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Note: This report contains a part of TR 340, by the same
title. In TR 340, the true curve f € W£m+p) for p = G, 1,
Here discussion of p = 0, 1, ..., m-1 is eliminated and more
precise results obtained in the p = m case. In TR 340, an
upper bound on the expected square error was minimized, here,
the expected square error itself is minimized. The optimum

smoothing parameter is the same.



ABSTRACT

It is shown how to choose the smoothing parameter when a
smoothing spline of degree Zm-1 is used to reconstruct a smooth
curve from noisy ordinate data. The noise is assumed "white",
and the true curve is assumed to be in the Sobolev space
ngm) of functions with absolutely continuous vth derivative,
v=20,1, ..., 2m-1, square integrable 2Zmth derivative, and
satisfying some boundary conditions. The criteria is minimum
expected square error, averaged over the data points. The
dependency of the optimum smoothing parameter on the sample

size, the noise variance, and the smoothness of the true curve

is found expliecitly.



1. Introduction

(m)
2

with absolutely continuous m-1 st derivative and square integrable m-th

In the Sobolev space W of real-valued functions on [0, 1]

-

derivative, define the two functionals

)
0 = | (£™w)? au

n

Mﬂ=é2imw—nﬁ, t,<[0,1] .
1=

It is well known, (see [6][7]), that the two problems
(A) minimize R(f) + N\ J({) D<A < (given)

- (B) minimize J(f) subject to the cmstraint Rf) < S, 0< S <« (given)

- are closely related. If n>m (A) always has a unique solution for any A,

and, if S < R(pm_l) where pm—l is the polynomial of degree m-1 which
minimizes R{f), then there exists a unique M\ so that the solution to (B) is

also the solution to (A). The parameter A is used in the computation of the solu-
tion (see [5]), whereas S, being '11; times the apparent residual sum of squares after 'the
smoothing is performed, is a far more intuitive parameter to work with. In [6],

Reinsch has shown how to compute X\ given S. Conversely, given A,

is the solution to (B) with S = R(g

gn,)\ n,A)'

. n
Let g, be the solution to (A), for given X\, If the data {yi}
! ' i=1
represent some true but unknown smooth curve, say g, measured with

error,

Yi=g(ti)+ei, i:l,z,,..n, tiE[O’I]



then it is desired to choose \ so that < approximates g. It is well
r

known [7] [8], that g, , isa polynomial spline (of degree 2m-1), and, if
b

g approximates g, and ge W(m) then g(v) will approximate g(v)
n, A 2 ’ n, A

for v=0,1,...,m=1. For this reason, the use of the smoothing spline g _

b
is much in favor by researchers who are interested in recovering functional
values as well as derivatives from noisy ordinate values, when nothing is known .

about the solution other than ge Wz(m) . See, for example [9][11][13].
Suppose that the errors {e i}n may be considered to be values of
i=l
random variables {Ei}n with
i=1

-
1
—
a8 ]
=3

E€ =0,

_ 2 o
EGiEj-—U, i=]j

where E is mathematical expectation. This is a reasonable model for what
might occur in practice. It has been suggested by Reinsch [5].that one
should choose S to satisfy 02(1 = JTIZI) =8 _<_02(1 + \/_%—) . On the other
hand, experimental results by Wold [12] indicate that S should be chosen

less than crz, say .762 289 9502 ]

It is the purpose of this note to investigate, from a theoretical point

of view, the optimum choice of X and hence 8. We adopt the

criteria of minimizing the expected squared error, averaged

over the data points. This is E Y{\) where

i 2
W) = 2 PACRCREI



Other "least squares" criteria are reasonable, for example, to

choose N to minimize

Ell g-g, y | )

(m)

5 This is useful if one wishes to

where H : ”W m) is some norm in W

(
estimate g(v%(t) say, for some v=1,2,...,m-1. The linear functionals

(m)

which map g e W(m) -*-g(v)(t), te [0,1] are uniformly bounded in W2 :

2

for v < m-1, and so we have

sup E | g™ty - g(;)

2
t Hols kel g—gn,hnw(m)

i

for some K.

2 .
H is discussed in some

The choice of ?&I to minimize E Hg - gn’ A
generalityin [10], in the context of the numerical solution of linear operator
equations, and we will rely on some of theseresults. The relationship to the
"intuitive" parameter S5 is not discussed there, however. We remark that a
related study has been made in connection with the use of smoothing splines
to estimate spectral densities [2].

1

Note that IE is a semi-norm on Wzm)

In order to obtain our results

in a reasonably direct manner, we have been forced to modify the problem so

that J(f) = 0 = f = 0. This may be done by requiring that g - gn’)\ is in a

subsgpace of Wém) whose members satisfy m suitably chosen boundary conditions.

