ)zi n+2
But ajk-<— *\fa].]. \/akk and so

4 e a2 & 2 Lo
B Flx) -F (x))] <64 c. Na < é4sup a, | ) G|
L | \ i — ] 1] : <. ]
1 j=0 j j=0 /
\
L \2
< 64 sup a,, Z &
g 20 I
( / k \:“.i
Ao | {—1n )1
< B T { 1+O'\.n+2/' ! (3. 21a)
m+| \ /
where, (with the aid of (3. 9) and (3. 12),
2 4
B=(8-3§1) 31/2—-4-2— . (3. 21b)
Iy

Here f(u) > N for ue[x-e, x+¢e].

’




el b=

Before stating the main theorem we remark that there exist
A=A (m,p, M)< e such that

sup sup flsy <A,
S
fe W' ™M)
P

f a density

e

We assume such a A is chosen. Let Z(\) ={f: f(u)>X, uel0,1]}. We now

have the main

(m)
p
followiwg: m=1, p=2, orm=2 Il<px g orm=3 1l=p=x2. If m=1, let

Theorem: Let f(x) =0, x % [0,1], let fe W (M) on [0, 1] for one of the

fEQ{}(X,}\,E), if m= 2,0r 3; letfeqé(?x)‘ Then

/ \Zm—z/p; \
2 2 n ‘ bt
E(f(x)- £ (x)" <A M ( = +L +O )|
/ \ n
g e
+Bkn EToRE S R (3. 22)
/
where ;
- o
A=3t, m=1l p=2 (3. 23)
2/p
2:2
= o PRt R TR R o T
s A/ ;
2/p
2-2
= " Samesg e ls Thes 2
o P ’
IM: 0, m=1
r diE
2/ x| 1T g
= 1L/ (sH]) i
L n
2 2
A 2 1 1/2
B =2(3) AT(8-3%) 3/ (3. 24)



....1'?.-.

Proof: Combine (3.3), (3.15) or (3. 20) and (3. 21).
k

If Im and lower order terms in ki'_ and —- are ignored,
n
n
the right hand side of (3.22) is minimized by letting

1 B 1 V@mtl=2/P) (50 o /my M2m+l-2/p)
k =1 i 2 i n N
n ! (2m-2/p) AM ‘z
; _j (3. 25)
We have the
Corollary:

Let kn be given by (3. 25) . Then

E(£(x)- ?D(X))Z_E e 2m~-2/p)/(2m+1-2/p) (1 +:(1) )

where

(2m+1 - 2/p) > 1/42m+1-2/p)

2m-2/p)

D = A p2m-2/py

(2m-2/p)!

and A and B are given by (3. 23) and (3. 24) .



[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

=B

REFERENCES

Academic Computing Center, "Approximation and Interpolation, Reference
Manual for the 1108. " Chapter 6. MACC, University of Wisconsin
Madison,

Ahlberg, J. H., Nilson, E.N. and Walsh, J. L. (1967). The Theory of
Splines and their Applications, Academic Press, New York.

Boneva, L., Kendall, D. and Stefanov, I. (1971). Spline Transformations:-
Three new diagnostic aids for the statistical data analyst. J. Roy.
Statistigt, See, 33, 1~70.

Farrell, R. H. (1972). On best obtainable asymptotic rates of convergence
in estimation of a density function at a point. Ann. Math. Statist.
43, 170-180.

Kronmal, R. and Tartar, M. (1968). The estimation of probability densities
and cumulatives by Fourier series methods. _JASA , 63, 925-952.

Parzen, E. (1962). On the estimation of a probability density function and
mode. Ann. Math. Statist. 33, 1065-1076.

Schoenberg, I. J. (1967). On Spline Functions, in Inequalities O. Shisha,
ed., 255-291, Academic Press, Inc., New York.

Van Ryzin, John (1970). On a histogram method of density estimation.
University of Wisconsin, Madison, Statistics Department Technical
Report # 226,

Van Ryzin, John (1973). A histogram method of density estimation.
To appear, Communications in Statistics.

Wahba, Grace. (1971). A polynomial algorithm for density estimation.
Ann. Math. Statist., 42, 6, 1870-1886.

b

Wahba, Grace. (1972). Optimal convergence properties of variable knot,
kernel, and orthogonal series methods for density estimation,
submitted.

Wahba, Grace. (1973). Interpolating spline methods for density estimation.
I. Equi-spaced knots. University of Wisconsin, Madison, Statistics
Department Technical Report #327.

Wegman, E.J. (1972). Nonparametric probability density estimation: II.
A comparison of density estimation methods. J. Statist. Comput.
Simul. 1 225-246,

>} —_




