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ABSTRACT

The cross validation mean square error technique is used to
determine the correct degree of smoothing, in fitting smoothing
splines to discrete, noisy observations from some unknown smooth
function. Monte Carlo results show amazing success in estimating
the true smooth function as well as its derivative.

1. INTRODUCTION

We consider the problem of recovering a smooth function when
only discrete, noisy measurements of it are available. We are
interested in the situation where the particular form of the true
function is not known, what is known is that the desired function
is smooth. (We will define smoothness shortly). The fitted
curves that result from our work look much 1ike what one would



expect from an experienced draftsman with a French curve.
Formally, the model is

(1.1) Y(t) = f(t) +e(t), te[0,1]
0%, s = t, Ee(s)e(t) = 0 s + t, and

where Ee(s)e(t)

(2)
feH2 .

wéz) {f: fy £' abs.cont., f"eEf2[031]}-

The noise variance 02 is generally unknown. The smallness of
the integral

1
j (F'(t))2dt = M

is taken as the measure of smoothness of f. If f has a small
M associated with it, it will visually appear not too wiggly.
Since f s unknown, M is also unknown. Y(t) 1is observed for
t= t1, t2, cees tn, 0 < t} < t2 < <-tn < 1.

In this note we explore the use of the cubic smoothing spline
. for recovering f and also f', and, in particular, demonstrate
the use of the cross-validation mean square error (CYMSE) technique
for estimating from the data the appropriate degree of smoothing.

2. SMOOTHING SPLINES

Consider the solution to the prob]em' Find fewéz) to

m‘in{:‘ ) (Y(t ) - f(t ) + A f (f"(t)) d1}
j=1

where A is a non-negative given real number. The first term is
a measure of fidelity to the data, and the second term is A times
the "smoothness" of f. It is well known (see Greville [6],
Reinsch [11]) that for fixed A > 0, there is a unique solution
fn,k in wéz). It is a so-called natural cubic spline, possessing
the following properties:

i) fn 5 1s a (possibly different) polynomial of at most
degree 3 1in each of the intervals [0, t1] [t j+1]’ i=1,2, «c.,

» [t,1],

11) The polynomial pieces are joined so that f, f' and f"



are continuous,
iii) f” (0)
f'“A(t1 ) = f'" (t +)
As A > o, fn A becomes increasingly smooth, and the Timiting
function fn,m is the least squares straight line through the data.
As X + 0,

( ) =0, and if ty >0, t <1, then

n
Z (Y(t-) = £ A(t. )% >0

until, in the 11m1t f ,0 Passes through the data. (fn 0 is the natural
cubic spline of 1nterpo1at1on to the data, see Schoenberg [13]).
The use of fn,A(t)’ t;[O,TJ, as an estimate of f(t), te[0,1],
when it is known that sz2 » 1s advantageous because of its nice
convergence properties. See, for example Schultz [14] for conver-
gence properties of interpolating splines (A = 0) and their
derivatives, when there is no noise, i.e., 02 = 0. When there is
noise, then X must decrease suitably with n to obtain conver-
gence. If this is done,

foa(t) 0 f£(t)
A L LT Y

for a1l fenl?). (See Wahba [16], [17)
Now, consider the problem: Find fewéz) to

min {{‘(f"(t))'2 dt

subject to
1 0

2
R Lo (Y(Ey) - f(t)

where S is specified. It is well known [11] that if
L 2
S>inf [ (Y(t;) - (a + bt,))
a,b j=1 J d
then there exists a unique A = A(S) such that fn A is the
solution to this problem, and

1 £
B Jg (Y(t ) - f J\(t ))

FORRBMMIBS B .



A computer program is available (Reinsch [11], [12]) which,
given A or S, and the data {ts, Y(ti)}, f =5 8a aues i,
delivers fn A(t) and fp 4(t). Reinsch suggests that S be
chosen appro;imate1y as o2. (The S here is % times the S in

Reinsch's papers.)

3. HOW MUCH SMOOTHING SHOULD THERE BE?

Practically speaking, the choice of A 1is critical, if A is
too small, the spline is too wiggly and picks up too much noise
(overfit, Fig. 3), if A 1is too large, the spline is too smooth
and signal is lost (underfit, Fig. 4).

