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ABSTRACT

The cross validation mean square error technique is shown
to be appropriate for choosing the smoothing or "bandwidth" para-

meter, in estimating the log spectral density with periodic splines.

1. INTRODUCTION

Let X{(t), t=...-1,0,1,... be a zero-mean stationary
Gaussian stochastic process with spectral density f(x), - 3 <x<z,

given by

o]

fs) = Z R(T) e 2TixX T :

T=—00

R(7) = EX(t)X{t+ 7}, T=eoea=1,0,1

9 9 g v e



We suppose that gx)=1log f(x) possess a power series expansion

of the form
[+.e]

' 2mivx
glx)= ), g,e ,  xe[-32],
Y==00

and furthermore, for some (given) m 2 2,
o0
2
Y gl (2my®™ <o .
Y==00

Our goal is to estimate g(x), Xe [—%, %] from wvalues of the

periodogram I(x),

1 - 2niixT
Ix) =>—| ). X(me
T

at the points XX, 5/2n, j= =(n-1),...,n. We will make no attempt
to discuss the extensive literature on spectral density estimation
here, other than to point out that every method in commor: use re-
quires that the user chocse a bandwidth or smoothing parameter.
The purpose of this note is to present an argument that the cross
validation mean square error technique (CVMSE) of Wahba and
Wold [13 is ideally suited to make this choice. The CVMSE is
here used in conjunction with a method introduced by Cogburn and
Davis [3] for estimating f. We feel that this is an important idea,
since the problem of selecting the degree of smoothing in any
spectral density estimation procedure seems to be incompletely
solved. Thus, we present the application of the CVMSE idea with-
out direct experimental evidence, relying on the

similarity of the formulation of the model here to that in Wahba
and Wold (3), and the experimental results there, to persuade the
reader of its reasonableness. We present a sketch of a proof that the
smoothing parameter chosen by CVMSE converges to the smoothing
parameter which minimizes the mean square error.

2. THE PERIODIC SMOOTHING SPLINE TOR
LOG SPECTRAL DENSITY ESTIMATION




Let

Then

and, to a good approximation

. = f(j/2n) U,
Ij (J/n)J

where Uj’ j= é, 2,...n-1, are independently distributed as one
half times a x~ random variable with 2 degrees of freedom, and
Uo and Un are distributed independently of each other and

Uj, i=l 2,0l and.as XZ with one degree of freedom. See
Walker [12]. Let

Y,=log I +C,
J =4 ] ]
where Cj = C, the Euler-Mascheroni constant, forj =+1,2,...,
n=l, C=.5772L.. and let C_=C, = Llimz2+0).

T
Then

Y, = gti/2n) e, ] z~ln=l) . ooy

i j (2.1a)

bl
where By F log UJ + Cj. Using Bateman [2] Vol. I, Section 4.6,

and the density of a -XZ random variable, it is seen that

7

Ee, =0, j=-(n-1),...,n, Eejz='rr2/65 o2 j=+l 42, ...,+n-1. (2.1b)

j

Now, let a(m) be the linear space of periodic Hermitian

functions on [- 3, 3] of the form

Q0
hisx) = 2: hv eZwivx’
Y==00

]

with h = h_ , and



o0
), Ihflznn)®™ < w
v-—OO
ﬁ:},(m) is a Hilbert space with the norm defined by
2
2 2 |n|
Inl = (2mv)°™ [ | 0
n v=z-°0 * KO
} 2 } |2
L (m) i
h%f | 0'™ ()] dx+l/)\01-l h(x) dx
1 |
L J

where 7\0 is a fixed positive constant whose choice will be dis-
cussed later.

The estimate gn, X of g will (bri)taken as the (unique)
solution to the problem: Find ge - to

n
min-z% 2, lgi/2n) - Yj)z y
J==(n=l)
1 z '
\ lj )(x)\ det 5= | Jomaxil (2.2
£ o 2

/]

Cogburn and Davis [3] use the solution to the problem: Find

g e ;Jm) to

n
mins= ) (q(i/2n) - %) oY J g™ ()| ax
1==(ni=1) ~Z

which can be shown to be the limit as ?\O -+ o of the solution of
(2.2). We discuss (2.2) because it simplifies the technical de-
tails to follow.

