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ABSTRACT

Convergence properties of a class of least-squares
methods for finding approximate inverses of the Laplace

transform are obtained using reproducing kernel Hilbert

space techniques.




SOME EXPONENTIALLY DECREASING ERROR BCUNDS FOR A
NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

M. 7. Nashed and Grace Wahba1

1. Introduction and Preliminaries
We obtain error bounds for certain approximations to

the inverse Laplace transform. Suppose

{) e St (ryat = F(s) . (1.1)

We wish to construct an approximation fn(t) to the inverse
transform f£(t), using n+l values- F(si), i= 0,1,

af ¥ . 'The probTom of inversion of the‘Laplace transform;
being an ill-posed problem, gives rise to many interesﬁing
and challenging numerical and analytic investigations. The
monographs of Bellman, Kalaba, and Lockett [2] and Krylov
and Skoblya [4] are devoted to this important problem, where
a number of methods are developed. A synopsis of the dif-
ficulties and the rationale of various approaches to the
numerical inversion of the Laplace £ransform are given in
Bellman [1, Chapter 19]. In the present note we consider
only a very simple method used in [2, Chapter 2] and more
recently by Schoenberg {714

We suppose that £ € Lz(u) , Where Lz(a) is the

Hilbert space of real-valued functions on [0,®), square

3 : 3 2ot
integrable with respect to the weight function wa(t) = e
1
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(a is-.a fixed constant). Denote the inner product and norm

in Lz(a) by

&5 1

T
(£,9), = | f(ogt)e®®fae , |I£]] = (£,0) .

0

Let S, i=20,1,*+*,n be n+l distinct points in [0,«)

Let the approximate solution fn to (1.1) be the solution to

the minimization problem:

Find £ e L,(a) to minimize [£]] , subject to

o =5t
[e ' f£(t)at =F(s;), i=0,1,°,n. (1.2)
0

Let the functions ws be defined by
i
—(si + 2a)t

Provided s. + a > 0, ¢S € L_(a¢) and the conditions (1.2)

0 i 2
1

may be rewritten

(b, + £) = F(s;), i=0,1,22+,n . (1.3)

Let Qn be the Gram matrix of ws i Ao Dplgees. . The
i
ijth entry of o is given by

- —(si + g, + 20t .
V) = [ e J dt = (s; + 55 + 2a)

1
Thus Qn is a generalization of a section of a Hilbert matrix,
and hence Qn is nonsingular (see Isaacson and Keller [3,

p. 2171). It is easy to show, using (1.3), that the solution




fn to the minimization problem is in the span of wi'
i=20,1,*++,n, and is given by
f = (b b el VO (s ) F(s,) eee Bl )T (1.4)
n so' sl' ! s ' n . i’ d n ’ ’

The ijth entry qu of Q;l is given by the formula:

ij _ " - :
g~ = (s; + S % 2a)Aj( (s; + a))Aj( (sj Foa)),

i’j = Ollf.‘.lnl

where

g o —X

A ) =TT .

ki By = By

-

(see Isaacson and Keller I3, b. 218])-

Schoenberg [7] discusses the case o = - sy = j + 1,

He gives the solution to the minimization
problem (1.2) in the form

N

j=0,1,“',1’1 -

_ =l
fn(t) = Sn(e )

n

Sn(x) = VZO c, PV(2X - 1), PV(X)

where being the classical

Legendre polynomials, and

c, = (2v + 1) 3 - =1



2: The Main Result

We now give some Lz(a)-convergence properties of this

method and error bounds for o >

n(s. - sj) large.

J+1

-1
0., a(sj+l - sj) and .

