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A QUICK AND DIRTY METHOD FOR SOLVING
THE NON-LINEAR IMPLICIT REGRESSION PROBLEM

by

Grace Wahba and Svante Wold

ABSTRACT

An approximate method is given to handle the implicit
nonlinear regression problem with the model being defined
implicitly by F(Yi'51’§3 =0; i=1,2,...,N. The observations
Yi are assumed to satisfy Yi =y t ey where €; 1s the
measurement error.

The parameters 6 and their standard errors are estimated
by approximately minimizing Z(Yi-yi)z/wi. The method is based
on approximating Yi°Ys by terms from the Taylor expansion of
F(y,x,8). The method is tested on simulated data and applied

to drug-protein binding data.
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1. Introduction.

In relating observed data to a theoretical model, one
sometimes encounters the problem that the observed response
(Yi) cannot be related to the predictor variables (vector 51)
in the explicit way needed for the application of non-linear
regression:

Y. = £(x;,0) + e, i=1,2,...,N. (1)

Often, however, the theoretical relation can be implicitly
formulated by means of the theoretical error-free response (yi)

and the predictor variables (xi):1
F(yi’fi’g) =0 (2)

Y. =y, + e, (3)

As usual, we assume that the vector of predictor variables
(§i) is free from errors and that the deviations (ei) are
independent, random and having zero mean and variance wid
where LA is known. Furthermore, we assume that the parameter
vector 6 and the predictor variables Xs define a unique Y3

value by means of eq. (2).

Given observed data (Yi’Ei; i=1,2,...,N) and the form of
eq. (2), least squares estimates of the parameters are obtained

by the minimization of

1 The quantities Yi’ F, £ and €4 in eq.s (1) to (3) could be

vectors, but for notational simplicity we discuss the problem
in terms of the one-dimensional case.
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It might be tempting to estimate the parameters by instead
minimizing
N 2

a(0) = ¥ DRRICTEIT) (5)

but, as shown by Mezaki, Draper and Johnson (1973), this is an
incorrect procedure which does not correspond to the minimization
of the residual sum of squares. The result of using the incorrect
form of eq. (5) can lead to a large spread in the parameter

estimates as well as an appreciable bias.

Hence, it is of importance to calculate the estimates of 6
by minimizing QN(Q) in eq. (4) when the model is implicitly defined by
eq.s (2) and (3). This problem has been treated by Deming (1943), Britt and
Luecke (1973) and others. These treatments involve the minimization
of eq. (4) under the constraints that eq. (2) is fulfilled for
all points (i = 1,2,...,N) and require substantial programming

efforts for the analysis according to a particular model.

In the present work, we derive an approximation of the
deviation €55 by means of which eq. (4) can be minimized directly
in a simple way, utilizing readily available standard programs.
This approximation is good as long as the deviations (ei) are
fairly small. Therefore, a limited number of simulations have
been carried out to study the applicability of the methods. The

methods have also been applied to drug-protein binding data,



providing estimates of the binding constants and their standard

errors.

2. Approximate least squares estimates for the implicit model.

By simple Taylor expansions of the function F,(n) =
F(n,gi,g) around the point n = Yi» we will derive an approximate
expression for €; = Yi-yi. This derivation will rest on the
assumptions that derivatives of F with respect to n and the

elements of 9 exist to the first and second order and that the

second derivatives are small in a suitable region around

™ Fye Thus, eq. (2) gives:
2
9F. (n) ,  3°F;(n)
) = Fi(yl) = Fl(Yl)'le'Yi)T n=y. '(Yl'yi) /2 — n=y. e
1 an i
(6)
If quadratic and higher terms can be neglected, eq. (6)
gives
& aFi(n)
€1 ~ El = Fl(Yi)/ an n=Yi (73.)
Noting that
oF, oF, OE;
v E == +X.-y.) —
an|n=Y; = 3anin=y; SEREY an |17V

and approximating Yi-yi by si, we also get (from eq. 6) the

slightly more complicated expression
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Hence, the least squares estimate can now be found by
minimizing the approximate sum of residual squares. Substitution

of eq. (7a) in eq. (4) gives:

dF(n ’2.(1’9)

1

Il e~12

1
[W_ F(Yl ,Xi,e)

1
N ;a1 ¥ i e o

= 2
Qy (8) S D

T

Analogously, eq. (7b) leads to (in shorter notation):

2
1 oF 1 .2 8°F BFS
{a;‘ [F/55 + 3 F g;f// 132 n=Y, (8b)

o~ 2

CMCHES S8

i
The minimization of eq.s (8a) or (8b) with respect to 0 can
be carried out by standard methods, e.g. the Marquardt (1963)
method or similar methods, which are available as standard
packages at most computer centers. The user needs only to
provide a small subroutine defining the function QN in eq. (8)
and the derivatives of this function with respect to all elements

in the parameter vector 6.

