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Abstract

Let Xl""’X(n—l) be independent and identically
distributed random variables with common distribution F on
' T
[0,1] and let X ,...,Xn_1 be the corresponding ordered
observations. The problem of testing the hypothesis that F is
N
. . . . a T, ' 1
uniform in [0,1] based on the statistic Tn = /N ;m[n(Xik X(i—l)k)]
is considered, where k is a fixed number independent of n,

m is a function satisfying some regularity conditions and

T

XO = 0, X; = 1. The asymptotic distribution of Tn under a
sequence of local alternatives is obtained and it is used

to compute Pitman efficiencies of tests based on different
functions m. This‘generalizes results of Rao and Sethuraman

[in Nonparametric Techniques in Statistical Inference, Ed.

M.L. Puri] who only study the case k = 1., Examples are given
where, for a given m, the Pitman efficiency increases arbitrarily

with k.
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On the asymptotic distribution of some goodness of fit

tests based on spacings

Guido E. del Pino

1. Introduction

Let Xl’XZ""’X(n-lj

distributed random variables with common distribution

be (n-1) independent and identically

1 1 T
A_ on [0,1] and let X Xz,...,X be the corresponding

n 1°? (n-1)
order statistics. For any fixed k the sample spacings

D are defined as

Dy wswssly

1 ]
Dy = Bip = Epg 1%

i=1,2,...,N (1.1)
where we assume n = Nk and take Xé = 0 and X; = 1.
For the case k = 1, Rao and Sethuraman ([8], [9]) have
studied the asymptotic distribution of

1 N
T, = 3 D m(nD ) (1.2)

1 i=1

under the sequence

_ § _ ! | S
B ) =% w LEDIT =% LGN/ 0 ¢E e L
(1.3)
where Ln(O) = Ln(l) = 0 and ¢ < %. It is also assumed that

Ln is twice differentiable in [0,1] and there is a function

L which is twice continuously differentiable and such that



n § sup |Ln(x) - L(x)| = o(1)
0<x<1
n® sup L) - 2@)] = o(1) (1.4)
0<x<1
and
§* " 1
n sup |Ln(x) -2 (X)) = o(1)

0<x<1

where £ and A are the first and second derivatives of L
and 6% = max(O,}-G). The function m(X) must satisfy some
regularity conditions which are analyzed in the next section.
The statistic Tn can be used to perform a goodness of fit
test for the uniform distribution on [0,1] (which corresponds
to L =0 and will be denoted by U). Knowledge of the
asymptotic distribution of Tn under the sequence of alternatives
An allows us to compute Pitman's Asymptotic Relative Efficiencies
(A.R.,E.,) for tests based on different functions m,
The object of this note is to extend the above to the
case of any fixed k and show that for some functions m the
efficiency can be greatly improved by taking a large value

of k.

2., Asymptotic distribution of Tn

Let Z,,...,Z_ be independent and identically distributed
1’ n

random variables with density

B 1 k-1 -z



and corresponding distribution function Hk. It is well

known that under U

d 2
(B0 , 8L ) B [ Ve 150,...,0)
n
where
N N
= 1 1.1
Z_ =5 JI.=23(5 }Z.)
n n;z;1i kN GLTE
d
and = stands for '"has the same distribution as'".

We have
£ = /N(Z_-1)= £N(0,]) (2.1)

with=% denoting weak convergence (i.e. convergence in
distribution in this case).

It is easy to verify that conditions for the applicability
of Theorem 2.8 in [9] are satisfied. Thus we have obtained

the following

Theorem 2.1

Let Pn be the empirical distribution function (e.d.f.)

of (nDi,i=1,...,N) and let Gn be defined as follows

N
=1
Gl’l(x) =N Z Hk(aNix) (2.2)
i=1
with

s = 1+ GO - gl e dapin®e.s)

Similarly let Fn be the e.d.f. of (Zi,i=1,...,N).



Define
M) = VR x)-G (x)) (2.4)
N, ®) = N(F (x)-H () . (2.5)
Then
0§§Em1ﬁn(x) - n (x) - xfk(x)Enl—Ea 0 . (2.6)
Remarks

I) The smoothness of fk allows us to replace Gn(x) defined

in (2.2) by

2 T 1 26
G, (x) = H (x) + (xf, (x) + ngk(x))(éwxx)dx)/n (2.7)
which differs from the previous definition by terms smaller
than n~ 2% uniformly in x.

II) The finite-dimensional distributions of ((nn(x),0§x§m),5n)
converge to the finite-dimensional distributions of a Gaussian
process ((n(X),0<x<=),£), where n(Xx) has mean function zero

and covariance function
K(x,y) = min(H, (x]),H, (y)) - H (x)H ()

€ is defined in (2.1) and

et

X
Cov(&,n(x)) = Cov(E ,n (x)) = é(t-k)fk(t)dt

Since we also have nnf%?n (in the Skorohod topology) and



£ %&£, then ((n_(x),0<x<=),£ ) is tight ([1], p. 41).