For convenience, we take the boundary conditions as,

B2 £(0) = £1(1)

- q

{(0) = 0, m odd

£ R L. = f(m'll

D) =

—

£(1) Ll o & w eyen

£100)

1

£ (1)

That is, it is assumed that g(vJ is known for v = 0, 1, ..., m-1.



~

The results are apparently true for any m boundary conditions {fy)m

such that fe @m and J(f) = 0 =f = 0. The solution to the original problem
without the boundary conditions is a natural spline. We remark that for inter—
polatidn problems, the convergence properties of natural splines tend to be the

same as those for splines satisfying boundary conditions, in the interior of

[0,1], see [1][3][8]

The results are as follows:

Let g, be the solution to the problem: Find f e W%m) to
3

A

minimize R(f) + XA J(f), subject to g - g x € . , where t, =
1'1, T 1

(2i-1)/2n, i =1, 2, ..., n. Suppose further that g ¢ WZ(ZmJ

and in addition satisfies the boundary conditions

Gre g™y = gmMY oy == gDy, nooad (1.1)

g™y = g1 (o g(zm-l)(UJ; m even .

Then, as n+», E Y(A) (1 + o(1)) is minimized by 2 A* given by

a ;
m,2m/ (4m+1)

n2m/[2m+1) (1+o(1))

where a is a constant depending on m, given bLefore Theorem 1,
2m 2 4.2
o = 11113/

: S i
||, is the %, norm. TFurthermere, S* = R(g ,4) satisfies
L 2

and |

2 e1/(4m+1)
B 5% £ g [l = Ch n4mf(4m+1)] (1+o(1)).

where . is a constant depending on m, given in Theorem 3. Thus,
H
2 :
S should be chosen less than o” by a factor no larger than k given by

81/ (4m+1)

k= [1-¢y n4m/(4m+1)] (1+o(1)).




Note that K tends to 1 from below as n becomes large and as the ratio of a

measure of the fluctuation in the "signal" to crz becomes small, We also find
*

a bound on the expected average square error at the data points when X is

used. It is

ol/ (4m+1)
K A Sodobt S8 N ) (1+a (1))

E qJ(K*) 5 bm ’:")’m!’ {iﬂ""%? \ 1 O {_1 _j J} »
n LN /

where bm is a constant depending on m, given in Theorem 2. Thus, if
z* (equivalently, S* ) is used, then as more data is gathered the average

- 4m/(4m+1) For

expected square error tends to zero at the rate n
practical purposes with moderate sample sizes, if one wishes to estimate
derivatives no higher than the first, it is reasonable to take m = 2, then the

smoothing function is a cubic spline .

2. The Optimal Choice of A

We first state some standard results, good for any reproducing
kernel Hilbert space _:-’/Q of real-valued functions defined on [0, 1]. (See,
for example [4]). Let ,}VQ possess the norm || . H Q the inner product <-,:>, and
the reproducing kernel Q(s,t). Let Qt be the representer of the evaluation
functional at t in ',’6’ Q) = Qlt, -), <Qt’ f> = f(t), fe ste [0,1]. Let
Q, be the nXn Grammian matrix with i, jth entry <Qti’ Qtj> = Q(ti’ tj)’ and

let I be the n X n identity matrix. Let



g, = (alt), olty), ..., glt))

E 6, & -, €)

Y, = (V¥ ov 5 V) Y =91 &
Inn = G0 ) I alt2)s - Gy () )

The sclution 9 % to the problem: Find fe ,}fQ to minimize
)

e el
R(f) + ) 0
is
-
gn,x:-(Qtl’QtZ’ QU@ D) Ty
n
Then
9.\, = Q. Q.+ nu)‘lgn -3
=AM, + DT g + QR mADT &,
~and
- 2 1 2 5
S NCRNCIEE RS L CISE N RN

- 20N €' (Q DT Q(Q + nAD T T,
sEr@+axn o +any 2 3
n n n n n
2 e ~2_ g2 -2 2
=n\ g;_l (Qn+ n\I) 'g"l_1 +n—Trace (Qn-i-n?\I) Qn .

(2.1)

The first term on the right of (2.1) is called the bias term,

the second, the variance term.



We now specialize to a particular space .}/Q . Let ,?/Q be the

subspace of W(zm) satisfying the boundary conditions Bm’ with || |] Q =J().