It should be noted that the goodness of the approximation

(7) depends on the size of the second derivatives,

3 F(n X5 e)/an n=Y. (9)
i



the approximation being exact when these quantities and higher
partial derivatives are zero. Generally, there exist several
choices of the function F in eq. (2). Specifically, if

H[y X5 ,9) is a function strictly positive for all values of
Yir X4 and 6 in the region of interest, then the following

expression is also an implicit definition of Yyt

G(y;»x;,0) = H(y;»,x;,8) « Fly;,%;,8) = 0 (10)

The function H can be chosen so as to minimize
the second derivative of G with respect to n, thus making the

approximation (7) as good as possible.

3. The approximate covariance matrix of the parameters.

Let 6., be the estimated parameter vector, which minimizes

~N
QN(Q) according to eq. (8a). An approximate covariance matrix

of-6 - @N can be found by using the definitions above. Hence

3F. 3F. azr

5 55 - Figmgad)
5 = 1 N Fs an 30, 1anae
36, Q8 g=p. =0 =75 .Z —7 {l5r /an] 3F. =}, (11)

= =N i=1 ws y A
i (ot
3
where 6 = (61, 0,5 «vns ep), ?N = (elN, Bons oo BPN).

In addition, the following is true:

F(Yiax ’QN) - F(yi’ici’g) = F(Yi’z«(i’gN) - F(yi’fi’gN)

i
(12)
¥ F(yi’xi’—@N) - F(Yi,xi,g).

2 We thank Professor H. Wold for this observation.



Using eq. (2) together with eq. (7a), neglecting second
and higher order terms in (Bv-évN), ¥ =™ Jsd;ews 05 Qs [12)

gives:

BF

F(Yi’ g i N)” (Bn

) (6 -8 N) (13)
i

N

E aFi
nY)E ) _1(39

=Y,
=6

Substitution of eq. (13) in eq. (11), again neglecting all

higher order terms in €55 (8 -6 N) and F(Y X5 N) gives:
1 ? 1 1 ? 3F BFi BFi}
0 = 5 ~—{le;~ =% (8 &) I (14)
N 121 w? gl aFi 27 98, vN aev on n—Yi
1 ——— ~
on 9=On

Solving this system of p simultaneous equations for © -

/ /BF. \
!_f' N 81
/ ) €1 1
f L —2- -"—"'-" \\v\

1
/ /N i

6
~N
gives:

MN(8-8,) * ANl(éN)

where AN(Q) is the pxp matrix with pv the entry aNuv(?) given by



and we are assuming that AN(gN) is non-singular.

Thus, the covariance matrix of /§(e-§N) is approximately

given by

E[m(g-gN) ' /N(.-.B.--?N)] =0

2

- .
AN (BN)

which agrees with Britt and Luecke's eq. (32).

To the extent that the approximation leading to the

expression (7) is valid, o2 may be estimated by 8; given by

G

Finally, we remark that if Fi(n,g) = H(n,yi,g) Gi(n,ﬁ)

2=
N

Qy (8y)

with H > 0, then to first order

since

i BFi BGi BGi
[Tl b=, B il
aeu an n Ei BSU on n Ei
= =e
6=3 0=8y
aeu B@u i, ? on on an i

and Gi(Yi,Q

oF,

~

0, if € and eu - B

uN

are small.

(15)



4, Application to drug-protein binding data.

The absorption, distribution and elimination of a drug in

the body can be greatly influenced by the extent of binding of

the drug to macromolecules such as albumin (Martin 1965). The

modeling of the binding of drugs to albumin is thus of

considerable importance from the clinical point of view.

Assuming that the drug and protein interact via a number

of absorption stops, and denoting the concentration of free

drug as Ai and bound drug (to albumin) as Ri

for a total drug

concentration of Cy and a total protein concentration of P,

the theoretical (error free) model for the relation between

Ry and C; corresponding to eq. (2) is (Edsall and Wyman

1958, Klotz and Hemston 1971, Perrin, Vallner and Wold 1974),

assuming a non-cooperative process:

M
k=1
Cl = Ri +A1

Here, the parameters Mj are interpreted
drug molecules bound in the j:th class, M is

classes and Kj are the corresponding binding

The estimation of the binding constants

has commonly been made by minimizing

+ Kj(Ci-Ri)]} (16)
(16a)

as the number of
the number of

constants.

Ky, = 12,0000,

2

M M
a = I IR - 2501 ngKs(Ci-R)/ ML+ Ky (=R TN (A7)

j=d
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which corresponds to the adopting erroneous assumption that

Ci- Ri and R; can be treated as Xx;and y;in non linear regression.
This is obviously not the case since these quantities have the
same magnitude of errors and, in addition, these errors are

strongly correlated.