It can be verified that ;,/(m) possesses the reproducing
kernel Q(x,y) given by

™ *
Qx,y) = ), A, @ (x) @ (y).

y==00



where
2mivg

(%)= e , ¥ =l Bl
N, = A, -1/{21w) R R i S

and 7\ is the same as in the definition of H h” 2

It is well known from e.g. the properties of reproducmg kernels,
(see Kimeldorf and Wahba, [8]) that the solutionto the problem of
(2.2) is Ly Y—(n—l)
y (®) = (QXI(X), QXZ(X), s szn(x))(Qn+2n}\I)

(2..3)

where Q (x) Q(x %Y, =(i-n }/2n, i=12, , 2n,
and Q is the 2n X Zn matnx with i, jth entry Q(x X )

Since

=]
= cos 2myv (x-v)
Qx,v) = 2 ), Foasunal W
] (2mv)

the series expression for Q(x,y) can be summed (see Golomb [6],
also Jolley [7]). We have

) r-1
cos 2mwvt -1
2 ) ;m = v 28211,(1:) Ad.gvad
=1 (21 (2r).
where
i Lzr\‘ 42777
B, (t) = -
2r !
pso \P/ P ’
By=1 B =-3 By =B;=... =0, and
o0
g p-1 i A\ 1
2p = (D) 2igp)t ) === | p=lid..e

v=1 (Zﬁv)zm

The Bp are Bernoulli numbers. Thus



B,(x) = <%= x|+ 1/6
Byl x -2l x| 3 + %% - 1/30
By(x) = x0=3l%| 5+ 5/2 x* - V2x® + /a2

90 (x) is thus the sum of a polynomial spline of degree 2m-1
bl

and continuity class Gm-Z with knots at Xy and a multiple

of XZm. As )\O ~+», the coefficient of X2m - 0 so that gn’)\(x)
is a spline. See Kimeldorf and Wahba [8, Lemma 5.1] for the
)\O = o solution. See Cogburn and Davis [3] for a simplified
representation, as well as a discussion of computational consider-
ations and experimental results withvarying X\. Golomb [6] has
discussed interpolating periodic splines (X = 0). Note that
Qn + 2nXl is a circulant matrix so that its inverse can be written
exactly.

We next give an approximate large n formula for 9o for
the purpose of studying the CVMSE.

2

Let n
Qmyi= ) A, T (02 (y)
v ==(n-1)

n
and let QE be the 2nXx2n matrix with i jth entry Q (Xi’ yj). Then

) WD W

where W is the 2n X 2n dimensional unitary matrix with j kth

entry
(/N2n) @_ () = (/N zRje 2 i nikenl/2n

and D is the diagonal matrix with j jth entry 2n )\j-n’ 1=k 2,0,

2n. Note that the diagonal entriesof Qn—- Qﬁ are bounded in
absolute value byo

' 1 1 1
2 < -
vén 2rv) 2™ = (2m)f™  (2m-1n®™]




which can be used to show rigorously that all of the following
approximations are "good" for large n.
Then, approximating Q by Qn in (2. 3) gives
n b

1 ' 2mi(j-n)v /2n v oy
Ly & (A, +N) Y,

g, )~ g (%)=
SR e L R T s

where

n
?'v g il Z.‘v e_ZMVk/ank,
NZL peetnel)
equivalently
Boodn o L i v fanE ) (2. 5a)
gn, AzZn' - 2Zn j ks\* 2n
k==(n-1)
where
5 2mi (T-nh/n hv
T | =
a)\(z_n) = L e XV+ )\. (2. Sb)
v==(n-1)
A

Equation ( 2.5) with X 2)\ =1 is the approximation used by

Cogum and Davis to com%ute their spectral density estimate.
(Note that our N is Cogburn and Davis' 1/ 2m).

3. THE OPTIMUM THEORETICAL CHOICE OF \.

The criteria we adopt for choosing X is to minimize the average
mean square error E

1 2n 2
B s jéi (gn, \ (%) = alx))

The optimum X\ = \*¥ is given by Cogburn and Davis [3] who gave
(3.4)- (3.5) below for the estimation of f, assuming f(?‘m)
continuous. To be able to make precise our claims concerning
the CVMSE, we give the formula for A\*,

m(?.m).

We sketch the proof under the slightly weaker condition ge .4



Let

g, = (alx)), a(x,), ... y 9(x, )
'e_nz(el, €5y v e2n)'
Then
2n

)2 =

: ‘ —1_ Ly -2 —
E Fj%ﬁ (g, Ax;)-a(x,) >0 E{(2nM)%g "(Q +2nN) Tg

- -1 -1— I
- 4n\ o (Qn+ 2n\I) Qn(Qn + 2nA\I) 9,

a6 =] 2 -1 —
+ en(Qn+ 2n\I) Qn (Q *2n \I) en} (3.1)
Let n

giE = ), g & (x) and
v==(n-1)

G = (e g Bl s 8y ¥

= Nizn W(g-(n-l)’ g—(n-—Z)’ ceey gn).