Therefore
((n, (x),0<x<®),€ ) & ((n(x),0¢x¢),E)
and consequently
(n (x)+xfy (X)E_,0<x<=) S (n(x)+xf, (x)E,0x<=) . (2.8)

g 1
ITI) Cov(g,n(x)) = é(t—k)fk(t]dt = - /Efk(x)

L
/k

From this we see that
n(x) + xf (E = n(x) - (-;%xfk(XJ)/EE

is the component of n(x) orthogonal to £. As a consequence
of “this; nlx) #* xfk(x)E is independent of £ and has the
same distribution as that of n(x) conditioned on £ = 0.
This is merely reflecting the fact that
- d -
(Zi/Zn,i=1,...,N) = (Zi,i=1,...,N|Zn=1)

By using this construction, the same results can be readily
obtained through a trivial extension of a Theorem of LeCam
[6] together with a method suggested by Pyke ([7], p. 414).
From this remarks and Theorem 2.1 we have the following

analog of Corollary 2.9 in [9].

Theorem 2.2

The processes (ﬁn(x),Ofxfw) converge weakly to a Gaussian

process (n(x),0<x<=) with mean zero and covariance function



K(c,y) = min(H, (0),H () - B O (y) - § xyf, COf, ()

(2.9)
Returning now to our original problem we can write
T =/N(Tn—ém(x)de(x)) = Gy.(0) + W (2.10)
where
/N | ) o x2 1
Cp(n) = ;Zg(éz (x)dx)ém(x)d(xfk(x) + £, (x)) (2.11)
and
W= ém(x)dﬁn(x)dx . (2.12)

To be able to make efficiency comparisons we require

0 < |1im Ck(n)|<w which is equivalent to the conditions
T1->co

9 x2 !

Iém(x)d(xfk(x) + 5f, (%)) [ <o (2.13)
and ¢ = % since the analysis is only valid for fixed k. We
assume § = % in all what follows. Integrating (2.12) by

parts we get

[ee] v B
W, o= - ém (x)n_ (x)dx
provided
m is absolutely continuous in (0,«) (2.14)
1lim m(x](l-Hk(x)) = 0 (2.15)
X—)—oo
and
lim m(x)Hk(x) = 0 (2.16)

x=+0



The weak convergence of the processes ﬁn implies that the

limit distribution of Wn will be the same as that of
- fm (xX)n(x)dx
0
if the linear functional

L: y +fm (x)y(x)dx, yeD[0,=] (2.17)
0

is continuous (i.e. bounded) with probability one under the
probability measure generated by n. It is easy to check

that, with probability one, all trajectories of n are continuous
([3], p. 183) and that they tend to zero as x tends to e,
Therefore we can work with the uniform instead of the Skorohod
topology. For the continuity of L we assume as in [8]

that m is bounded in every closed interval in [0,«). To

relax the boundness condition near zero and infinity one

must make better use of the fact that it is only necessary

to consider functions y(x) that are trajectories of the
Gaussian process n. First we notice that n(x) can be written
as n*(Hk(x)), where n®* is a tied-down Brownian motion in
[0,1]. By applying the law of the iterated logarithm as in
[8], it is easy to see that the contribution of ka(x)a

is neglectable and arrive to the conditions

< =
£|m(x)|vﬁﬁk(x)1og log (Hy (x)) Tdx <o (2.18)

co

Alm(x)l#&(l—Hk{x))log log (1-Hy (x)) dx < (2.19)

We remark that the variance of the normal random variable



0

' -
fm (x)n(x)dx is automatically finite given these conditions.,.
0

For practical purposes it is more convenient to have
sufficient conditions for (2.13)-(2.16) and (2.18)-(2.19)
that can be easily checked. One possible set of such
conditions is (*) below:

i) m is absolutely continuous in (0,«) and m' is bounded

on any closed interval in (0,«)

ii) m is monotone in the neighborhood of 0 and «

iii) 1lim e **m2(x) = 0 for some a<l
X300

iv) 1im mez(x) = 0 for some R<k
x=+0

We assume in what follows that (*) is satisfied.

Let p and o? be the asymptotic mean and variance of

1

T . Then
n

0000

%= [fm (Om (y)K(x,y)dxdy (2.20)
00

émz(x)fk(x)dx-(ém(x)fk(x)dx)z—%(Zm(x)(x-k)fk(x)dx)z

(2.21)

Under the null hupothesis (2.21) can be obtained directly

from LeCam's theorem.
11 o0 x2|
uo= 7E(£EZ(x)dx)ém(x)d(xfk(x) + = (x)) (1«22)

1 ®
i LE:%lﬁK(IRZ(X)dx)Im (x) (£ pq (X) - £, (x))dx
0 0 (2.23)

1 5]
= _1_(_[2,2(x)dx)fxzm"(x]fk(x)dx (2.24)
2vk 0 0

WO



the last equality being true if the integration by parts

of (2.23) can be justified.