However, since (j is accurately measured in comparison with

Ri’ eqi (16) corresponds to eq. (2) with Ci = X:, Ri = ¥4 and

Kj = Gj. For the usual case that M is assumed to be 2, we

further get by multiplication by the denominators
Gi=7
Ri[l 3 Kl(ci—hi)}[l + LZ(Ci-Ri)}

= Pi[anl(Ci-Ri)[l + Kl[Ci-Ri]) % nZKZ(Ci-Ri](l + KZ[Ci—Ri])} =0

(18)

and Ri,obs = Ri + Ei

The second derivative of G with respect to R in eq. (18)

is much smaller than that of F in eq. (16). (Here R plays the

tole of w.} G gives exact and approximate (&% or eg¥*%)

residuals agreeing within 20%, F only within 50%
T] Pt it * 3 - A 7 7 3 1
(The "exact'' residual is Yi yi(gN), where yi(gN) is the

solution n of F(n, Xs gN) = 0).

Cons <1 1
equently, the approximation of €5 of eq. (7) was defined

in terms of G in eq. (18). The parameters nq, Kl, n, and K2

were then estimated by minimizing either of

8G; 2
[G/=%] 5
3R R—Ri,obs (19a)
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2
1 56 . 1 .2 % 3Gy 3.2
= [G/zg + 7 G ‘g/ GR) " 1R=r
Wy b oR

=

I
Z
Il 12

(19b)
i,obs

It is interesting to compare parameter values estimated
by minimizing eq. (19) and (17) respectively; for dicoumarol-
albumindata (N = 66) with the accuracy of measurement of R
being about 1%, they differ by a factor of two or more (see

table 1), showing the danger of using incorrect procedures.

Finally, a limited number of simulations was performed
with 50 data points generated according to model (16) with
M= 2 and K; = 3X106, K, = SX105, B kg B, 1 and subsequent
addition of normally distributed random errors with variance
02 . Ri' The results are shown in table 2. It is seen that
for an error of measurement up to about 1%, eq. (19b) leads to
fairly unbiased parameter estimates and standard errors.

Equation (19a), however, breaks down for a relative error of

measurement of between 0.1 and 1%.

Conclusions.

The nonlinear implicit regression problem can be handled in
several ways. The approximate approach described in the present
paper has the advantage of being very easy to program and use in

practice.

The approximations involved are not serious as long as the
relative accuracy of measurement is small; in the present example

one percent or less. Then, the exact and approximate residuals
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do not differ by more than approximately 10% and the methods

work well in the examples tried.

Compared to earlier methods used for the estimation of
binding constants for drug-protein interactions, the present
method gives much less biased results, allows estimation of
confidence intervals of the parameters, allows for weighting of
the individual observations, and allows for the simple use of

standard computer programs.
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Table 1.

Estimated parameter values for dicoumarol-albumin data
[Perrin and Vallner 1974]. Rows 1 and 2, minimization of
eq. (1%a); rows 3 and 4, eq. (19b); and row 5, eq. (17). Confidence
intervals (95%) are based on eq. (15). Asterisks (*) denote
fixed (non-estimated) values. 52 denote resulting residual
sum of squares, ¥ the standard deviation of the relative

difference between the exact and approximate residuals,

1
5 . B il
Vo= {z{(eapprox eexact)/eexact} /N,
g | |
-6 -6 ; g2x1012
K, x 1077 K, x 10 Ky K, S°x107°y
1 2.9 + 15% 0.18 + 8% 1.0% 1.0% . 3.0 .08
2. 2.7 % 25% 0.14 +19%  1.08 + 10% .97 * 6% 2.8 .10
3 2.7 + 14% 0.18 + 8% 1.0% 1.0% | 2.9 .03
4. | 3.9 & 26% 0.22 %

18 0.82 + 10% 1.19 + 6% 3.0 .11
5. |14 0.33 0.53 1.45 I



Table II.

Results of simulations with data generated by eq.

with M = 2, K. = 3x10°, X

1

C=1.0x10"° to 1.0x10 %

5 T8

2

= 0.3x10°,

111=1'12

equally spaced (N=50).

:1,

Random,

(16)

normally distributed errors with mean 0 and standard deviation

(SD) equal to R x o were then added to the generated R-values.

¢ is defined in the same way as in table I.

average of 25 runs with newly generated errors.

SD is the SD of the 25 estimates of Ki.

SD is based on eq. (15).
| Sample
. Average SD

Kq Kl

| 6

Eq. (19a) 3.03x10° .072

o = .001

Eq. (19b)  3.01 072

o = .001

Eq. (19a) 5.92 1.0

g = . 01

Eq. (19b): 2.79 o BF

g = . 01

Average
Estim.

Kl
063
.063

60

41

SD  Average

X
2

6

. 30010

. 380

« a1

Sample
SD

*2
+0013
.0019

011

016

Each row is the
The sample

The average estimated

Average
Estim. SD

.0018

.0018

014

015

012

.0007

097

073
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