The present authors independently came to the conclusion that,
in fact S should be chosen less than 02 by a fudge factor k,

0 <k <1, defined by

Wold [19] showed by Monte Carlo methods that k in the cases tried
should be between .7 and .95. Wahba [16] showed that for f having
3 continuous derivatives with ,f(iv)e o» and satisfying certain
boundary éonditions, that the expected mean square error

10
E A Z] (F a(t

2
: ) - F(E))

J
is minimized by setting
(3.1) | (1-k) = ¢ ;‘-—8% (1 +0(1))

where ¢ 1is a constant and
1/9

o = [[1 (¢(1v)(4))2 dt/dz:} :
0 .

If S 1is chosen optimally, then favorable g.m. convergence rates
are shown to obtain. Of course neither of these solutions tells
us how to choose S (equivalently k if 02 is known) in
practice, since both assume knowledge about f and 02 that is

not generally available to the experimenter.



4., A PRACTICAL METHOD FOR DETERMINING THE DEGREE OF SMOOTHING

The CVMSE has shown great promise as a criterion for the
determination of optimal fit in a number of applications. See
Fienberg and Holland [5], Hocking [8], Mosteller and Wallace (101,
Stone [15]. A fit giving a minimal CVMSE corresponds to a model
representation of the data where the model gives the best prediction
(in the least squares sense) of each data point by means ‘of the
model and the other data points. Another way to say this is that
the minimum CVYMSE gives the parameter(s) which maximize the
internal consistency of the data set with respect to the applied
model. It was therefore natural to try the CVMSE criteria for
choosing S to obtain the optimal degree of smoothing. Our
procedure goes as follows: '

1. Divide the data set into P groups:

Group 1: t1, t]+p, N

Group 2: tz, t2+p, i §

Group p: tp, t2p’

2. Guess a starting value of S

3. Delete the first group of data. Fit a smoothing spline
to the remaining data using Reinsch's program with the S of
Step 2. (Data deletion may be done cheaply by manipulating the
weights in Reinsch's program). Compute the sum of squared deviations
of this smoothing spline from the deleted data points.

4. Delete instead the second group of data. Fit a smoothing
spline to the remaining data with the S of Step 2. Compute the sum
of squared deviations of the spline from the deleted data points

5. Repeat Step 4. for the 3rd, 4th, ...; pth group of data.

6. Add the sums of squared deviations from steps 3 to 5 and
divide by n. This is the CVMSE for S, denoted CV(S).

7. Vary S systematically and repeat steps 3-6 until CV(S)
shows a minimum.



5. MONTE CARLO RESULTS

Some preliminary Monte Carlo experiments to test the validity
of this procedure have been performed, and the results are
extremely encouraging. The first simulation consisted of generating
data for f(t) = sin t, ti equidistant between 0 and w, and

Y(ti)=f(t1-)+€,i, ¥ = 142 wous N

where the e; are pseudo random numbers, independent and normally
distributed with mean 0 and variance 02. 10 runs were made for
each of the cases n = 50, o? = 10'5, ]0'4, 10’2, 1 and n = 100,
o® =108, 107, 1072, 1. We chose p =10 A "run" consists of
one set of n simulated data points. Figure 1 shows the cross
validation mean square error CV(S) = CV(koz) plotted as a function
of k, for four typical runs. The true mean square error TR(k)

and the derivative mean square error D{(k), defined by

n

_ 1 2
TR(K) = 1 J-Z] (Fp 2 (E5) = £(£5)
(k) = 1 T (F () - £'(t))2
j=1 n,At7j J

are also plotted in Figure 1. (Recall that ) 1is a function of k
through the relationship A = A(S) = l(kcz), in practice, CV(S)) is
plotted and its minimum determined). We plot CV, TR and D as a
function of k for convenient comparison on the same range of
abcissae. The ideal k (actually S) minimzes TR(k) which is

also not known. Note that in all four cases, two with small o?

and two w1th large, CV(k) follows TR(k) and the minimizing values
k and k respect1ve1y are very close. More importantly, note
that using k leads only to a slightly 1arger mean square error
than the minimum attainable if the ideal Kk, namely k » were known. The
fo11ow1ng tab]e gives values of the relative inefficiency
TR(k)/TR(k ) for the four runs of Figure 1.
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TABLE 1

The Relative Inefficiency TR(k)/TR(k ), Four Cases

Run A B

0"2

-4

10 1,13 | 1,03

1 1.14 | 3,0

These four runs are typical of the other 76 and were selected before

the results were examined. Run A with 02 = 1 actually has the
3rd largest relative inefficiency of all 80 cases.