3. Asymptotic relative efficiency

We turn now to the question of computing the A.R.E. of
one test with respect to another when we consider different
functions m. Let ui,oiz be the asymptotic mean and variance

T
of the statistic Tni corresponding to the i-th test with
associated function ms . Due to the asymptotic normality

1
of Tes the A.R.E. of test 1 with respect to test 2 is simply

1, 1
My 8/ Wy 6
ARE(1,2) = (59 /(D)
1 2

with & = % in our case (see [5]). In [8] an exponent 2

instead of 4 was wrongly used. We will compute
Mok /2
en (k) = =% [(fe* (x)dx)* (3.1)
Um,k 0
for different functions m and different k. Then the ARE

can be obtained as
2
eml(kl)
2
emz(kz)

ARE(1,2) = (3.2)

Examples

1) m(x) = x%, 2a>-k, a(a-1)#0

From (2.21) and (2.24) we get



-10-

a®(a-1)%r2 (a+k)
I (20+kK)T (k) -T2 (a+k) (1+a2/k)

e(k) = g3 (

In particular for a = 2

In general we can prove

Lin Ze(k) - 1 for a(a-1) # 0

by using the following formula ([4], p. 245):

I'(n s +] 1
T - 7 - %ﬁ%rrl folgrp) B 20 o

2) m(x) = log x

From (2.21) and (2.24)

k) = — 1 -
T
J
Again
. 2e(k)
1im = 1
koo k
since
L2+ o) ow
k5% 2k e®

3) m(x) = |x-k|

From (2.21) and (2.23)



],

(k+1)?£2, , (K)

ok =
1 - 4kf2 2k ¢

- - — - 2
200 - 201 - Fp () - gk, (0 - 1]
In particular

e(1) = gomgg © 0.5726

Because of the convergence of fk suitably normalized to a
normal density, it is easy to see that
. v e
£k+1(k) ¥ fk+2(k) /7T for large k
F (k)+l as koo
k+2 2

and from this we get

138 2e(k) _ 1
koo

To find the asymptotically most efficient test for any
fixed k, within the class of tests we are considering, we
must maximize em(k). From (2.20) and (2.23) this is

equivalent to the maximization of

1<(1<+1)(f

2
(Im (x) a1 (X - £ (x))dx)

(3.3)

f[m (x)m'(y)K(x,y)dxdy
00
where this expression is taken to be zero if the numerator
vanishes.
Let P be the integral operator defined by

(Ph) (x) = [h(y)K(x,y)dy (3.4)
0



« [2

where h belongs to a Hilbert space containing the derivatives
of the functions satisfying (®*) and with inner product
defined by

<hg;f~> = ??Kix,y)h(X)f(y)dxdy ; (3.5)
00

It is easy to check that the null space of P is the set of

constant functions in (0,»)., Let

glx) = KL (s

ka1 X - (X))

and assume there exists g* in the domain of P such that
Pg* = g, Then the problem is equivalent to the maximization

af
<h,o#%>?
_?ﬁ%HF“

Ag*, It can be verified that

which has the solution h

g*(x) = 2x satisfies Pg¥* g. Therefore the solution to

the maximization problem is

m (x)

2AX + B

Ax? + Bx + C .

or m(x)

Since

=

N
) (A(nDi)2+BnDi+C) = A5 ) (nDi)2 + Bk + C
i=1 i=1

Zi

1
N



=13«

it is clearly enough to consider m(x) = x2?. This
result has been proved by Sethuraman and Rao in the
particular case k = 1, As a by-product of our analysis, the

following theorem is easily obtained.

Theorem 3.1

Assume (*) holds. Then the ARE of a test with statistic

T ., with respect to another with statistic Tnz is equal

nl

to the ratio pl“/pz“, where p, ia the asymptotic correlation
coefficient of Tni and the statistic Tn corresponding to

m(x) = x2.

4) Commentary

Although the analysis is only valid for fixed k, the
examples in the last section suggest that we should let k
1-48

L]

0 < B <

: : ; _ . 1
increase with n. Formally putting k = k(n)«n 53

in (2.10) we could take ¢ = % = B and still have limiting

power strictly greater than the significance level in all

three examples. The case B = 0 corresponds to N fixed and

no version of the central limit theorem could possibly be
applied. For N fixed there are relations between the tests
with m(x) = x? or m(x) = x"1 and x? tests with cells determined
by sample quantiles. Also let -2log W be the Barttlet

statistic (See [2]) for the comparison of the variance of

N normal populations when independent random samples of size



=l

2k+1 are available. Then -2Zlog W and
N
-2k§10g(nDi) + 2nlogk
have the same null distribution. In these two cases, the
convenience of keeping N small and k large is obvious.
Research on the asymptotic distribution of T; (suitably
normalized) when k depends on n is currently being done by

the author.
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