Without further loss of generality, we may assume that both g and 9.
2

are in JfQ. If not, since {Mvg}f:é are assumed known, we may replace

gbyg-h, ¢ JJQ where h the polynomial of degree at most m-1 satisfying

h - g e and similarly

for gn, X

O’J/Q has the reproducing kernel Q(s,t) given (see [10] for details) by

Qls, 1) = ), A, ¢, (s (1), m odd
; v=1
= Z‘, hv va(s) ¢V(t), m even
v=l
where
A= [v-Hm "
¢ () = N2 sin (v-HT s

g (s) = N2 cos (v-H s,

An alternative formula for Q is given recursively by

Q(s, )= QM(s, t)

Q] (s,t) = min (s, t),

11
Q™s, 0 = [ [ Q™ Ly, v) du dv,
s t

m X e
Q™s, )= [ [ Q" (u,v)dudv,
00

m even

m odd

(2.2)

(2.3)



Qt(-) is a polynomial spline of degree 2m-1 with a single knot at t, and

Qul) e ng-
Next, let

2 ssu.H (2.4)

and let QE be the n X n matrix with i, jth entry

M=

YRS

n
It can be shown that the vectors {$vn } given by
v =1

1

n

$ =

v

(6, (1), &,(t,), .., ()

v n

n

are the normalized eigenvectors, and {n )\v} are the eigenvalues of QE

v=1 )
Any & in/%-/Q with Q@ given by (2.2) has a representation

= ¢]
g= ), g, %,
v=1

where, letting (-, ) be the 4‘{2 inner product,

g,={g,¢), RS (- RO
and
el gZ >
v 2 _ 1 (m)
5 by, lollg =llg ”z :
v=l

similarly, for Q given by (Z2.3).



_10_

n
Let g" = Z g,$,, and
v=l
gn = (g™(t), g'(t,) ey
n 1" 27 g n *
Then
S Z 2
no (g DooN g
2 —n' -2 = '
I e ewer il Mer
v=l (nX +nh) v=l (A F )
It can be shown that the bias term
of (2.1) differs little from the left hand side of (2.5), asn =%, A >0
in such a way that nk -, that is,
2= -2= _ ,2-n',.n -2_n
n\ gn(Qn+ niI) gnqn}\ 9, (Qn+n>xI) gn(l-l-o(l)).

For examples of this type of calculation in detail, see [10]. We omit a proof

here and state only the result, as

Lemma 1

Let Q be given by (2.2) or (2.3) and {ti}iil given by (2.4)

Let g € 1‘J§m)€/“-‘ *CQi'm. Then, as n + =, A + 0 in such a way that

nA + °,
2.2
2 N | "2 T - 5 p\ g\) 1+ 1
n A FrlgakI) ¢ g o= g === (1*0LE1h

n v=1 (Rv+k]

(2.5)

(2.6)
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n . ; 3
} be the n eigenvalues of Q_. For the variance

Let { J
‘f'vn v

term, similarly, one shows that

2

n kN
Trace (Q +n7\I)“2 QZ = ?‘ —_—Y differs little from
n n £
v=l (N __+n\)
vn
2
2 ! (n\ ) n
n RS o N v . 1
Trace (Qn-%»n)\l) (Qn) = = Z/ o

Vel (n)\v+n)\)2 val (M I(v=-2)]7)

o0 dx

1
= (1 + o(1))
HOJ (g 2Ty ’
where ofl) is as before. Thus we state
_ Lemma 2:
Let Q be given by (2.2) or (2. 3) and {ti}n by (2.4). Then
i=1
-2 2 km
Trace (Qn+n)\1) Qn = Tl?fm(l-m(l} ). (2.7)
where
o0
k = L j __._.C_iL__
m I 2 2 !
0 (l+v“™

and o(l) is as before.

Thus, combining (2.1) andLemmas 1 and 2 gives

Lemma 3:

Let g ¢ I“»-’ém);’\\fz; . Then

2 2 2
] = 2 B g k o
n i Eanadele)T = L e S (e (1) (208)
v

where o(l1) is as before.
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T (2 m) ._,fl 3\*
We now suppose that g ¢ W3 fﬁVEmKA\Qh . Then

1 o gl
2m); 2 - 2 2 i} &
@2 = [ @@yl auz ] L<w
0 v=1l A
2 2 ’
n g *® g
Note that since _~—3—~§ < 7 —% = ||g(2m)|]% , the right
v=1l (A _+}) v=1 A
v v
hand side of (2.8) is less than
2
K. o
2 2
OH 113« gt (ro) (2.9)

and that the quantity in brackets in (2.9) is minimized by

A' = A'(n) given by

¢ g 1
A [9 ] 5 (2.10a)
n

where

a, = km/4m

2m z2; 2

6 = |lg" )IIZ/G (2.10Db)
and

qg = 2mn/(4m+1)

Theorem 1 below says that A* which minimizes (2.8) satisfies

A* = A" (1+0(1))

Theorem 1.