Approximating En by 62 and Qn by QE , it can be shown that the
right hand side of Equation (3.1) is (1 + of(l)) times

n (2n\)% g2 n 2 (20 \ )2
' Y — +E-=- )y T v
v=-(n-1) (2n\_ +2n Y BnoShimsly " 4on N+ 2nn)2
where n
:—; - _l_ Zt eZ'rrivj/?n ,
N2n  j==(n-1) :

Now, making the approximation Eejz = 02 = %rz/ﬁ, all i, gives



2

E‘?v] = 0‘2

' 2 2 1
I s > W L
v=-(n-1) (kv+ \) v==(n-1) ()\V-H&) J
(3. 2)
2 kqu \
= (R g, 9 $ = | (14 ofl)) (3.3)
& >2.m an \/2m
where
1 1 B 2
2z 2 ) EZ OC: g
<g,9'> :l_f \g(zm)(x)\ dx +l/?\i J g(x)dx’; = VZ ¢
2m -3 ' -3 J v=-00 \
v
and ; ; J.°° i
Wy Gy
Expression (3.3) is minimized for X\ =X\*¥ (1+o(1)),
- 2m/(4m+1)
ol e i
) I | oo oA 2n . (3.4)
L \g’ g> 2m

*

It is shown in Wahba [8] that, as n— o , A" also tends to the

minimizer of (3. 2). Then

n
3= E P (%) - alx,))*
v==(n-1) g

4m/(4m+1) N ] 1/(4m+1)
= _}ii.n_ (4m+1) é,ﬁgﬁ[ﬂ_i e e
4m 2 _! n4m/(4m+l) X
(3.5)



_.]_0_.

Now this result does not in practice tell us how to choose

N\ since <g, g:', om 18 unknown. However, we make the follow-

ing claims

1) The rate O(Hl 4m/{4m+]) )is the best achievable for average
mean-square error convergence, that is uniformly good
over all ge‘;.((Zm) with <g, g\ om < some constant.
See Wahba [11] for proof of a rélated theorem for density
estimates.

2) The CVMSE technique in Wahba and Wold [13] and

described in the next section estimates \¥ .

4. THE CVMSE PROCEDURE FOR FINDING A
GOOD A\.

The CVMSE procedure in its "purest" form goes as follows:
1) Guess a :

2) Delete the kth data point. Here the kth data point
means Y, andY_, for k + 0 or n. (In Wahba and Wold
[13] we have deleted groups of points at a time to de-
crease the amount of computation).

3) Compute g}:l X 9 the solution to the minimization prob-
lem of (2. 2): with the remaining data. (That s, dn
(2. 2) the term(s) in the sum corresponding to the miss-
ing data is (are) deleted.) gE K(x) is given by (2. 3)
upon deleting rows and columns corresponding to the
missing data.

n
2
4) Let CV(}\) =2+1 - 2( (g]?1 ax ) - Y)

n-1)

5) Compute CV(\) for various values of N\ until a minimum
~ is found.

5. COMPUTATIONAL CONSIDERATIONS

Let

Y = oy, Yoinaz), +-- Yo
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Observe that S{\) defined by

s Sy 2
S0 =5- Z’(n—l) (gn’ )\(Xj) - YJ.)

satisfies

S(\) = A\ (2n) ¥ (Q + ST 2T

~ ¥(2n) T (Qg ot B

2
n ’Y’ \
o e
where
; n :
Y = 1_ , eva;/?n v
V. N2n j==(n-1) ]

It is known from the experiments of Gasser [3], Wahba and Wold
[13] and, Wold [14], and theoretical work of Wahba [0 that
S(NF)~ k o’ , where k is generally less than 1. See Wahba and
Wold [13] for experimental verification of the dependence of k on
the sample size. Thus, to obtain a starting guess for this problem,
e might make a plot of S(\) and find \ for which S(\) ~ kfr ;
with k = .8 say, to pick a number from nowhere.

Now, we find an approximate explicit expression for CV(\).