Theorem. Let fn be given by (1.4), where o > 0,

s. =T, §J=20,1,*°*,n, with 2 & positive number no less

] n

than 2o . Suppose f € Lz(a),

sentation g§ the form

and furthermore, has a repre-

£(6) = e 2% [ ™% prsias - 42.1)

0
o

where [ |p(s)|ds < « . Then
0

©

[ [£(t) - fn(t)]2 e2%t at <

0 2

4 3 Gl
e nao SO e o T p(s)p(t)
E{ZE;T—( T ) e (1T0(na)) + é 4 o ere dsdt - (2:2)

Proof. Let K be the operator which maps £ € Lz(a)

into its Laplace transform:

[eo]

(kf) (s) = | e Ste(viat
0

Using properties of reproducing

for more details see e.g. [6]1,(8],

real-valued functions on [0,«)

Q(s,t) given by

_F(S) r S

v
(=]
o

kernel Hilbert spaces (RKHS),-
K(Lz(a)) is the RKHS of

with the reproducing kernel

S——————

e —— A



o b i S A il i

@laysEl =

(b)), = (sver2) ™

0. £ 8,t <™.

The condition (2.1) is equivalent to

[ee]

F(s) = [
0

Denote by QX(S)

o(s,t)p(t)at = [
0

oo

o Sts(tyate . (2.3)

the real-valued function of s on [0,»)

defined by Qx(s) = 0(x,s) . Thus Qx is the representer of
the evaluation functional at x in HQ . Let
_ B
Fn(s) = (QS (S),QS (s) 'Qs (S))Qn (F(Sl),F(Sz), ,F(Sn))
i 2 n

Since Q = Ki 5 B = Kf and, furthermore, F is the

g S. n n n

i i :
orthogonal projection in HQ of . ounts the spbopade of HQ
spanned by the functions Qs , 1= 0,1;%°°,n (Qn is the

i
Gram matrix of Qs ,-'-QS in HQ) By the properties of
0 n

RKHS, and the fact that

£ & Lz(a)

there is an jsometric isomorphism between Lz(u) and H

whereby

and Xf = 0 =

e ., « £ lyla) == E=

Thus

e - ¥,

£

= 0 ’

Q

Xf .

ly = NE - £,ll,

»
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where l]ﬂlQ is the norm in H, . Thus, the proof will be

offected if we show that [|F - E}Jlé is bounded by the right

hand side of (2.2).

Now, it can be shown, either directly, or using the

y +
properties of RKHS, that

Ir - w Ml =[] eee@riate ) - Q, (s,t)]dsat

where

Q_(s/t) = (0 (8),*=+ 0 (s1)071 (@, (£),++r 05 ()
0 n 0 n

and Q_(s,t) and En(s,t) defined by

En(srt) = Q(Srt) - Qn(syt)

‘ are positive definite kernels.

Thus, we may write

T T
2{[ | e(s)p(t)E (s,t)dsdt +
00

IA

|| p-F = [ | p(s)p(t)E (s,t)dsdt
00

2
n“Q

o 00

[ [ p(s)o()E (s,t)dsdt]
! |

=

L)
=3
=

D(S)p(t)En(s,f)dsdt i

IA
[T
-

e

S

[ [ a(s,t)p(s)plt)dsat] .
T T -

. +
1 : Recall that <QS,Qt>Q = Q{s,t)




b3 2
< 2{ sup En(s,s)[ [ lp(s)]|as
0<s<T 0

*% p(s)p(t)
+2 [ [ BE2LP=L dsdt} ,
T (s+t+2a)

and, it remains to find a bound on sup E (s,8) . This is done
0<s<T
as follows::

Note that

o(s,t) = [ G(s,u)G(t,u)du

where

G(s,u) = e"(O&S)u p g4 > 0

and furthermore

© n
E (s,s) = inf{] (G(s,u)- ¥ c.G(s.,u))zdu v, B R, I = ApEeanl
n 0 3Z0 & i 1

~so that

B, (s09) < ‘G‘S'“’“iEOCiG‘Si'u’)zdu : (2.4)

for any real co,cl,---,cn .

m
H

Let s be fixed, with Sj

suppose Jj < n - (N-1), where N-1 is the gréatest integer in

Ja/n < g % sj+l (j#1) T/n , and

on/T

Let Gu(s) be the function of s given by

G, () = G(s,u) = o~ (otsiu s,u >0,



where piN(S)- is the polynomial of degree N-1, which takes

on the value 1 at s = S..; and the value 0 at S = S.: 7
J+1 itk

k =0,1,++,8N-1, K £ i . Thus

N-1

o~ 1

; Py (816 (8 541)