A few cases of p = 5 were run but the results were not as
good as these chosen here. The classical CVMSE frequently uses
p = n, which corresponds to deleting one point at a time. This
would no doubt give even better results, but is at lTeast n/10

times as expensive to run, with the program we are using now.
Table II gives the mean and standard deviation (for each set

of ten runs) of u = TR(k)/TPf' )
TABLE II

The Relative Inefficiency TR(k)/TR(k*), Means and
Standard Deviations of Ten Runs

ol |
Q
= |
Q
=
Q
g |

0)
u u u u

90 { 1.8 .29 § 1.23 .37 { 1.27 .65 | 2.49 2.0
100°] 1,07 ,09 { 1.08 .09 | 1.10 .12 | 1.59 1.2

We found it remarkable how closely the CVMSE procedure comes to
achieving the smallest possible mean square error in each run, over
the range of parameters. HNote from Figure 1 that Q is quite a
bit different for the 2 rep!1cates for each set of parameters,
nevertheless k comes close to k and TR(k) comes close to
TR(k*) each time.

Table III gives the mean and standard deviation (for each set
of ten runs) of v = D(ﬁ)/D(k**). K is that value of k which



minimizes D(k).
TABLE III

The Relative Inefficiency for the Derivative, D(k)/D(K"),
o Means and Standard Deviations of 10 runs.

o -6 -4 -3
1 1 0 1
~_ 0 0 1
u O’u u u u Ou u OU
50 | 2.37 1.1 | 1.99 1.4 | 2.44__ 3.2 | 3.84 5.6
100 [ 1.51 .68 1.53__.75| 2.19__1.6 | 2.06 1.14

We believe that these results demonstrate the feasibility of this
technique for estimating the derivative.
Figure 2 plots, on a log log scale, the average (1-k) for each

FIG. 2,

Average (1-k) for 10 runs vs.o?2.



group of 10 runs, for the four values of 02 and two values of
* ~
n of Table II. The average k , and hence k can be expected to

behave according to Equation (3.1), thus straight Tines approximating

this data should have a slope of -1/9.

and -.09. The distance between the straight lines for n = 100 and

n = 50 should be about 8/9 1o0g[100/50] = .27

about .24

cycles.

cycles. It is

We conclude this discussion with a visual demonstration of
the kind of results one can expect.
according to the model of (1.1) with
f(t) = 4.26(e't - 4%t 4 3e'3t). Figure 3 gives a smoothing spline
with A too small, and Figure 4 gives a smoothing spline with A

.

The actual slopes are about -.12

Figures 3-5 give data generated

n =100, o

= .2 and

C |
80
60 |
40 |
20 (f- -
00
-.20
\
T =
F
L
-.60 7
-.80 |
-1.00
n Il m
-1.20 M
cmd e b b b b Lo b bvp o by by b by
co 25 «50 18 L.00 1.28 t.50 1.7% 2.00 2.25 2.50 2.75 3.00
FIG, 3,

Data generated according to the model (1.1) with n = 100, o = .2
and f(t) = 4.26 (exp(-t) - 4 exp(-2t) + exp(-3t)).
f(t). Solid curve is fitted spline with k = .50 (too small),

Dashed curve is

3.25

10
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too large. Figure 5 gives the smoothing spline with A determined
by the CVYMSE criteria with p = 10,
noise, we considered the result impressive,

Considering the magnitude of the

Remarks:
1s
verges in an appropriate sense, to the optimal
2 -6
=10

* A
in the estimation such that k - k is invariably positive. This
2

It remains to prove that the S estimated by CVMSE, con-
S
we have noted a pronounced bias

We believe a

proof will be found. For o

bias was barely perceptible at 02 = 10—4 and not at all at 10°° or 1,

From our present understanding of the relation between CV(A) and TR())
we believe that a theoretical relationship is: For fiﬁgg_ﬁz >0
m{n CV(r) » m;n TR(A) as

2. This technique is related to but not the same
as that of Andersen and Bloomfield [1] for obtaining the derivative

n -+ o,

Ja
.80 |-
[
B 25
60 0O ] ;
'mi_ E[::lg E!EI]m E]- . ]
C %%El%éEg“ - —-"--———»7i=rgéglkﬁﬂ_‘g;¥_
20 G FEs = o T n O ET o~
- uliu m
Ll Ul m O
f
20 ﬁ
Fm
40 :-‘
A\ J"Fr
F m 4
w0y 0 )
F dh Qﬁm
00 el
i o
B m U
20 —
Do bvss b b b bvven b b by b s baaaa Ligsy
.00 - 25 «50 ..75 t.00 1.25 (.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
FIG, 4,

Same data as in Fig. 3.