Let Q be given by (2.2) or (2.3) and {t;};7; given by (2.4).
Let g ¢ w§2n0 (ﬁ\ Qin(”\gﬂ;. Then, as n » «

a3 ]
—_t
<
e-13
—

(gn,,(t5) - g(ty))?
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is minimized for X = A% given by

= R :% (1+0(1))

Proof

Differentiating the expression in brackets in (2.8) with
respect to A and setting the result equal to 0 gives, after

some algebra,

n amcz
H (A = Z hifAfk ) W, = ~= (2.11)
v=1
where
hx) = x/91ex)°
W= p_A 1/q
v vV
_ 2,2
Py = gv/lv
Now Hn is continuous, Hn(O) =0, Hn(h) > 0 for A > 0, and,

since h(x) is monotone decreasing for x > 1/(3q-1), Hn(l) is a
decreasing function of X for X > Al/(Sq-lj = o, say. Further-
more, Hn(l) is a non-decreasing function of n for each fixed A.
Thus, it follows, that for n sufficiently large, there is always
one root of (2.11) less than a and one root larger than o, which
must tend to » with n. As A,n + =, the right hand side of (2.8)
tends to ||g(2m)||% , which will be seen not to be the minimum.
We now look at the root(s) A* = A*(n) < @. It can be checked
that, the second derivative of the term in brackets in (2.8) is
positive for ) = 0(ja), so that these roots will be minima if

1 n
they are 0(—;).
n4



Rearranging (2.11) gives, for the solution A

-14-

P, T
I v=1 "V
n
) °y
v=1 (1+A*/)\U)3

Since the term in brackets in (2.12) is always greater than 1,

A* must satisfy

Furthermore, for any k < n, and A% < a,

o o 9 oo
zlpV 3 vz #
« = % V=
LAt N s S
= % 3 Z v
v=1 (1+Ax*/2 ) V=
- v -
@ -
o
< A (/)| S
} o
V=1

We can now use (2.14) and (2.

A% < A (1+0(1)).

0
Let n > n, where 3 p, > 0.
v=1
& '
AE <A cno(g)

for all n > ng, where

15) to show

Then, by (2.15)

A®,

(2+12)

(2.13)

(2.14)

(2.15)

(2.16a)
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(g) = min (1+u/lk) %
0 k<n0 Z 0

(2.16b)

Substituting (2.16) into (2.14) gives, for all n > n, and any

k <n,
- q
3 frr”y
M € A1 [ e (8)/2) i 2Rl
— nO If
p
v=1 v
Now let
1 7 E
k = 5 n21'rl (1+o(1)) for some 0 < €& < %%. Then

A® < A'(1+0(1)),

and the Theorem is proved.

Next, substitute A* of Theorem 1 into (2.8). After performing
some calculations one obtains
Theorem 2.

Under the conditions of Theorem 1

2 1/(4m+1)

n
E 'I_Il- zl n,)\*(tl)_g(ti))z = bm a 2m/(4m+l) (l"‘O(l)),

where

k +
bm _ (E%)4m/(4m l)(4m+1)2

Thus we have convergence for the true average mean square €rror,

-2m/ (4m+1)

at the rate n , provided A* is used.

We next turn to the apparent average residual sum of squares

R(g, ) -
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n

g = -]:- (o ( - 2 _ 1 I ¢ -1,— = - 2
M"’HJ\) n izlh‘n,kkti] yi) == |IQn(QD_+“?\I) (En+€11)‘(51n+en)”2,n ,
where H“Z

’

is the norm in Euclidean n-space and® =(¢ D
under the conditions of Theorem 1,

EZ"“’En)' Thus,

. . - 2 2 =2
E ]\(gn,)\} =n\ gn(Qn+n?\I) gn+n?\ o Trace(Qn+ niI) 4
2 Goal” o & _(an?
&l g%, Clblly ) 4 2 (2.17)
v =] ()\,vn‘{"n)\)
Now
1 r}‘ n7\2 nl )“vn 1 A 7\12)n
P R e e e
K vn B= vn' I e vn ©
We have
Lemma 4.
Under the conditions of Lemma 2,
n Rvn ;. n?xv lfn .
I e o O e (IO L)} =i (D)) [2.19)
e L 0 = ik AR 2 t/2m
v=l vn v=l v
where
7 2 ['m xzmdx
m I, 2m, 2
(1 277)

and o(l) is as before.

A complete proof of Lemma 4 is given in [10]. A proof of Ilemma 2 may be obtained

by following the proof there. Substituting (2.7) and (2.19) into (2.18), then

substituting (2.18) and A* of Theorem 1 into (2.17) gives

Theorem 3.

Under the conditions of Theorem 1,

E R(g < A2

3 +2)
A~ -

( 2my12 (l4+o(I)+ o2 1 - M ;
g I — 172m (1 ol))
and
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el/(4m+l)

‘-, “rmrmmeTy] (ret)),

BsS* = E R(gn’}\*) <0

where

and = (kg /am) ™ D fan g /-1

o(l) - 0 as n + =,
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