3
is the Lagrange polynomial in s interpolating to Gu(s) at
ints S & e LS . \ g
the points Syr S4417 rS 1 iR-1 By the Newton form of the

remainder for Lagrange interpolation,

-1 N-1
Gu(s)_izopiN(S)Gu(Sj+i) & Lzé (S—Sj+i)Gu[sj'Sj+l'.'.'Sj+N'l'S]' (2.5)

' ; th .. :
where Gu[sj,s.+l,---,sj+N_l,s] is the N divided difference

3

i = s . < ‘her
of Gu(x) at the points X Sj' 'Sj+N—l's Thus, there

i ¢ . " that
exists some 8 € [SJ,SJ+N_l] such a

i bl

i g
: Gu[Sj,5j+l,"',Sj+N-l,S] ﬂﬁ“:ﬁ Gu(}.) _
b (2.6)
uN - (6+a)u




Substituting (2.6) into (2.5), and (2.5) into (2.4) gives

N-1 2

0 (S_Sj'l'i)

1=

En(s,s)

I~

2

N-1
= [ (s=s., .)
i=0 Ehes

1 (2n)!
- 20 (N!)222N

T

i=1

Now, use S.

N-1

< N to obtain

[ [ <] i
i=1 S - i=1 N-1
Furthermore,
N-1 i N-1 i 1
log [ ey ) 1log e (N-1) [ 1log u du
i=1 B i=1 1
N-1
- (N-2) + log (N-1)
hence
e 1 - (8-2) 4 an -(on) /T
HE e < (H=lje < e (TF) e
i=1 B B
By Stirling's formula,
N) ! 1 1
1o )2 N (1 =+ O(ﬁ)) .
(N1)™2 N
-
1 an T
£ == (7FJ (1 + O(EH))

Y

r

Y 2N
_I u — e—2(e+u)u -
0 (N!)

! s
j?N)é [22N+l(e+a)2N+1] |
(N1)

2
S.y57S:
—l—ﬁ——l] , for s e [s.,s.
& J

J

+1

)

{2.7)



10 \

Thus, for s < Sn—(N—l)

3
T .
1 o 2an/T

e an 5
En(S:S) s e -;sz- (—T"“) i 0(&;{))

ool e TSR | WIS

The same bound may be obtained for s > provided

Sh- (N-1)
n- (N-1) > N-1, by approximating Gu(s) in (2.6) by the

Gu(si) with si to the left of s . The condition T > 2a

insures that n-(N-1) > N-1, and the theorem is proved.{i

3. Extensions
When o < 0 a similar convergence theorem can be proved,

T, where s, + a > 0 . It is necessary to

i o = +
if s s 0

T
] 0 n
S!l

assume that | Y |p(s)|ds = 0 . Then (2.2) can be shown to hold with
0

the right hand side of (2.2) having a replaced by a + sS4 ,
and the lower limits on the double integral T + sol instead of

T . The left hand side has' f replaced by £' , where f£f'
is that element in Lz(a) of minimal Lz(a)—norm satisfying

[ e Ste(vyac = F(s), &2 Hy o
0

The modifications in the proof occur by noting the following
facts which can be easily established:
(1) There is an isometric isomorphism between LT(a)
and #H where L?(u) is the quotient space

Q w

L(a)/N(R), N(K) = {f e Ly(a), eSte(ryat = 0, s 2 5o},
0



S

NP T e LR

and HQ now has the r

s, t 2 Sy

8
(2) The condition | 0 lo(
0
(2.3) holds.

(3) o is replaced by s,

sequent argument; and

in (sO + a)n/T .

11

eproducing kernel Q(s,t),

s)|ds = 0 insures that

+ a in (2.7) and the sub-

N-1 is the greatest integer

Finally we remark that the error bounds and convergence

préperties-of the approximations
heavily on the particular kernel
st bohm, 252 gy not a 'special
regularization and approximation

equations [5], using reproducing

to the inverse transform rely
associated with the Laplace
case of other results on

of ill-posed linear operator

kernel space methods.
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