Let M be the 2n X 2n dimensional matrix
M = Qn + 2n\l

and let M, be the 2n-2 X 2n-2 dimensional matrix formed from M
by deleting the n-kth and the n + kth row and column, that is, the
rows and columns corresponding to Yk’ k=1 2,0e. 01 LSt
Giie and q_., be the 2n-2 dimensional column vectors formed
from the n-k th and n + kth columns of Qn respectively by de-
leting the n-k th and the n + k th entries in each k =1,2,...,n-1.
Similarly define M, g, and M, g, for k = 0, n, where only



entries corresponding to Yo and then Yn are deleted. (MO is of

dimension 2n-1). Let Yk be formed from Y by deleting Y

-
Then
CV(N) ==t y (65 ) - Y,)
2n k==(n=1) n, A7k k
f=] -1 2 a1 2
2% S MU T - Y) # (G M T
1 -]-_" 2 1 _1— 2
* (ano Yo- Yo) # (QZnM k Yn i Yn)

It will next be important to note that if we had formed the q's
frorh columns of Qn instead of from M, the result would be the
same, since these two matrices differ only on the diagonal. We
can then use the following: For any (2n)X (2n) symmetric positive

definite matrix partitioned as follows:

1
M i M,
M= . @ ) ie———= r __________
' 1
Mo E My
we have
]
-1 /'Bll ! B2
M = | =-===- b ———
gy
B2 E B,z
with -1
B2 = =By My My,
It follows, upon rearranging so that M12 = (gn-—k:gn+k)’ 9, 0T 9,

that



__13_

(M)

o /mP-k,n-k n-k, n+]<\ Y

k-g;]—kMle

(M_I?) n-k, n+k mn+k, ntk 1

n+k! = M

Y=g My,

¥
/
_1_ _ n’n . ....1—.

(M Y)n =m (Yo_gn MO %)

-1+, _ _2n,2n i 8
Yo B w2 Y gnMnY),

(M 2n n <2

where (I\/I-I?)‘k is the k th entry of Mhl?, and m" is the i kh

entry of Mhl.

e Now, it is clear by symmetry that Y_k—g n—kMkl?_: Yk- S
M, Y . Also, since M is a circulant matrix, so is M °, which
srtsiis T mK, n-k mi ks ntk w29 a1l K, mn-k, n+k ™ 2k

? >

and hence
- i 1 ~l=
Yk In-k Mk LB o, 2k I Y)n—k ’
m +m
o, 2k 00 o, 2k 00 o, 2k &
Let e, =m™?» "7(2 m T Ny, k=4l L. deel
€. =g =0. Then
o n
1 n‘ =1 & 00 2 1 i -1 B 00 2
CV(N) =5— (M V), /).~ e (M T S mT Y
20 y=a-1) k 20 g (n-1) ¥ i
: (5.1)
We have |s k| =2 |m°’ ZkI/moo. Making the approximation
sk
M~ W(D+2n\) W EQ2+2nhI (5.2)
gives n
29 il Z; 1
2n S (zmj +2n\)
mo’ - R L e‘211-1(21<j)/2n
~ 2n (2n\, + 2nX\)

i
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The next step in our argument is to claim, for \ in the range we
will be interested in, and n large, that mo’Zk is small compared
to m® for all but a few values of k near 0, and the second term
in (5.1) can be neglected compared to the first. (Note that
l/(ZnXJ. +2n\) ~ 1/2nX\ = constant for all but a few ?\]., i, e. when-

ever l/(211j)2m <<X\ . We omit a rigorous argument). Neglecting
the second term in (5.1) and using (5.2) gives

~ 2 .'fr ‘—]
CV(\) ~ == y £f / l\"l‘“ GRS CR o
T 20y (n-1) (201, +2nn)? i'zn yirheyy end H20%)
2 F
n AN e 2
& ke Z —_— A 3 1 '
= 2n E

(n-1) (\ 12 / LZH gy OB _1 “(5.3)

Thus, one can directly seek to find the minimum of (5. 3).

6. WHY DOES MIN CV(\) MINIMIZE THE
X

EXPECTED MEAN SQUARE ERROR?

From (3.2) the expected mean square error when X\

is used,
to be denoted by E TR(M), is

s

E TR(M x)-g(X))

-
(a8 ]
._L\’.:,

n 2 g n \ 2

Z( gv + o \ v
g T 2n 2
v=={n-1) (A e v==(n-1) (A \)

where "~" means (l1+o(l)) as n—+o X~ 0 in such a way that

nk =+ oo, (TR = true)



_15_

Using (5.1), the expected value of CV(\) is

E CV(\)~ E—== N | / ' | #
2r e ) (n +>\) i 2n 21 (N +)~.) ;
e
1 1 (2n) g + E| € l -! 2
B o (R O N v—z(n -1) "v 8]
Now, suppose E‘?;] =UZ, all v, and let
2
2 e g A
ety g WL =
v==(n-1) (X, +\) v
Then )
ETRO\) ~ ¥ (\) + 5—
9 ol v—-Z(n-l) X
r i L
e e
ECV(N)~ | ¥ (\) + =— 21 (1-c -— Y ¢
Lg v==(n-1) 1) LG ves(h=])
Now n n 7y
Postoati U L \2m o 2 RS s \V/2m
where
k = fw dx % . .w dX
m g (1+X2m) m (1+x2m)
thus crzk
ETR(N) ~ T () 1}“2m (6.1)
i 2% k. [- % |?
) s m m_ m
ECV(N)~ (¥ (N +co 1 - Bll- .
j g /' R | e
(6.2)