Spline (solid curve) is fitted with
k = 20 (too big).
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f' from discrete noisy observations. See alen Cullum [3]. The
relation between the CYMSE technique for determining A and
Anderssen and Bloomfield's method is discussed in [18].
3. This method has great promise for determining the appropriate
degree of smoothness for a spectral density estimate, when the
spectral density is known to be smooth and bounded above and below.
Let Z(t), t = ..., -1, 0, 1, ..., be a zero mean stationary
Gaussian process with spectral density f, let Y(w) be the periodogram

. e
Y(w) = r].‘ ri] Z(T)e"TUJ
T:

TT TR T T[T T T[T T 7]

TX

J T

M 4

=3
o
LA LA L LI L L L A O

e ey b by s b by b bvv o b b baaaa by
W00 25 50 «75 t.00 1.25 .50 1.75 2.00 2.25 2.50 2.7 3.00 3.25

FIG. 5.

Same data as in Fig. 4. Spline (solid curve) is fitted with
k = .99c which was the k-value corresponding to the minimum CVMSE,
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Then (for n even)

Y(tj) = f(tj) tes, tj =2mj/n, §=0,1, ..., n/2

where the Ej are approximately independent, zero mean random
variables with the standard deviation of «. approximately f(tj)
for §=1,2,...,n/2-1, and 2f(t ) for j =0, n/2. Thus, the
data above approximately fits our wode] possibly with weights
. added. Cogburn and Davis [2] give a theoretical procedure for
choosing X which ensures a favorable rate of convergence. We
believe the CVMSE is a reasonable estimate of the optimum .
- de Figueiredo and Thompson [4] also studied a smoothing spline
spectral. density estimate numerically. Ye would like to see some
experimental work on CVMSE and smoothing splines for spectral density
estimation. See [18].

4. The problem studied here is a special case of the problem
of choosing the parameter A in the method of regularization for
solving noisy linear operator 2quations. Let

Y(t) = (Kf)(t) + e(t),  te[0,1]

where K is a linear operator on a Hilbert space ?#— of real valued
- functions on [0,1] with norm or semi-norm ]l-||}$, and with the
property that |

[KF(t)] < Cllfllﬂ te[0,1],
where C 1s a constant. For example Tlet H = “(2) with the
semi-norm |]f][}* f (F"(t)) 2 4t and (kF)(t) = f K(t,s)f(s)ds,

K(t s) cont1nuous The method of reqularization estTmates f as
the solution f,, to the prob]en Find fe?#—to
]

_1 "y
min = I (Y(t ) - flt, ))% + ll[fllw*

See Wahba [17] for exp11c1t formulae for £, a2 The problem of

choosing A has been attacked by a Targe number of authors (see

Wahba [17] for references) but no satisfactory practical solution

seems to exist. See Hilgers [7] for some recent numerical experi-
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ments. e believe that the CVMSE technique can be shown to be a
satisfactory practical solution to the problem of éhoosing A in
this problem.
: T 1 - 2 q.m.
5. It is sho?2)1n Wahba [17] that E||f fn,lllﬁ%""'* 0 as
n+o for Y = W3"", if X 1is chosen suitably. This entails

that if L 1s a continuous linear functional on Héz) (endowed
with any of the usual norms) then
E|LT - Lfn,Al >0,
so that e.g. we estimate Lf = [Tf(t)dt by f1fn A (t)dt. This
0 0 2

suggests that we ought to be able to estimate some non-linear
functionals like max f'(t) by max f! 3 {x).
t i e

6. As is usual and well known in these types of problems, there
exists a Bayesian model which gives a smoothing spline as the posterior
mean. It is as follows: Let Y(t) = X(t) + e(t) where e(t) is

as before and X(t) 1is a zern mean Gaussian process of the form
t S

ot +}f ds [ d4(u)
0 0

where the covariance matrix of 6, and 0, fis Yl,.o and W(u)

is a Wiener process. Thus X"(t), while it doesn't exist, is the
formal derivative of a liener process (continuous time "white noise").
Let XY(t) be the posterior mean of X(t), given the data

¥t) = 8, + 8

Y(ty)s ..oh Y(t ), and let X(£) = 11m QY(t). Then, X(t), considered

as a function of t, is, for some A, the cubic smoothing spline for

the data Y(t1), — Y(tn). (See Kimeldorf and Wahba [9]). OQuintic

smoothing splines are obtained by letting X"' be white noise. Then

“smoothness" means ](f“'(t))2 dt 1is small. More generally, Tchebychev
n %

smoothing splines are obtained when } an(J) is white noise.

j=0 .
However, we prefer X" white noise, because the concommittant

definition of smoothness appears to be psychologically valid.
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