*
Now, the minimum X\

of (6.1) occurs for the (smallest)
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solution of

0'2 km
! (N) - =0
g 2mn)\(Zm +1)/2m ’
and is K > v 2m/(4m+1)
* m o 1
N~ —_—
— 4 2 Z | 2
m H g( m)” =1 o m/(4m+1)

See [8] for details, it is shown there that ¥ ()\) can be re-
placed by }\2 “g Zm)”

, with vanishingly small error

Differentiating the right hand side of

(6.2) with respect to
N gives
{ 2 ~
o ke v T |
- ool g m m 2 U
T==CV(X) = (F_(N) = i Rl 1
dx 3/2 L g B i 2m+1y2m 2 ?_
where
A 1 :\J ]
U—‘I’g(k +o (1—_;,?727“(2“m_’:m”
"]Z’ 2
Ve (- —r
n s
(2m) 2
Now ¥ (k) < h Hg i H , thus, in the neighborhood
. {km o2 ;‘ 2m/(4m+1) 1 :
OL N ‘\ 4m (Zm)H / an/(4m+1) !

U = 0_2 i O(n-4m/(4m+l))

iy e o(n—4m/(4m+1) )

VZ

o



o, i I

and

a,

-GV

-4m/4m+1) . “ka { -4m/4m+1)
) f’g”‘)' ZmiWzm (O )
2mn i v

= (1+O( n

-4m/ 4m+l)‘)

but does

d Kk %
Thus, aTCV(h) =0 for A=X =X\ (1+ O(n
\

2
Note that this argument holdsfor fixed UZ, I g(Zm)H s
not necessarily hold for the general case of curve estimation by
periodic splines if o~ 0.

We would like to hear of any computational results.
7. REMARKS

Remark 1: The reader who is familiar with the ridge regression
approach to regression of Marquardt [9] will note the similarity
of the problem considered here to that of choosing the ridge para-—
meter k in a ridge regression.

Remark 2: The CVMSE technique for estimating A has a
certain intimate relationship to a method studied by Anderssen
and Bloomfield [l, Sections 4 and 5], related to work of Cullum
[4], for recovering smooth curves and their derivatives from noisy
data. Anderssen and Bloomfield's technique can be thought of as

based on the model

Y, = g(3/2n) +e, j ==(n-1),...,n,

where g(j/2n) is not a value of a fixed function, but a realization

[+ a]
of a random variable Gj, where {Gj} is a zero mean station-
:—m

ary Gaussian process with spectral density fG( w) given by
2

fgle) = v -3 <ws

2 4
AR+ (44 ) ) (7.1

o=
o

or



~jH=

2
f(w) = = X (7.2)
G 6
MEES) ¢ (25 4 ()

is a Gaussian white noise process with variance

[+ a)
and {e.}
2 il
. A is fixed and for comparison we set A=1/n. Their esti-

a
corresponds to the derivative of

mate of g'(x) 5% given by
bl

n
24 Sl P l
gn, G e k:—z(ln—l) Ty Zn)

where, if (7.1) holds

& 2mi (x=3)v
b?\(x) : Z P y 2mx 2 2nx. ., 4
v==(n-1) I % [i vin 2] vin

% A Fi \ A 'i
o i GZTFi(:&.—%)v gv
v=—(n-1) (gv+ x)
2 4
where E,V: /{m»® + (w) 7], If (7. 2) holds,

2 4 6 :
§v= V(™)™ +(m) " +(m) " ]. They find ([1], eq. (15), upon
taking the anti log), that an approximate maximum likelihood
estimate for M\ with this model is obtained by minimizing

n 1Y | B n ] 1/(2n-1)
Z r g 1 EI(n—l) 1
. N S B ] 2 14
0 Laftnn® + (o] L= 0 M(m 2+
n r;;v[ 2 N 3 1/(2n-1)
=2 e I ) R S .
RN

==(n-1) (& +\)/ ]v=-(n-1
v %)(" / 1;4:61)



RET-R

Compare with

Bt i B
7\2 n‘ ‘le 1 n~ )Lv ?
CV()\) = 2— “ — -
eh plied) ()\V%-R)Z B Sy MR
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